316
Views
4
CrossRef citations to date
0
Altmetric
Review Article

Susceptibility Genes and Pharmacogenetics in Ocular Inflammatory Disorders

, MD, Ph.D, , MD, MHS & , MD, MPH
Pages 315-323 | Received 08 Jun 2012, Accepted 06 Jul 2012, Published online: 13 Sep 2012

REFERENCES

  • Roses AD. Pharmacogenetics and the practice of medicine. Nature. 2000; 405:857–865.
  • Motulsky AG. Drug reactions enzymes, and biochemical genetics. J Am Med Assoc. 1957; 165:835–837.
  • Vogel F. Modeme Probleme der Humangenetik. Ergeb Inn Med Kinderheikd. 1959; 12:52–125.
  • Patel M, Chan CC. Immunopathological aspects of age-related macular degeneration. Semin Immunopathol. 2008; 30:97–110.
  • Nussenblatt RB, Liu B, Li Z. Age-related macular degeneration: an immunologically driven disease. Curr Opin Investig Drugs. 2009; 10:434–442.
  • Klein RJ, Zeiss C, Chew EY, et al. Complement factor H polymorphism in age-related macular degeneration. Science. 2005; 308:385–389.
  • Larson T, Nussenblatt RB, Sen HN. Emerging drugs for uveitis. Expert Opin Emerg Drugs. 2011; 16:309–322.
  • Gritz DC, Wong IG. Incidence and prevalence of uveitis in Northern California: the Northern California Epidemiology of Uveitis Study. Ophthalmology. 2004; 111:491–500; discussion 500.
  • Jabs DA, Rosenbaum JT, Foster CS, et al. Guidelines for the use of immunosuppressive drugs in patients with ocular inflammatory disorders: recommendations of an expert panel. Am J Ophthalmol. 2000; 130:492–513.
  • Gangaputra S, Newcomb CW, Liesegang TL, et al. Methotrexate for ocular inflammatory diseases. Ophthalmology. 2009; 116:2188–2198, e2181.
  • Friedman DS, O’Colmain BJ, Munoz B, et al. Prevalence of age-related macular degeneration in the United States. Arch Ophthalmol. 2004; 122:564–572.
  • Ferris FL, 3rd, Fine SL, Hyman L. Age-related macular degeneration and blindness due to neovascular maculopathy. Arch Ophthalmol. 1984; 102:1640–1642.
  • Group A-REDSR. Risk factors associated with age-related macular degeneration: a case-control study in the age-related eye disease study: Age-Related Eye Disease Study Report Number 3. Ophthalmology. 2000; 107:2224–2232.
  • Liu B, Wei L, Meyerle C, et al. Complement component C5a promotes expression of IL-22 and IL-17 from human T cells and its implication in age-related macular degeneration. J Transl Med. 2011; 9:1–12.
  • The CATT Research Group. Ranibizumab and bevacizumab for neovascular age-related macular degeneration. N Engl J Med. 2011;364:1897–1908.
  • Hubschman JP, Reddy S, Schwartz SD. Age-related macular degeneration: current treatments. Clin Ophthalmol (Auckland, NZ). 2009; 3:155–166.
  • Kiernan DF, Mieler WF. The use of intraocular corticosteroids. Expert Opin Pharmacother. 2009; 10:2511–2525.
  • Nussenblatt RB, Byrnes G, Sen N, et al. A randomized pilot study of systemic immunosuppression in the treatment of age-related macular degeneration with choroidal neovascularization. Retina. 2010; 30:1579–1587.
  • Alving AS, Carson PE, Flanagan CL, et al. Enzymatic deficiency in primaquine-sensitive erythrocytes. Science. 1956; 124:484–485.
  • Nebert DW, Zhang G, Vesell ES. From human genetics and genomics to pharmacogenetics and pharmacogenomics: past lessons, future directions. Drug Metab Rev. 2008; 40:187–224.
  • Wallace GR, Niemczyk E. Genetics in ocular inflammation—basic principles. Ocul Immunol Inflamm. 2011; 19:10–18.
  • Caspi RR. A look at autoimmunity and inflammation in the eye. J Clin Invest. 2010; 120:3073–3083.
