7
Views
10
CrossRef citations to date
0
Altmetric
Original Article

Physiological Identification of Jaw-Movement-Related Neurons in the Trigeminal Nucleus of Cats

, &
Pages 77-88 | Accepted 23 Nov 1993, Published online: 10 Jul 2009

References

  • Albe-Fessard D., Berkley K. J., Kruger L. J., Ralston H. J., Willis W. D. Diencephalic mechanisms of pain sensation. Brain Res. Rev. 1985; 9: 217–296
  • Amano N., Hu J. W., Sessle B. J. Responses of neurons in feline trigeminal subnucleus caudalis (medullary dorsal horn) to cutaneous, intraoral, and muscle afferent stimuli. J. Neurophysiol. 1986; 55: 227–243
  • Appenteng K., Donga R., Williams R. G. Morphological and electrophysiological determination of the projections of jaw elevator muscle spindle afferents in rats. J. Physiol. (Lond.) 1985; 369: 93–119
  • Appenteng K., Lund J. P., Seguin J. J. Behavior of cutaneous mechanoreceptors recorded in mandibular division of gasserian ganglion of the rabbit during movements of lower jaw. J. Neurophysiol. 1982; 47(2)152–166
  • Arvidsson J., Raappana P. An HRP study of the central projections from primary sensory neurons innervating the rat masseter muscle. Brain Res. 1989; 480: 111–118
  • Berman A. L. The Brain Stem of the Cat: A Cytoarchitectonic Atlas with Stereotaxic Coordinates. University of Wisconsin Press, Madison 1968
  • Burgess P. R. Equilibrium points and sensory templates. Behav. Brain Sci. 1992; 15: 720–722
  • Byrd K. E. Opto-electronic analyses of masticatory mandibular movements and velocities in the rat. Arch. Oral Biol. 1988; 33: 209–215
  • Capra N. F., Anderson K. V. Responses, properties of, and central projections to subnucleus oralis kinesthetic neurons. J. Dent. Res. 1985; 64: 284
  • Capra N. F., Dessem D. Central connections of trigeminal primary afferent neurons: Topographical and functional considerations. CRC Crit. Rev. Oral Biol. Med. 1992; 4: 1–52
  • Capra N. F., Wax T. D. Distribution and central projections of primary afferent neurons that innervate the masseter muscle and mandibular periodontium: A double label study. J. Comp. Neurol. 1989; 279: 341–352
  • Clark F. J. Role of intramuscular receptors in the awareness of limb position. J. Neurophysiol. 1985; 54: 1529–1540
  • Clark F. J., Grigg P., Chapin J. W. The contribution of articular receptors to proprioception with the fingers in humans. J. Neurophysiol. 1989; 61: 186–193
  • Dessem D., Taylor A. Morphology of jaw-muscle spindle afferents in the rat. J. Comp. Neurol. 1989; 282: 389–403
  • Edin B. B., Abbs J. H. Finger movement responses of cutaneous mechanoreceptors in the dorsal skin of the human hand. J. Neurophysiol. 1991; 65: 657–670
  • Eisenman J., Landgren S., Novin D. Functional organization in the main sensory trigeminal nucleus and in the rostral subdivision of the nucleus of the spinal trigeminal tract in the cat. Acta Physiol. Scand. 1963; 59(Suppl. 214)5–44
  • Fuller J. H., Schlag J. D. Determination of antidromic excitation by the collision test: Problems of interpretation. Brain Res. 1976; 112: 283–298
  • Gandevia S. C., Burke D. Does the nervous system depend on kinesthetic information to control natural limb movement?. Behav. Brain Sci. 1992; 15: 614–632
  • Goodwin G. M., McCloskey D. I., Matthews P. B. C. The contribution of muscle afferents to kinaesthesia shown by vibration induced illusions of movement and the effects of paralyzing joint afferents. Brain 1972a; 95: 705–748
