189
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Investigation of parameters influencing incorporation, retention and cellular cytotoxicity in liposomal formulations of poorly soluble camptothecin

, , , &
Pages 298-310 | Received 09 Jan 2013, Accepted 11 May 2013, Published online: 13 Jun 2013

References

  • Adams VR, Burke TG. Camptothecins in cancer therapy. Towata (NJ): Humana Press Inc; 2005
  • Ali MH, Kirby DJ, Mohammed AR, Perrie Y. Solubilisation of drugs within liposomal bilayers: alternatives to cholesterol as a membrane stabilizing agent. J Pharm Pharmacol 2010;62:1646–55
  • Ali MH, Moghaddam B, Kirby DJ, et al. The role of lipid geometry in designing liposomes for the solubilisation of poorly water soluble drugs. Int J Pharm 2012. [Epub ahead of print]. http://dx.doi.org/10.1016/j.ijpharm.2012.06.056
  • Balin-Gauthier D, Delord J-P, Rochaix P, et al. In vivo and in vitro antitumor activity of oxaliplatin in combination with cetuximab in human colorectal tumor cell lines expressing different level of egfr. Cancer Chemother Pharmacol 2006;57:709–18
  • Bilensoy E. Cationic nanoparticles for cancer therapy. Expert Opin Drug Deliv 2010;7:795–809
  • Burke TG, Mishra AK, Wani MC, Wall ME. Lipid bilayer partitioning and stability of camptothecin drugs. Biochemistry 1993;32:5352–64
  • Cirpanli Y, Bilensoy E, Lale dogan A, Calis S. Comparative evaluation of polymeric and amphiphilic cyclodextrin nanoparticles for effective camptothecin delivery. Eur J Pharm Biopharm 2009;73:82–9
  • Clements MK, Wasi S, Daoud SS. Camptothecin exhibits selective cytotoxicity towards human breast carcinoma as compared to normal bovine endothelial cells in vitro. Anti-Cancer Drugs 1996;7:851–7
  • Dass CR, Walker TL, Burton MA. Liposomes containing cationic dimethyl dioctadecyl ammonium bromide: formulation, quality control, and lipofection efficiency. Drug Deliv 2002;9:11–18
  • Devaraj GN, Parakh SR, Devraj R, et al. Release studies on niosomes containing fatty alcohols as bilayer stabilizers instead of cholesterol. J Colloid Interface Sci 2002;251:360–5
  • Dhanikula AB, Panchagnula R. Fluorescence anisotropy, ft-ir spectroscopy and 31-p nmr studies on the interaction of paclitaxel with lipid bilayers. Lipids 2008;43:569–79
  • Flaten GE, Chang TT, Phillips WT, et al. Liposomal formulations of poorly soluble camptothecin: drug retention and biodistribution. J Liposome Res 2013;23:70–81
  • Francis MB. Bioconjugate techniques, 2nd ed. By Greg T. Hermanson; 2012
  • Han HD, Lee A, Song CK, et al. In vivo distribution and antitumor activity of heparin-stabilized doxorubicin-loaded liposomes. Int J Pharm 2006;313:181–8
  • Hatefi A, Amsden B. Camptothecin delivery methods. Pharm Res 2002;19:1389–99
  • Henriksen-Lacey M, Christensen D, Bramwell VM, et al. Comparison of the depot effect and immunogenicity of liposomes based on dimethyldioctadecylammonium (dda), 3β-[n-(n′,n′-dimethylaminoethane)carbomyl] cholesterol (dc-chol), and 1,2-dioleoyl-3-trimethylammonium propane (dotap): prolonged liposome retention mediates stronger th1 responses. Mol Pharmaceutics 2011;8:153–61
  • Howard MD, Jay M, Dziubla TD, Lu X. Pegylation of nanocarrier drug delivery systems: state of the art. J Biomed Nanotechnol 2008;4:133–48
  • Ivanova B, Spiteller M. Structure and properties of camptothecin derivatives, their protonated forms and model interaction with the topoisomerase i-dna complex. Biopolymers 2012;97:134–44
  • Kruszewski S, Kruszewska DM. Fluorescence spectroscopy in camptothecins studies. Acta Phys Pol, A 2010;118:99–102
  • Li Q-Y, Zu Y-G, Shi R-Z, Yao IP. Review camptothecin: current perspectives. Curr Med Chem 2006;13:2021–39
  • Maitani Y, Katayama S, Kawano K, et al. Artificial lipids stabilized camptothecin incorporated in liposomes. Biol Pharm Bull 2008;31:990–3
  • Mamot C, Drummond DC, Greiser U, et al. Epidermal growth factor receptor (egfr)-targeted immunoliposomes mediate specific and efficient drug delivery to egfr- and egfrviii-overexpressing tumor cells. Cancer Res 2003;63:3154–61