  • Atan D, Fraser-Bell S, Plskova J, et al. Cytokine polymorphism in noninfectious uveitis. Invest Ophthalmol Vis Sci. 2010; 51:4133–4142.
  • Chen Y, Vaughan RW, Kondeatis E, et al. Chemokine gene polymorphisms associate with gender in patients with uveitis. Tissue Antigens. 2004; 63:41–45.
  • Stanford MR, Vaughan RW, Kondeatis E, et al. Are cytokine gene polymorphisms associated with outcome in patients with idiopathic intermediate uveitis in the United Kingdom? Br J Ophthalmol. 2005; 89:1013–1016.
  • El-Shabrawi Y, Wegscheider BJ, Weger M, et al. Polymorphisms within the tumor necrosis factor-alpha promoter region in patients with HLA-B27-associated uveitis: association with susceptibility and clinical manifestations. Ophthalmology. 2006; 113:695–700.
  • Karasneh J, Hajeer AH, Barrett J, et al. Association of specific interleukin 1 gene cluster polymorphisms with increased susceptibility for Behcet’s disease. Rheumatology (Oxford). 2003; 42:860–864.
  • Sfikakis PP, Theodossiadis PG, Katsiari CG, et al. Effect of infliximab on sight-threatening panuveitis in Behcet’s disease. Lancet. 2001; 358:295–296.
  • Wallace GR, Kondeatis E, Vaughan RW, et al. IL-10 genotype analysis in patients with Behcet’s disease. Hum Immunol. 2007; 68:122–127.
  • Mizuki N, Meguro A, Ota M, et al. Genome-wide association studies identify IL23R-IL12RB2 and IL10 as Behcet’s disease susceptibility loci. Nat Genet. 2010; 42:703–706.
  • Remmers EF, Cosan F, Kirino Y, et al. Genome-wide association study identifies variants in the MHC class I, IL10, and IL23R-IL12RB2 regions associated with Behcet’s disease. Nat Genet. 2010; 42:698–702.
  • Li Z, Liu B, Maminishkis A, et al. Gene expression profiling in autoimmune noninfectious uveitis disease. J Immunol. 2008; 181:5147–5157.
  • Katta S, Kaur I, Chakrabarti S. The molecular genetic basis of age-related macular degeneration: an overview. J Genet. 2009; 88:425–449.
  • Edwards AO, Ritter R 3rd, Abel KJ, et al. Complement factor H polymorphism and age-related macular degeneration. Science. 2005; 308:421–424.
  • Haines JL, Hauser MA, Schmidt S, et al. Complement factor H variant increases the risk of age-related macular degeneration. Science. 2005; 308:419–421.
  • Thakkinstian A, Han P, McEvoy M, et al. Systematic review and meta-analysis of the association between complement factor H Y402H polymorphisms and age-related macular degeneration. Hum Mol Genet. 2006; 15:2784–2790.
  • Gold B, Merriam JE, Zernant J, et al. Variation in factor B (BF) and complement component 2 (C2) genes is associated with age-related macular degeneration. Nat Genet. 2006; 38:458–462.
  • Yates JR, Sepp T, Matharu BK, et al. Complement C3 variant and the risk of age-related macular degeneration. N Engl J Med. 2007; 357:553–561.
  • Bergeron-Sawitzke J, Gold B, Olsh A, et al. Multilocus analysis of age-related macular degeneration. Eur J Hum Genet. 2009; 17:1190–1199.
  • Maller JB, Fagerness JA, Reynolds RC, et al. Variation in complement factor 3 is associated with risk of age-related macular degeneration. Nat Genet. 2007; 39:1200–1201.
  • Weeks DE, Conley YP, Mah TS, et al. A full genome scan for age-related maculopathy. Hum Mol Genet. 2000; 9:1329–1349.
  • Rivera A, Fisher SA, Fritsche LG, et al. Hypothetical LOC387715 is a second major susceptibility gene for age-related macular degeneration, contributing independently of complement factor H to disease risk. Hum Mol Genet. 2005; 14:3227–3236.
  • Schmidt S, Hauser MA, Scott WK, et al. Cigarette smoking strongly modifies the association of LOC387715 and age-related macular degeneration. Am J Hum Genet. 2006; 78:852–864.