  • Goodwin G. M., McCloskey D. I., Matthews P. B. C. The persistence of appreciable kinesthesia after paralyzing joint afferents but preserving muscle afferents. Brain Res. 1972b; 37: 326–329
  • Goodwin G. M., McCloskey D. I., Matthews P. B. C. Proprioceptive illusions induced by muscle vibration: Contribution by muscle spindles to perception. Science 1972c; 175: 1382–1384
  • Gorniak G. C., Gans C. Quantitative assay of electromyograms during mastication in domestic cats (Felis catus). J. Morphol. 1977; 163: 253–281
  • Hayward L., Wesselman U., Rymer W. Z. Effects of muscle fatigue on mechanically sensitive afferents of slow conduction velocity in the cat triceps surae. J. Neurophysiol. 1991; 65: 360–370
  • Hayashi H., Sumino R., Sessle B. J. Functional organization of trigeminal subnucleus interpolaris: Nociceptive and innocuous afferent inputs, projections to thalamus, cerebellum, and spinal cord, and descending modulation from periaqueductal gray. J. Neurophysiol. 1984; 51: 890–905
  • Hu J. W., Dostrovsky J. O., Sessle B. J. Functional properties of neurons in cat trigeminal subnucleus caudalis (medullary dorsal horn): I. Responses to oral-facial noxious and nonnoxious stimuli and projections to thalamus and subnucleus oralis. J. Neurophysiol. 1981; 45: 173–192
  • Hu J. W., Sessle B. J. Comparison of responses of cutaneous nociceptive and nonnociceptive brain stem neurons in trigeminal sub-nucleus caudalis (medullary dorsal horn) and subnucleus oralis to natural and electrical stimulation of the tooth pulp. J. Neurophysiol. 1984; 52: 39–53
  • Kawamura Y., Abe K. Role of sensory information from temporomandibular joint. Bull. Tokyo Med. Dent. Univ. 1974; 27(Suppl)78–82
  • Lund J. P., Matthews B. Responses of temporomandibular joint afferents recorded in the gasserian ganglion of the rabbit to passive movements of the mandible. Oral-Facial Sensory and Motor Functions, Y. Kawamura, R. Dubner. Quintessence, Tokyo 1981; 153–160
  • Luo P. F., Li J. The morphology and synaptic forms of thalamic projecting neurons in the trigeminal proprioceptive relay station of the rat. J. Med. Coll. PLA 1992; 4: 361–368
  • Luschei E. S. Central projections of the mesencephalic nucleus of the fifth nerve: An autoradiographic study. J. Comp. Neurol. 1987; 263: 137–145
  • Luschei E. S., Goldberg L. J. Neural mechanisms of mandibular control: Mastication and voluntary biting. Handbook of Physiology, Section II, The Nervous System, Part 2, Motor Control, V. B. Brooks. Williams and Wilkins, Baltimore 1981; 1237–1274
  • Matsushita M., Ikeda M., Okado N. The cells of origin of the trigeminothalamic, trigeminospinal, and trigeminocerebellar projections in the cat. Neuroscience 1982; 7: 1439–1454
  • McCloskey D. I. Kinesthetic sensibility. Physiol. Rev. 1978; 58: 763–820
  • Mense S. Slowly conducting afferent fibers from deep tissues—neurobiological properties and central nervous actions. Progress in Sensory Physiology, D. Ottoson. Springer-Verlag, Berlin 1986; Vol. 6: 139–219
  • Millar J. Convergence of joint cutaneous and muscle afferents onto cuneate neurones in the cat. Brain Res. 1979; 175: 347–350
  • Miyazaki R., Luschei E. S. Responses of neurons in nucleus supratrigeminalis to sinusoidal jaw movements in the cat. Exp. Neurol. 1987; 96: 145–157
  • Mizuno N., Sauerland E. K. Trigeminal proprioceptive projections to the hypoglossal nucleus and the cervical gray column. J. Comp. Neurol. 1970; 139: 215–221
