156
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Transfection efficiency of lipoplexes for site-directed delivery

, , , , , & show all
Pages 258-267 | Received 17 Aug 2009, Accepted 03 Oct 2009, Published online: 30 Nov 2009

References

  • Branden, L. J., Mohamed, A. J., Smith, C. I. (1999). A peptide nucleic acid-nuclear localization signal fusion that mediates nuclear transport of DNA. Nat Biotechnol 17:784–787.
  • Brunner, S., Sauer, T., Carotta, S., Cotten, M., Saltik, M., Wagner, E. (2000). Cell cycle dependence of gene transfer by lipoplex, polyplex, and recombinant adenovirus. Gene Ther 7:401–407.
  • Clark, P. R., Hersch, E. M. (1999). Cationic lipid-mediated gene transfer: current concepts. Curr Opin Mol Ther 1:158–176.
  • Cohen, R. N., van der Aa, M. A., Macaraeg, N., Lee, A. P., Szoka, F. C., Jr. (2009). Quantification of plasmid DNA copies in the nucleus after lipoplex and polyplex transfection. J Contr Rel 135:166–174.
  • Dowty, M. E., Williams, P., Zhang, G., Hagstrom, J. E., Wolff, J. A. (1995). Plasmid DNA entry into postmitotic nuclei of primary rat myotubes. Proc Natl Acad Sci U S A 92:4572–4576.
  • El Ouahabi A., Thiry, M., Pector, V., Fuks, R., Ruysschaert, J. M., Vandenbranden, M. (1997). The role of endosome destabilizing activity in the gene transfer process mediated by cationic lipids. FEBS Lett 414:187–192.
  • Fang, Y., Yang, J. (1997). Two-dimensional condensation of DNA molecules on cationic lipid membranes. J Phys Chem B 101:441–449.
  • Farhood, H., Serbina, N., Huang, L. (1995). The role of dioleoyl phosphatidylethanolamine in cationic-liposome–mediated gene transfer. Biochim Biophys Acta 1235:289–295.
  • Fasbender, A., Marshall, J., Moninger, T. O., Grunst, T., Cheng, S., Welsh, M. J. (1997). Effect of co-lipids in enhancing cationic lipid-mediated gene transfer in vitro and in vivo. Gene Ther 4:716–725.
  • Felgner, P. L., Ringold, G. M. (1989). Cationic liposome-mediated transfection. Nature 337:387–388.
  • Frederik, P. M., Hubert, D. H. (2005). Cryoelectron microscopy of liposomes. Meth Enzymol 391:431–448.
  • Hafez, I. M., Maurer, N., Cullis, P. R. (2001). On the mechanism whereby cationic lipids promote intracellular delivery of polynucleic acids. Gene Ther 8:1188–1196.
  • Hoekstra, D., Rejman, J., Wasungu, L., Shi, F., Zuhorn, I. (2007). Gene delivery by cationic lipids: in and out of an endosome. Biochem Soc Trans 35(Pt 1):68–71.
  • Jahn, A., Reiner, J. E., Vreeland, W. N., DeVoe, D. L., Locascio, L. E., Gaitan, M. (2008). Preparation of nanoparticles by continuous-flow microfluidics. J Nanopart Res 10:925–934.
  • Kenworthy, A. K., Hristova, K., Needham, D., McIntosh, T. J. (1995). Range and magnitude of the steric pressure between bilayers containing phospholipids with covalently attached poly(ethylene glycol). Biophys J 68:1921–1936.
  • Klopfenstein, D. R., Vale, R. D., Rogers, S. L. (2000). Motor protein receptors: moonlighting on other jobs. Cell 103:537–540.
  • Lasic, D. (1997a). Liposomes in gene delivery. New York: CCR Press.
  • Lasic, D. D. (1997b). Colloid chemistry. Liposomes within liposomes. Nature 387:26–27.
  • Lasic, D. D., Vallner, J. J., Working, P. K. (1999). Sterically stabilized liposomes in cancer therapy and gene delivery. Curr Opin Mol Ther 1:177–185.
  • Laskey, R. A. (1998). CIBA medal lecture. Regulatory roles of the nuclear membrane. Biochem Soc Trans 26:561–567.
  • Lechardeur, D., Lukacs, G. L. (2002). Intracellular barriers to nonviral gene transfer. Curr Gene Ther 2:183–194.
  • Lechardeur, D., Lukacs, G. L. (2006). Nucleocytoplasmic transport of plasmid DNA: a perilous journey from the cytoplasm to the nucleus. Hum Gene Ther 17:882–889.
  • Lechardeur, D., Sohn, K. J., Haardt, M., Joshi, P. B., Monck, M., Graham, R. W., et al. (1999). Metabolic instability of plasmid DNA in the cytosol: a potential barrier to gene transfer. Gene Ther 6:482–497.
  • Leonetti, J. P., Mechti, N., Degols, G., Gagnor, C., Lebleu, B. (1991). Intracellular distribution of microinjected antisense oligonucleotides. Proc Natl Acad Sci U S A 88:2702–2706.