  • Ross RJ, Bojanowski CM, Wang JJ, et al. The LOC387715 polymorphism and age-related macular degeneration: replication in three case-control samples. Invest Ophthalmol Vis Sci. 2007; 48:1128–1132.
  • Dewan A, Liu M, Hartman S, et al. HTRA1 promoter polymorphism in wet age-related macular degeneration. Science. 2006; 314:989–992.
  • Weger M, Renner W, Steinbrugger I, et al. Association of the HTRA1 -625G>A promoter gene polymorphism with exudative age-related macular degeneration in a Central European population. Mol Vis. 2007; 13:1274–1279.
  • Yang Z, Camp NJ, Sun H, et al. A variant of the HTRA1 gene increases susceptibility to age-related macular degeneration. Science. 2006; 314:992–993.
  • Kaur I, Katta S, Hussain A, et al. Variants in the 10q26 gene cluster (LOC387715 and HTRA1) exhibit enhanced risk of age-related macular degeneration along with CFH in Indian patients. Invest Ophthalmol Vis Sci. 2008; 49:1771–1776.
  • Smith MA, Marinaki AM, Sanderson JD. Pharmacogenomics in the treatment of inflammatory bowel disease. Pharmacogenomics. 2010; 11:421–437.
  • Koyano S, Saito Y, Nagano M, et al. Functional analysis of three genetic polymorphisms in the glucocorticoid receptor gene. J Pharmacol Exp Ther. 2003; 307:110–116.
  • Lane SJ, Arm JP, Staynov DZ, et al. Chemical mutational analysis of the human glucocorticoid receptor cDNA in glucocorticoid-resistant bronchial asthma. Am J Respir Cell Mol Biol. 1994; 11:42–48.
  • Gerzenstein SM, Pletcher MT, Cervino AC, et al. Glucocorticoid receptor polymorphisms and intraocular pressure response to intravitreal triamcinolone acetonide. Ophthalmic Genet. 2008; 29:166–170.
  • Pasadhika S, Kempen JH, Newcomb CW, et al. Azathioprine for ocular inflammatory diseases. Am J Ophthalmol. 2009; 148:500–509, e502.
  • Davila L, Ranganathan P. Pharmacogenetics: implications for therapy in rheumatic diseases. Nat Rev Rheumatol. 2011; 7:537–550.
  • Tai HL, Krynetski EY, Schuetz EG, et al. Enhanced proteolysis of thiopurine S-methyltransferase (TPMT) encoded by mutant alleles in humans (TPMT*3A, TPMT*2): mechanisms for the genetic polymorphism of TPMT activity. Proc Natl Acad Sci U S A. 1997; 94:6444–6449.
  • Tai HL, Krynetski EY, Yates CR, et al. Thiopurine S-methyltransferase deficiency: two nucleotide transitions define the most prevalent mutant allele associated with loss of catalytic activity in Caucasians. Am J Hum Genet. 1996; 58:694–702.
  • Yates CR, Krynetski EY, Loennechen T, et al. Molecular diagnosis of thiopurine S-methyltransferase deficiency: genetic basis for azathioprine and mercaptopurine intolerance. Ann Intern Med. 1997; 126:608–614.
  • Foeldvari I, Wierk A. Methotrexate is an effective treatment for chronic uveitis associated with juvenile idiopathic arthritis. J Rheumatol. 2005; 32:362–365.
  • Munoz-Fernandez S, Garcia-Aparicio AM, Hidalgo MV, et al. Methotrexate: an option for preventing the recurrence of acute anterior uveitis. Eye (Lond). 2009; 23:1130–1133.
  • Galor A, Jabs DA, Leder HA, et al. Comparison of antimetabolite drugs as corticosteroid-sparing therapy for noninfectious ocular inflammation. Ophthalmology. 2008; 115:1826–1832.
  • Castaldo P, Magi S, Nasti AA, et al. Clinical pharmacogenetics of methotrexate. Curr Drug Metab. 2011; 12:278–286.
  • Fisher MC, Cronstein BN. Metaanalysis of methylenetetrahydrofolate reductase (MTHFR) polymorphisms affecting methotrexate toxicity. J Rheumatol. 2009; 36:539–545.