  • Mizuno N., Yasui Y., Nomura S., Itoh K., Konishi A., Takada M., Kudo M. A light and electron microscopic study of premotor neurons for the trigeminal motor nucleus. J. Comp. Neurol. 1983; 215: 290–298
  • Morimoto T., Inoue H., Kawamura Y. Diameter spectra of sensory and motor fibers in nerves to jaw closing and jaw opening muscles in the cat. Japan. J. Physiol. 1982; 32: 171–182
  • Nishimori T., Sera M., Suemune S., Yoshida A., Tsura K., Tsuiki Y., Akisaka T., Okamoto T., Dateoka Y., Shigenaga Y. The distribution of muscle primary afferents from the masseter nerve to the trigeminal sensory nuclei. Brain Res. 1986; 372: 375–381
  • Nomura S., Mizuno N. Differential distribution of cell bodies and central axons of mesencephalic nucleus neurons supplying the jaw-closing muscles and periodontal tissue: A transganglionic study in the cat. Brain Res. 1985; 359: 311–319
  • Olsson K. Å, Westberg K. G. Integration in trigeminal premotor interneurones in the cat: 2. Functional characteristics of neurones in the subnucleus-gamma of the oral nucleus of the spinal trigeminal tract with a projection to the digastric motoneurone subnucleus. Exp. Brain Res. 1991; 84: 115–124
  • Ostapoff E. M., Johnson J. I., Albright B. C. Medullary sources of projections to the kinesthetic thalamus in raccoons: External and basal cuneate nuclei and cell groups x and z. J. Comp. Neurol. 1987; 267: 231–252
  • Paintal A. S. Functional analysis of group III afferent fibers of mammalian muscle. J. Physiol. (Lond.) 1960; 152: 250–270
  • Raappana P., Arvidsson J. Location, morphology, and central projections of mesencephalic trigeminal neurons innervating rat masticatory muscles studied by axonal transport of choleragenoid—horseradish peroxidase. J. Comp. Neurol. 1993; 32: 103–114
  • Ro J. Y., Capra N. F., Donga R. Receptive field properties of ipsilateral trigeminothalamic neurons in cats. Soc. Neurosci. Abstr. 1992; 18: 747
  • Ruggerio D. A., Ross C. A., Kumada M., Reis D. J. Reevaluations of projections from the mesencephalic trigeminal nucleus to the medulla and spinal cord: New projections, a combined retrograde and anterograde horseradish peroxidase study. J. Comp. Neurol. 1982; 206: 278–292
  • Sessle B. J., Hu J. W., Amano N., Zhong G. Convergence of cutaneous, tooth pulp, visceral, neck and muscle afferents onto nociceptive and non-nociceptive neurones in trigeminal subnucleus caudalis (medullary dorsal horn) and its implications for referred pain. Pain 1986; 27: 219–235
  • Shigenaga Y., Mitsuhko Y., Shirana Y., Tsuru H. Two types of jaw muscle spindle afferents in the cat as demonstrated by intraaxonal staining with HRP. Brain Res. 1990; 514: 219–237
  • Shigenaga Y., Sera M., Nishimori T., Suemune S., Nishimura M., Yoshida A., Tsuru K. The central projections of masticatory afferent fibers to the trigeminal sensory nuclear complex and upper cervical spinal cord. J. Comp. Neurol. 1988; 268: 489–507
  • Weisendanger M., Miles T. S. Ascending pathway of low-threshold muscle afferents to the cerebral cortex and its possible role in motor control. Physiol. Rev. 1982; 62: 1234–1270
  • Westberg K. G. K., Olsson Å. Integration in trigeminal premotor interneurones in the cat: 1. Functional characteristics of neurones in the subnucleus-gamma of the oral nucleus of the spinal trigeminal tract. Exp. Brain Res. 1991; 84: 102–114

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.