38
Views
139
CrossRef citations to date
0
Altmetric
Original Article

Hyperalgesia during Naloxone-Precipitated Withdrawal from Morphine Is Associated with Increased On-Cell Activity in the Rostral Ventromedial Medulla

, &
Pages 185-203 | Published online: 10 Jul 2009

References

  • Akaike A., Shibata T., Satoh M. Analgesia induced by microinjection of morphine into, and electrical stimulation of, the nucleus reticularis paragigantocellularis of rat medulla oblongata. Neuropharmacology 1978; 17: 775–778
  • Azami J., Llewelyn M. D., Roberts M. H. T. The contribution of nucleus paragigantocellularis and nucleus raphe magnus to the analgesia produced by systemically administered morphine, investigated with the microinjection technique. Pain 1982; 12: 229–246
  • Barbaro N. M., Heinricher M. M., Fields H. L. Putative pain modulating neurons in the rostral ventral medulla: Reflex-related activity predicts effects morphine. Brain Res. 1986; 366: 203–210
  • Barbaro N. M., Heinricher M. M., Fields H. L. Putative nociceptive modulatory neurons in the rostral ventromedial medulla of the rat display highly correlated firing patterns. Somatosens. Mot. Res. 1989; 6: 413–425
  • Basbaum A. I., Fields H. L. Endogenous pain control systems: Brainstem spinal pathways and endorphin circuitry. Ann. Rev. Neurosci. 1984; 7: 309–338
  • Bederson J. B., Barbaro N. M., Fields H. L. Hyperalgesia following naloxone-precipitated withdrawal from morphine is associated with increased on-cell activity in the rostral ventromedial medulla (RVM). Soc. Neurosci. Abstr. 1987; 13: 1016
  • Bickel W. K., Stitzer M. L., Wazlavek B. E., Liebson I. A. Naloxone-precipitated withdrawal in humans after acute morphine administration. Natl. Inst. Drug Abuse Res. Monogr. Ser. 1985; 67: 349–354
  • Cheng Z. E., Fields H. L., Heinricher M. M. Morphine microinjected into the periaqueductal gray has differential effects on 3 classes of medullary neurons. Brain Res. 1986; 375: 57–65
  • Dickenson A. H., Oliveras J. L., Besson J. M. Role of the nucleus raphe magnus in opiate analgesia as studied by the microinjection technique in the rat. Brain Res. 1979; 170: 95–111
  • Eisenberg R. M. Further studies on the acute dependence produced by morphine in opiate naive rats. Life Sci. 1982; 31: 1531–1540
  • Fields H. L., Basbaum A. I., Clanton C. H., Anderson S. D. Nucleus raphe magnus inhibition of spinal cord dorsal hom neurons. Brain Res. 1977; 126: 441–453
  • Fields H. L., Bry J., Hentall I., Zorman G. The activity of neurons in the rostral medulla of the rat during withdrawal from noxious heat. J. Neurosci. 1983a; 3: 2545–2552
  • Fields H. L., Vaneoas H., Hentall I. D., Zorman G. Evidence that disinhibition of brainstem neurons contributes to morphine analgesia. Nature (London) 1983b; 306: 684–686
  • Gebhart G. F. Opiate and opioid peptide effects on brain stem neurons: Relevance to nociception. Pain 1982; 12: 93–140
  • Gray B. G., Dostrovsky J. O. Descending inhibitory influences from periaqueductal gray, nucleus raphe magnus, and adjacent reticular formation: Effects on lumbar cord nociceptive and non-nociceptive neurons. J. Neurophysiol. 1983; 49: 932–947
  • Grilly D. M., Gowans G. C. Acute morphine dependence: Effects observed in shock and light discrimination tasks. Psychopharmacology (Berlin) 1986; 88: 500–504
  • Guilbaud G., Oliveras J. L., Giesler G., Besson J. M. Effects induced by stimulation of the centralis inferior nuclei of the raphe on dorsal horn interneurons in the cat's spinal cord. Brain Res. 1977; 126: 355–360
  • Harvey S. C. Hypnotics and sedatives. The Pharmacological Basis of Therapeutics, A. G. Gilman, L. S. Goodman, A. Gilman. Macmillan, New York 1980; 361–363