  • Weisman MH, Furst DE, Park GS, et al. Risk genotypes in folate-dependent enzymes and their association with methotrexate-related side effects in rheumatoid arthritis. Arthritis Rheum. 2006; 54:607–612.
  • Galor A, Perez VL, Hammel JP, et al. Differential effectiveness of etanercept and infliximab in the treatment of ocular inflammation. Ophthalmology. 2006; 113:2317–2323.
  • Ohno S, Nakamura S, Hori S, et al. Efficacy, safety, and pharmacokinetics of multiple administration of infliximab in Behcet’s disease with refractory uveoretinitis. J Rheumatol. 2004; 31:1362–1368.
  • Tynjala P, Kotaniemi K, Lindahl P, et al. Adalimumab in juvenile idiopathic arthritis-associated chronic anterior uveitis. Rheumatology (Oxford). 2008; 47:339–344.
  • Giansanti F, Barbera ML, Virgili G, et al. Infliximab for the treatment of posterior uveitis with retinal neovascularization in Behcet disease. Eur J Ophthalmol. 2004; 14:445–448.
  • Markomichelakis NN, Theodossiadis PG, Pantelia E, et al. Infliximab for chronic cystoid macular edema associated with uveitis. Am J Ophthalmol. 2004; 138:648–650.
  • Baert F, Noman M, Vermeire S, et al. Influence of immunogenicity on the long-term efficacy of infliximab in Crohn’s disease. N Engl J Med. 2003; 348:601–608.
  • Louis M, Rauch J, Armstrong M, et al. Induction of autoantibodies during prolonged treatment with infliximab. J Rheumatol. 2003; 30:2557–2562.
  • Ramos-Casals M, Brito-Zeron P, Munoz S, et al. Autoimmune diseases induced by TNF-targeted therapies: analysis of 233 cases. Medicine (Baltimore). 2007; 86:242–251.
  • Suhler EB, Smith JR, Wertheim MS, et al. A prospective trial of infliximab therapy for refractory uveitis: preliminary safety and efficacy outcomes. Arch Ophthalmol. 2005; 123:903–912.
  • Williams EL, Gadola S, Edwards CJ. Anti-TNF-induced lupus. Rheumatology (Oxford). 2009; 48:716–720.
  • Ranganathan P. Pharmacogenomics of tumor necrosis factor antagonists in rheumatoid arthritis. Pharmacogenomics. 2005; 6:481–490.
  • Cuchacovich M, Soto L, Edwardes M, et al. Tumour necrosis factor (TNF)alpha -308 G/G promoter polymorphism and TNFalpha levels correlate with a better response to adalimumab in patients with rheumatoid arthritis. Scand J Rheumatol. 2006; 35:435–440.
  • Lee YH, Ji JD, Bae SC, et al. Associations between tumor necrosis factor-alpha (TNF-alpha) -308 and -238 G/A polymorphisms and shared epitope status and responsiveness to TNF-alpha blockers in rheumatoid arthritis: a metaanalysis update. J Rheumatol. 2010; 37:740–746.
  • Seitz M, Wirthmuller U, Moller B, et al. The -308 tumour necrosis factor-alpha gene polymorphism predicts therapeutic response to TNFalpha-blockers in rheumatoid arthritis and spondyloarthritis patients. Rheumatology (Oxford). 2007; 46:93–96.
  • Fabris M, Di Poi E, Sacco S, et al. TNF- alpha gene polymorphisms in rheumatoid arthritis patients treated with anti-TNF-alpha agents: preliminary results. Reumatismo. 2002; 54:19–26.
  • Fabris M, Tolusso B, Di Poi E, et al. Tumor necrosis factor-alpha receptor II polymorphism in patients from southern Europe with mild-moderate and severe rheumatoid arthritis. J Rheumatol. 2002; 29:1847–1850.
  • Coulthard LR, Taylor JC, Eyre S, et al. Genetic variants within the MAP kinase signalling network and anti-TNF treatment response in rheumatoid arthritis patients. Ann Rheum Dis. 2011; 70:98–103.
  • Cui J, Saevarsdottir S, Thomson B, et al. Rheumatoid arthritis risk allele PTPRC is also associated with response to anti-tumor necrosis factor alpha therapy. Arthritis Rheum. 2010; 62:1849–1861.
