457
Views
12
CrossRef citations to date
0
Altmetric
Pages 394-405 | Received 12 Apr 2012, Accepted 29 Aug 2012, Published online: 19 Nov 2012

REFERENCES

  • Durrani OM, Meads CA, Murray PI. Uveitis: a potentially blinding disease. Ophthalmologica. 2004;218(4):223–236.
  • Chiang YP, Bassi LJ, Javitt JC. Federal budgetary costs of blindness. Milbank Q. 1992;70(2):319–340.
  • Gritz D. Incidence and prevalence of uveitis in Northern California: The Northern California Epidemiology of Uveitis Study. Ophthalmology. 2004;111(3):491–500.
  • Schewitz-Bowers LP, Lee RW, Dick AD. Immune mechanisms of intraocular inflammation. Ex Rev Op. 2010;5(1):43–58.
  • Murphy CC, Greiner K, Plskova J, Frost NA, Forrester JV, Dick AD. Validity of using vision-related quality of life as a treatment end point in intermediate and posterior uveitis. Br J Ophthalmol. 2007;91(2):154–156.
  • Imrie FR, Dick AD. Biologics in the treatment of uveitis. Curr Opin Ophthalmol. 2007;18(6):481–486.
  • Rothova A, Berendschot TTJM, Probst K, van Kooij B, Baarsma GS. Birdshot chorioretinopathy: long-term manifestations and visual prognosis. Ophthalmology. 2004;111(5):954–959.
  • Tugal-Tutkun I, Onal S, Altan-Yaycioglu R, Huseyin Altunbas H, Urgancioglu M. Uveitis in Behçet disease: an analysis of 880 patients. Am J Ophthalmol. 2004;138(3):373–380.
  • Sharma SM, Nestel AR, Lee RWJ, Dick AD. Clinical review: anti-TNFα therapies in uveitis: perspective on 5 years of clinical experience. Ocul Immunol Inflamm. 2009;17(6):403–414.
  • Bainbridge JWB, Smith AJ, Barker SS, et al. Effect of gene therapy on visual function in Leber’scongenital amaurosis. N Engl J Med. 2008;358(21):2231–2239.
  • Cideciyan AV, Aleman TS, Boye SL, et al. Human gene therapy for RPE65 isomerase deficiency activates the retinoid cycle of vision but with slow rod kinetics. Proc Natl Acad Sci USA. 2008;105(39):15112–15117.
  • Maguire AM, Simonelli F, Pierce EA, et al. Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med. 2008;358(21):2240–2248.
  • Agarwal RK, Caspi RR. Rodent models of experimental autoimmune uveitis. Methods Mol Med. 2004;102:395–419.
  • Trittibach P, Barker SE, Broderick CA, et al. Lentiviral-vector-mediated expression of murine IL-1 receptor antagonist or IL-10 reduces the severity of endotoxin-induced uveitis. Gene Ther. 2008;15(22):1478–1488.
  • Fang I-M, Lin C-P, Yang C-H, et al. Inhibition of experimental autoimmune anterior uveitis by adenovirus-mediated transfer of the interleukin-10 gene. J Ocul Pharmacol Ther. 2005;21(6):420–428.
  • Broekhuyse RM, Kuhlmann ED, Winkens HJ, Van Vugt AH. Experimental autoimmune anterior uveitis (EAAU), a new form of experimental uveitis, I:induction by a detergent-insoluble, intrinsic protein fraction of the retinal pigment epithelium. Exp Eye Res. 1991;52(4):465–474.
  • Bora NS, Sohn J-H, Kang S-G, et al. Type I collagen is the autoantigen in experimental autoimmune anterior uveitis. J Immunol. 2004;172(11):7086–7094.
  • Zinkernagel MS, McMenamin PG, Forrester JV, Degli-Esposti MA. T cell responses in experimental viral retinitis: mechanisms, peculiarities and implications for gene therapy with viral vectors. Progr Retinal Eye Res. 2011;30(4):275–284.
  • Ali RR. Ocular gene therapy: introduction to the special issue. Gene Ther. 2012;19(2):119–120.
