13
Views
10
CrossRef citations to date
0
Altmetric
Original Article

Control of Locomotion In Vitro: I. Deafferentation

, &
Pages 45-53 | Published online: 10 Jul 2009

References

  • Arshavsky Y. I., Kots Y. M., Orlovsky G. N., Rodionov I. M., Shik M. L. Investigation of the biomechanics of running by the dog. Biophysics 1965; 10: 737–746
  • Atsuta Y., Garcia-Rill E., Skinner R. D. Electrically induced locomotion in the in vitro brainstem-spinal cord preparation. Dev. Brain Res. 1988a; 42: 309–312
  • Atsuta Y., Garcia-Rill E., Skinner R. D. Electrically induced locomotion in the deafferented in vitro brainstem-spinal cord preparation. Soc. Neurosci. Abstr. 1988b; 14: 1145
  • Atsuta Y., Garcia-Rill E., Skinner R. D. Characteristics of electrically induced locomotion in the rat in vitro brainstem-spinal cord preparation. J. Neurophysiol. 1990; 64: 727–735
  • Bagust J., Kelly M. E. M., Kerkut G. A. An isolated mammalian brainstem-spinal cord preparation suitable for the investigation of descending control of motor activity. Brain Res. 1985; 327: 370–374
  • Barker D., Milburn A. Increase in number of intrafusal fibers during the development of muscle spindles in the rat. J. Physiol. (Lond.) 1972; 222: 159–160
  • Bekoff A. Ontogeny of leg motor output in the chick embryo: A neural analysis. Brain Res. 1976; 106: 271–291
  • Brown T. G. On the nature of the fundamental activity of the nervous centers; together with an analysis of the conditioning of rhythmic activity in progression, and a theory of the evolution of function in the nervous system. J. Physiol. (Lond.) 1914; 48: 18–46
  • Close R. Dynamic properties of fast and slow skeletal muscles in the rat during development. J. Physiol. (Lond.) 1964; 173: 74–95
  • Cohen A., Gans C. Muscle activity in rat locomotion: Movement analysis and electromyography of the flexors and extensors of the elbow. J. Morphol. 1975; 146: 177–196
  • Conrad C., Campbell C., Skinner R. D., Houser C. R., Garcia-Rill E. The mesencephalic locomotor region: III. Morphometry of ChAT labeled cells in the vicinity of locomotion-inducing stimulation sites. Soc. Neurosci. Abstr. 1986; 12: 883
  • Delcomyn F. Neural basis of rhythmic behavior in animals. Science 1980; 210: 492–498
  • Garcia-Rill E., Houser C. R., Skinner R. D., Smith W., Woodward D. J. Locomotion-inducing sites in the vicinity of the pedunculopontine nucleus. Brain Res. Bull. 1987; 18: 731–738
  • Garcia-Rill E., Kinjo N., Atsuta Y., Ishikawa Y., Webber M., Skinner R. D. Posterior midbrain-induced locomotion. Brain Res. Bull. 1990; 24: 499–508
  • Garcia-Rill E., Skinner R. D. The mesencephalic locomotor region: I. Activation of a medullary projection site. Brain Res. 1987a; 411: 1–12
  • Garcia-Rill E., Skinner R. D. The mesencephalic locomotor region: II. Projections to reticulospinal neurons. Brain Res. 1987b; 411: 13–20
  • Garcia-Rill E., Skinner R. D., Conrad C., Mosley D., Campbell C. Projections of the mesencephalic locomotor region in the rat. Brain Res. Bull. 1986; 17: 33–40
  • Garcia-Rill E., Skinner R. D., Gilmore S. A., Owings R. Connections of the mesencephalic locomotor region (MLR): II. Afferents and efferents. Brain Res. Bull. 1983; 10: 63–71
  • Giuliani C. A., Smith J. L. Stepping behaviors in chronic spinal cats with one hindlimb deafferented. J. Neurosci. 1987; 7: 2537–2546
  • Goldberger M. E. Recovery of accurate limb movements after deafferentation in cats. Spinal Cord Reconstruction, C. C. Kao, R. P. Bunge, P. J. Reier. Raven Press, New York 1983; 455–463
  • Goslow G. E., Reinking R. M., Stuart D. G. The cat step cycle: Hindlimb joint angles and muscle lengths during unrestrained locomotion. J. Morphol. 1973; 141: 1–41
  • Grillner S. Locomotion in vertebrates: Central mechanisms and reflex interactions. Physiol. Rev. 1973; 55: 247–304
  • Grillner S., Shik M. L. On the descending control of the lumbosacral spinal cord from the “mesencephalic locomotor region”. Acta Physiol Scand. 1973; 87: 320–333