  • Marquez M, Nilsson S, Lennartsson L, et al. Charge-dependent targeting: results in six tumor cell lines. Anticancer Res 2004;24:1347–51
  • Maruyama K. Intracellular targeting delivery of liposomal drugs to solid tumors based on epr effects. Adv. Drug Deliv Rev 2011;63:161–9
  • Modi CD, Murthy RSR. Effect of pegylation on multiwalled carbon nanotubes and liposomes: a comparative study. Pharm Lett 2011;3:34–47
  • Mohammed AR, Weston N, Coombes AGA, et al. Liposome formulation of poorly water soluble drugs: optimisation of drug loading and esem analysis of stability. Int J Pharm 2004;285:23–34
  • Mollica A, Stefanucci A, Feliciani F, et al. Delivery methods of camptothecin and its hydrosoluble analogue irinotecan for treatment of colorectal cancer. Curr Drug Deliv 2012;9:122–31
  • Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Meth 1984;65:55–63
  • Pistolozzi M, Varchi G, Degli esposti A, et al. Camptothecin and thiocamptothecin: the role of sulfur in shifting the hydrolysis equilibrium towards the closed lactone form. Chemmedchem 2011;6:1706–14
  • Pommier Y. Topoisomerase i inhibitors: camptothecins and beyond. Nat Rev Cancer 2006;6:789–802
  • Saetern AM, Brandl M, Bakkelund WH, Sveinbjornsson B. Cytotoxic effect of different camptothecin formulations on human colon carcinoma in vitro. Anti-Cancer Drugs 2004a;15:899–906
  • Saetern AM, Flaten GE, Brandl M. A method to determine the incorporation capacity of camptothecin in liposomes. Aaps Pharmscitech 2004b;5:e40
  • Sawant RR, Torchilin VP. Challenges in development of targeted liposomal therapeutics. Aaps J 2012;14:303–15
  • Selvi B, Patel S, Savva M. Physicochemical characterization and membrane binding properties of camptothecin. J Pharm Sci 2008;97:4379–90
  • Shao M, Sun S-L, Li M-H, et al. The liposomal daunorubicin plus tamoxifen: improving the stability, uptake, and biodistribution of carriers. J. Liposome Res 2012;22:168–76
  • Sugarman SM, Zou Y, Wasan K, et al. Lipid-complexed camptothecin: formulation and initial biodistribution and antitumor activity studies. Cancer chemother. Pharmacol 1996;37:531–8
  • Tanizawa A, Fujimori A, Fujimori Y, Pommier Y. Comparison of topoisomerase i inhibition, dna damage, and cytotoxicity of camptothecin derivatives presently in clinical trials. J Natl Cancer Inst 1994;86:836–42
  • Torchilin V. Liposomal nanomedicines. Pan stanford ser. Biomed Nanotechnol 2011a;1:315–82
  • Torchilin V. Tumor delivery of macromolecular drugs based on the epr effect. Adv Drug Deliv Rev 2011b;63:131–5
  • Turtoi A, de pauw E, Castronovo V. Innovative proteomics for the discovery of systemically accessible cancer biomarkers suitable for imaging and targeted therapies. Am J Pathol 2011;178:12–18
  • Ulukan H, Swaan PW. Camptothecins: a review of their chemotherapeutic potential. Drugs 2002;62:2039–57
  • Venditto VJ, Simanek EE. Cancer therapies utilizing the camptothecins: a review of the in vivo literature. Mol Pharmaceutics 2010;7:307–49
  • Venkateswarlu I, Reddy VJ, Ramesh Y, et al. A review on liposomes. Res J Pharm Biol Chem Sci 2011;2:739–51
  • Warner DL, Burke TG. Simple and versatile high-performance liquid chromatographic method for the simultaneous quantitation of the lactone and carboxylate forms of camptothecin anticancer drugs. J Chromatogr B Biomed Sci Appl 1997;691:161–71
  • Watanabe M, Kawano K, Toma K, et al. In vivo antitumor activity of camptothecin incorporated in liposomes formulated with an artificial lipid and human serum albumin. J Control Rel 2008;127:231–8
  • Zelphati O, Uyechi IS, Barron IG, Szoka FC Jr. Effect of serum components on the physico-chemical properties of cationic lipid/oligonucleotide complexes and on their interactions with cells. Biochim Biophys Acta, Lipids Lipid Metab 1998;1390:119–33
  • Zhang JA, Xuan T, Parmar M, et al. Development and characterization of a novel liposome-based formulation of sn-38. Int J Pharm 2004;270:93–107
  • Zhao H, Jia B, Wang F, Liu Z. Tumor targeting of 125i-labeled anti-egfr monoclonal antibody la22 in ht-29 human colon cancer. Nucl Sci Tech 2010;21:84–8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.