  • Kowalczuk L, Touchard E, Camelo S, et al. Local ocular immunomodulation resulting from electrotransfer of plasmid encoding soluble TNF receptors in the ciliary muscle. Invest Ophthalmol Visual Sci. 2009;50(4):1761–1768.
  • Bloquel C. Plasmid electrotransfer of eye ciliary muscle: principles and therapeutic efficacy using hTNF-α soluble receptor in uveitis. FASEB J. 2006;20(2):389–391.
  • deKozak Y, Thillaye-Goldenberg B, Naud M-C, Da Costa AV, Auriault C, Verwaerde C. Inhibition of experimental autoimmune uveoretinitis by systemic and subconjunctival adenovirus-mediated transfer of the viral IL-10 gene. Clin Exp Immunol. 2002;130(2):212–223.
  • Petrs-Silva H, Dinculescu A, Li Q, et al. High-efficiency transduction of the mouse retina by tyrosine-mutant AAV serotype vectors. Mol Therapy. 2008;17(3):463–471.
  • Daya S, Berns KI. Gene therapy using adeno-associated virus vectors. Clin Microbiol Rev. 2008;21(4):583.
  • Henckaerts E, Linden RM. Adeno-associated virus: a key to the human genome? Future Virol. 2010;5(5):555.
  • Nayak S, Herzog RW. Progress and prospects: immune responses to viral vectors. Gene Ther. 2010;17(3):295.
  • Buie LK, Rasmussen CA, Porterfield EC, et al. Self-complementary AAV virus (scAAV) safe and long-term gene transfer in the trabecular meshwork of living rats and monkeys. Invest Ophthalmol Visual Sci. 2010;51(1):236–248.
  • Barker SE, Broderick CA, Robbie SJ, et al. Subretinal delivery of adeno-associated virus serotype 2 results in minimal immune responses that allow repeat vector administration in immunocompetent mice. J Gene Med. 2009;11(6):486–497.
  • Li Q, Miller R, Han P-Y, et al. Intraocular route of AAV2 vector administration defines humoral immune response and therapeutic potential. Mol Vis. 2008;14:1760–1769.
  • Sonoda K-H, Sakamoto T, Qiao H, et al. The analysis of systemic tolerance elicited by antigen inoculation into the vitreous cavity: vitreous cavity-associated immune deviation. Immunology. 2005;116(3):390–399.
  • Denniston AK, Tomlins P, Williams GP, et al. Aqueous humor suppression of dendritic cell function helps maintain immune regulation in the eye during human uveitis. Invest Ophthalmol Visual Sci. 2012;53(2):888–896.
  • Boutin S, Monteilhet V, Veron P, et al. Prevalence of serum IgG and neutralizing factors against adeno-associatedvirus (AAV) types 1, 2, 5, 6, 8, and 9 in the healthy population: implications for gene therapy using AAV vectors. Hum Gene Ther. 2010;21(6):704–712.
  • Dick AD, Carter D, Robertson M, et al. Control of myeloid activity during retinal inflammation. J Leukocyte Biol. 2003;74(2):161–166.
  • Saraiva M, O’Garra A. The regulation of IL-10 production by immune cells. Nat Rev Immunol. 2010;10(3):170–181.
  • Pot C, Apetoh L, Kuchroo VK. Type 1 regulatory T cells (Tr1) in autoimmunity. SeminImmunol. 2011;23(3):202–208.
  • Moore KW, de Waal Malefyt R, Coffman RL, O’Garra A. Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol.2001;19:683–765.
  • Calder CJ, Nicholson LB, Dick AD. A selective role for the TNF p55 receptor in autocrine signaling following IFN-gamma stimulation in experimental autoimmune uveoretinitis. J Immunol. 2005;175(10):6286–6293.
  • Calder VL, Shaer B, Muhaya M, et al. Increased CD4+ expression and decreased IL-10 in the anterior chamber in idiopathic uveitis. Invest Ophthalmol Visual Sci. 1999;40(9):2019–2024.
  • Sun B, Sun SH, Chan CC, Caspi RR. Evaluation of in vivo cytokine expression in EAU-susceptible and resistant rats: a role for IL-10 in resistance? Exp Eye Res. 2000;70(4):493–502.