  • Grillner S., Zangger P. On the central generation of locomotion in the low spinal cat. Exp. Brain Res. 1979; 34: 241–261
  • Grillner S., Zangger P. The effect of dorsal root transection on the efferent motor pattern in the cat's hindlimb during locomotion. Acta Physiol. Scand. 1984; 120: 393–405
  • Grillner S., Wallen P., McClellan A., Sigvardt K., Williams T., Feldman J. The neural generation of locomotion in the lamprey: An incomplete account. Neural Origin of Rhythmic Movements, A. Roberts, B. Roberts. Society for Experimental Biology, London 1983; 285–303
  • Jordan L. M., Pratt C. A., Menzies J. E. Locomotion evoked by brain stem stimulation: Occurrence without phasic segmental afferent input. Brain Res. 1979; 177: 204–207
  • Kinjo N., Atsuta Y., Webber M., Kyle R., Skinner R. D., Garcia-Rill E. Medioventral medulla-induced locomotion. Brain Res. Bull. 1990; 24: 509–516
  • Llinas R., Yarom Y., Sugimori M. Isolated mammalian brain in vitro: New technique for analysis of electrical activity of neuronal circuit function. Fed. Proc. 1981; 40: 2240–2245
  • Lundberg A. Half-centers revisited. Adv. Physiol. Sci. 1980; 1: 155–167
  • McClellan A. D. Descending control and sensory gating of “Active” swimming and turning responses in an in vitro brainstem/ spinal cord preparation of the lamprey. Brain Res. 1984; 302: 151–162
  • Milburn A. The early development of muscle spindles in the rat. J. Cell. Sci. 1973; 12: 175–195
  • Noga B. R., Kettler J., Jordan L. M. Locomotion produced in mesencephalic cats by injections of putative neurotransmitter substances and antagonists into the medial reticular formation and the pontomedullary locomotor strip. J. Neurosci. 1988; 8: 2074–2086
  • Otsuka M., Konishi S. Electrophysiology of mammalian spinal cord in vitro. Nature 1974; 252: 733–734
  • Preston P. R., Wallis D. I. Dorsal root potentials recorded in the isolated spinal cord of the neonatal rat. J. Physiol. (Lond.) 1979; 289: 841
  • Rossignol S., Lund J. P., Drew T. The role of sensory inputs in regulating patterns of rhythmical movements in higher vertebrates. Neural Control of Rhythmic Movements in Vertebrates, A. H. Cohen, S. Rossignol, S. Grillner. Wiley, New York 1988; 201–283
  • Rovainen C. M. Neural control of ventilation in the lamprey. Fed. Proc. 1977; 36: 2386–2389
  • Schefchyk S. J., Jell R. M., Jordan L. M. Reversible cooling of the brainstem reveals areas required for mesencephalic locomotor region evoked treadmill locomotion. Exp. Brain Res. 1984; 56: 257–262
  • Shik M. L., Severin F. V., Orlovsky G. N. Control of walking and running by means of electrical stimulation of the mid-brain. Biophysics 1966; 11: 756–765
  • Skinner R. D., Davies D. L., Conrad C., Henderson V., Garcia-Rill E. Development of the pedunculopontine nucleus: II. In vitro. Soc. Neurosci. Abstr. 1987; 13: 1176
  • Skinner R. D., Garcia-Rill E. The mesencephalic locomotor region (MLR) in the rat. Brain Res. 1984; 323: 385–389
  • Smith J. C., Feldman J. L. In vitro brainstem-spinal cord preparations for study of motor systems for mammalian respiration and locomotion. J. Neurosci. Meth. 1987; 21: 321–333
  • Smith J. C., Garcia-Rill E., Feldman J. L. Chemical activation of mammalian locomotion in vitro. Soc. Neurosci. Abstr. 1986; 12: 386
  • Steeves J. D., Jordan L. M. Autoradiographic demonstration of the projections from the mesencephalic locomotor region. Brain Res. 1984; 307: 263–276
  • Stehouwer D. J., Farel P. B. Development of locomotor mechanisms in the frog. J. Neurophysiol. 1985; 53: 1453–1466
  • Suzue T. Respiratory rhythm generation in the in vitro brainstem-spinal cord preparation of the neonatal rat. J. Physiol. (Lond.) 1984; 354: 173–183
  • Wetzel M. C., Atwater A. E., Wait J. V., Stuart D. G. Kinematics of locomotion by cats with a single hindlimb deafferented. J. Neurophysiol. 1976; 39: 667–678

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.