  • Plant D, Prajapati R, Hyrich KL, et al. Replication of association of the PTPRC gene with response to anti-tumor necrosis factor therapy in a large UK cohort. Arthritis Rheum. 2012; 64:665–670.
  • Klein ML, Francis PJ, Rosner B, et al. CFH and LOC387715/ARMS2 genotypes and treatment with antioxidants and zinc for age-related macular degeneration. Ophthalmology. 2008; 115:1019–1025.
  • Nischler C, Oberkofler H, Ortner C, et al. Complement factor H Y402H gene polymorphism and response to intravitreal bevacizumab in exudative age-related macular degeneration. Acta Ophthalmol. 2011; 89:e344–e349.
  • Tsuchihashi T, Mori K, Horie-Inoue K, et al. Complement factor H and high-temperature requirement A-1 genotypes and treatment response of age-related macular degeneration. Ophthalmology. 2011; 118:93–100.
  • McKibbin M, Ali M, Bansal S, et al. CFH, VEGF and HTRA1 promoter genotype may influence the response to intravitreal ranibizumab therapy for neovascular age-related macular degeneration. Br J Ophthalmol. 2012; 96:208–212.
  • Brezin AP, Monnet D, Cohen JH, et al. HLA-A29 and birdshot chorioretinopathy. Ocul Immunol Inflamm. 2011; 19:397–400.
  • Nussenblatt RB, Mittal KK, Ryan S, et al. Birdshot retinochoroidopathy associated with HLA-A29 antigen and immune responsiveness to retinal S-antigen. Am J Ophthalmol. 1982; 94:147–158.
  • Bonfioli AA, Orefice F. Behcet’s disease. Semin Ophthalmol. 2005; 20:199–206.
  • Ahmad T, Wallace GR, James T, et al. Mapping the HLA association in Behcet’s disease: a role for tumor necrosis factor polymorphisms? Arthritis Rheum. 2003; 48:807–813.
  • Gul A, Uyar FA, Inanc M, et al. A weak association of HLA-B*2702 with Behcet’s disease. Genes Immun. 2002; 3:368–372.
  • Chang JH, McCluskey PJ, Wakefield D. Acute anterior uveitis and HLA-B27. Surv Ophthalmol. 2005; 50:364–388.
  • Kuo NW, Lympany PA, Menezo V, et al. TNF-857T, a genetic risk marker for acute anterior uveitis. Invest Ophthalmol Vis Sci. 2005; 46:1565–1571.
  • Menezo V, Bond SK, Towler HM, et al. Cytokine gene polymorphisms involved in chronicity and complications of anterior uveitis. Cytokine. 2006; 35:200–206.
  • Tang WM, Pulido JS, Eckels DD, et al. The association of HLA-DR15 and intermediate uveitis. Am J Ophthalmol. 1997; 123:70–75.
  • Kilmartin DJ, Wilson D, Liversidge J, et al. Immunogenetics and clinical phenotype of sympathetic ophthalmia in British and Irish patients. Br J Ophthalmol. 2001; 85:281–286.
  • Atan D, Turner SJ, Kilmartin DJ, et al. Cytokine gene polymorphism in sympathetic ophthalmia. Invest Ophthalmol Vis Sci. 2005; 46:4245–4250.
  • Cuccia Belvedere M, Martinetti M, de Paoli F, et al. Genetic heterogeneity in uveitis. Dis Markers. 1986; 4:243–246.
  • Gorrono-Echebarria MB, Calvo-Arrabal MA, Albarran F, et al. The tuberculointerstitial nephritis and uveitis (TINU) syndrome is associated with HLA-DR14 in Spanish patients. Br J Ophthalmol. 2001; 85:1010–1011.
  • Levinson RD, Park MS, Rikkers SM, et al. Strong associations between specific HLA-DQ and HLA-DR alleles and the tubulointerstitial nephritis and uveitis syndrome. Invest Ophthalmol Vis Sci. 2003; 44:653–657.
  • Damico FM, Kiss S, Young LH. Vogt-Koyanagi-Harada disease. Semin Ophthalmol. 2005; 20:183–190.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.