  • Heinricher M. M., Barbaro N. M., Fields H. L. Putative nociceptive modulating neurons in the rostral ventromedial medulla of the rat: Firing of on-and off-cells is related to nociceptive responsiveness. Somatosens. Mot. Res. 1989; 6: 427–439
  • Jensen T. S., Yaksh T. L. Spinal monoamine and opiate systems partly mediate the antinociceptive effects produced by glutamate at brainstem sites. Brain Res. 1984; 321: 287–297
  • Kim D. H., Fields H. L., Barbaro N. M. Dose response relationship for hyperalgesia following naloxone precipitated withdrawal from morphine. Soc. Neurosci. Abstr. 1988; 14(1)174
  • Krystal J. H., Redmond D. E., Jr. A preliminary description of acute physical dependence on morphine in the vervet monkey. Pharmacol. Biochem. Behav. 1983; 18: 289–291
  • Martin W. R., Eades C. G. A comparison between acute and chronic physical dependence in the chronic spinal dog. J. Pharmacol. Exp. Ther. 1964; 146: 385–394
  • McQuay H. J., Bullingham R. E., More R. E. Acute opiate tolerance in man. Life Sci. 1981; 28: 2513–2517
  • Pellegrino L. G., Pellegrtno A. S., Cushman A. J. A Stereotactic Atlas of the Rat Brain. Plenum Press, New York 1979
  • Proudfit H. K. Time-course of alterations in morphine-induced analgesia and nociceptive threshold following medullary raphe lesions. Neuroscience 1981; 6: 945–951
  • Randall L. O., Selitto J. J. A method for measurement of analgesic activity in inflamed tissue. Arch. Int. Pharmacodyn. Ther. 1957; 111: 409–419
  • Ritzman R. F. Opiate dependence following acute injections of morphine and naloxone: The assessment of various withdrawal signs. Pharmacol. Biochem. Behav. 1981; 14: 575–577
  • Sandkuhler J., Gebhart G. F. Characterization of inhibition of a spinal nociceptive reflex by stimulation medially and laterally in the midbrain and medulla in the pentobarbital-anesthetized rat. Brain Res. 1984a; 305: 67–76
  • Sandkuhler J., Gebhart G. F. Relative contributions of the nucleus raphe magnus and adjacent medullary reticular formation to the inhibition by stimulation in the periaqueductal gray of a spinal nociceptive reflex in the pentobarbital-anesthetized rat. Brain Res. 1984b; 305: 77–87
  • Satoh M., Oku R., Akaike A. Analgesia produced by microinjection of 1-glutamate into the rostral ventromedial bulbar nuclei of the rat and its inhibition by intrathecal alpha-adrenergic blocking agents. Brain Res. 1983; 261: 361–364
  • Tilson H. A., Rech R. H., Stolman S. Hyperalgesia during withdrawal as a means of measuring the degree of dependence in morphine dependent rats. Psychopharmacologia (Berlin) 1973; 28: 287–300
  • Vanegas H., Barbaro N. M., Fields H. L. Midbrain stimulation inhibits tail flick only at currents sufficient to excite rostral medullary neurons. Brain Res. 1984a; 327: 127–133
  • Vanegas H., Barbaro N. M., Fields H. L. Tail flick-related activity in medullospinal neurons. Brain Res. 1984b; 321: 135–141
  • Wilcox R. E., Mikula J. A., Levitt R. A. Periaqueductal grey naloxone microinjections in morphine-dependent rats: Hyperalgesia without “classical” withdrawal. Neuropharmacology 1979; 18: 639–641
  • Willis W. D., Haber L. H., Martin R. F. Inhibition of spinothalamic tract cells and interneurons by brainstem stimulation in the monkey. J. Neurophysiol. 1977; 40: 968–981
  • Zorman G., Belcher G., Adams J. E., Fields H. L. Lumbar intrathecal naloxone blocks analgesia produced by microstimulation of the ventromedial medulla in the rat. Brain Res. 1982; 236: 77–84
  • Zorman G., Hentall I. D., Adams J. E., Fields H. L. Naloxone-reversible analgesia produced by microstimulation in the rat medulla. Brain Res. 1981; 219: 137–148

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.