  • Li, W., Huang, Z., MacKay, J. A., Grube, S., Szoka, F. C., Jr. (2005). Low-pH–sensitive poly(ethylene glycol) (PEG)-stabilized plasmid nanolipoparticles: effects of PEG chain length, lipid composition, and assembly conditions on gene delivery. J Gene Med 7:67–79.
  • Luby-Phelps, K. (2000). Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area. Int Rev Cytol 192:189–221.
  • Ludtke, J. J., Zhang, G., Sebestyen, M. G., Wolff, J. A. (1999). A nuclear localization signal can enhance both the nuclear transport and expression of 1-kb DNA. J Cell Sci 112( Pt 12):2033–2041.
  • Lukacs, G. L., Haggie, P., Seksek, O., Lechardeur, D., Freedman, N., Verkman, A. S. (2000). Size-dependent DNA mobility in cytoplasm and nucleus. J Biol Chem 275:1625–1629.
  • Meyer, K., Uyechi, L. S., and Szoka, F. C. J. (1997). Manipulating the intracellular trafficking of nucleic acids. New York, Marcel Dekker Inc.
  • Needham, D., McIntosh, T. J., Lasic, D. D. (1992). Repulsive interactions and mechanical stability of polymer-grafted lipid membranes. Biochim Biophys Acta 1108:40–48.
  • Pante, N., Kann, M. (2002). Nuclear pore complex is able to transport macromolecules with diameters of about 39 nm. Mol Biol Cell 13:425–434.
  • Pollard, H., Toumaniantz, G., Amos, J. L., Avet-Loiseau, H., Guihard, G., Behr, J. P., et al. (2001). Ca2+-sensitive cytosolic nucleases prevent efficient delivery to the nucleus of injected plasmids. J Gene Med 3:153–164.
  • Ross, G. F., Bruno, M. D., Uyeda, M., Suzuki, K., Nagao, K., Whitsett, J. A., et al. (1998). Enhanced reporter gene expression in cells transfected in the presence of DMI-2, an acid nuclease inhibitor. Gene Ther 5:1244–1250.
  • Rouzina, I., Bloomfield, V. A. (1998). DNA bending by small, mobile multivalent cations. Biophys J 74:3152–3164.
  • Shi, F., Wasungu, L., Nomden, A., Stuart, M. C., Polushkin, E., Engberts, J. B., et al. (2002). Interference of poly(ethylene glycol)-lipid analogues with cationic-lipid–mediated delivery of oligonucleotides: role of lipid exchangeability and nonlamellar transitions. Biochem J 366(Pt 1):333–341.
  • Talcott, B., Moore, M. S. (1999). Getting across the nuclear pore complex. Trends Cell Biol 9:312–318.
  • Templeton, N. S., Lasic, D. D., Frederik, P. M., Strey, H. H., Roberts, D. D., Pavlakis, G. N. (1997). Improved DNA: liposome complexes for increased systemic delivery and gene expression. Nat Biotechnol 15:647–652.
  • Wagner, E., Plank, C., Zatloukal, K., Cotten, M., Birnstiel, M. L. (1992a). Influenza virus hemagglutinin HA-2 N-terminal fusogenic peptides augment gene transfer by transferrin-polylysine-DNA complexes: toward a synthetic virus-like gene-transfer vehicle. Proc Natl Acad Sci U S A 89:7934–7938.
  • Wagner, E., Zatloukal, K., Cotten, M., Kirlappos, H., Mechtler, K., Curiel, D. T., et al. (1992b). Coupling of adenovirus to transferrin-polylysine/DNA complexes greatly enhances receptor-mediated gene delivery and expression of transfected genes. Proc Natl Acad Sci U S A 89:6099–6103.
  • Walker, G. F., Fella, C., Pelisek, J., Fahrmeir, J., Boeckle, S., Ogris, M., et al. (2005). Toward synthetic viruses: endosomal pH-triggered deshielding of targeted polyplexes greatly enhances gene transfer in vitro and in vivo. Mol Ther 11:418–425.
  • Wattiaux, R., Laurent, N., Wattiaux-De Coninck, S., Jadot, M. (2000). Endosomes, lysosomes: their implication in gene transfer. Adv Drug Deliv Rev 41:201–208.
  • Xu, Y., Szoka, F. C., Jr. (1996). Mechanism of DNA release from cationic liposome/DNA complexes used in cell transfection. Biochemistry 35:5616–5623.
  • Zabner, J., Fasbender, A. J., Moninger, T., Poellinger, K. A., Welsh, M. J. (1995). Cellular and molecular barriers to gene transfer by a cationic lipid. J Biol Chem 270:18997–19007.
  • Zelphati, O., Szoka, F. C., Jr. (1996). Mechanism of oligonucleotide release from cationic liposomes. Proc Natl Acad Sci U S A 93:11493–11498.
  • Zhou, X., Huang, L. (1994). DNA transfection mediated by cationic liposomes containing lipopolylysine: characterization and mechanism of action. Biochim Biophys Acta 1189:195–203.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.