  • Kerr EC, Copland DA, Dick AD, Nicholson LB. The dynamics of leukocyte infiltration in experimental autoimmune uveoretinitis. Progr Retinal Eye Res. 2008;27(5):527–535.
  • Rizzo LV, Xu H, Chan CC, Wiggert B, Caspi RR. IL-10 has a protective role in experimental autoimmune uveoretinitis. Int Immunol. 1998;10(6):807–814.
  • Broderick CA, Smith AJ, Balaggan KS, et al. Local administration of an adeno-associated viral vector expressing IL-10 reduces monocyte infiltration and subsequent photoreceptor damage during experimental autoimmune uveitis. Mol Ther. 2005;12(2):369–373.
  • Smith JR, Verwaerde C, Rolling F, et al. Tetracycline-inducible viral interleukin-10 intraocular gene transfer, using adeno-associated virus in experimental autoimmune uveoretinitis. Hum Gene Ther. 2005;16(9):1037–1046.
  • Dick AD, Forrester JV, Liversidge J, Cope AP. The role of tumour necrosis factor (TNF-alpha) in experimental autoimmune uveoretinitis (EAU). Progr Retinal Eye Res. 2004;23(6):617–637.
  • Khera TK, Dick AD, Nicholson LB. Mechanisms of TNF-alpha: regulation in uveitis: focus on RNA-binding proteins. Progr Retinal Eye Res. 2010;29(6):610–621.
  • Khera TK, Copland DA, Boldison J, et al. Tumour necrosis factor-mediated macrophage activation in the target organ is critical for clinical manifestation of uveitis. Clin Exp Immunol. 2012;168(2):165–177.
  • Murphy CC, Duncan L, Forrester JV, Dick AD. Systemic CD4(+) T cell phenotype and activation status in intermediate uveitis. Br J Ophthalmol. 2004;88(3):412–416.
  • Raveney BJE, Copland DA, Dick AD, Nicholson LB. TNFR1-dependent regulation of myeloid cell function in experimental autoimmune uveoretinitis. J Immunol. 2009;183(4):2321–2329.
  • Dick AD, McMenamin PG, Körner H, et al. Inhibition of tumor necrosis factor activity minimizes target organ damage in experimental autoimmune uveoretinitis despite quantitatively normal activated T cell traffic to the retina. Eur J Immunol. 1996;26(5):1018–1025.
  • Rosenbaum JT. Future for biological therapy for uveitis. Curr Opin Ophthalmol. 2010;21(6):473–477.
  • Sicotte NL, Voskuhl RR. Onset of multiple sclerosis associated with anti-TNF therapy. Neurology. 2001;57(10):1885–1888.
  • Wu L, Hernandez-Bogantes E, Roca JA, Arevalo JF, Barraza K, Lasave AF. Intravitreal tumor necrosis factor inhibitors in the treatment of refractory diabetic macular edema: a pilot study from the Pan-American Collaborative Retina Study Group. Retina (Philadelphia, Pa.). 2011;31(2):298–303.
  • Androudi S, Tsironi E, Kalogeropoulos C, Theodoridou A, Brazitikos P. Intravitreal adalimumab for refractory uveitis-related macular edema. OPHTHA. 2010;117(8):1612–1616.
  • Touchard E, Bloquel C, Bigey P, et al. Effects of ciliary muscle plasmid electrotransfer of TNF-alpha soluble receptor variants in experimental uveitis. Gene Ther. 2009;16(7):862–873.
  • Zhang X, Jin J, Tang Y, Speer D, Sujkowska D, Markovic-Plese S. IFN-beta1a inhibits the secretion of Th17-polarizing cytokines in human dendritic cells via TLR7 up-regulation. J Immunol. 2009;182(6):3928–3936.
  • Plskova J, Greiner K, Muckersie E, Duncan L, Forrester JV. Interferon-alpha: a key factor in autoimmune disease? Invest Ophthalmol Visual Sci. 2006;47(9):3946–3950.
  • Deuter CME, Kotter I, Gunaydin I, Stubiger N, Doycheva DG, Zierhut M. Efficacy and tolerability of interferon alpha treatment in patients with chronic cystoid macular oedema due to non-infectious uveitis. Br J Ophthalmol. 2009;93(7):906–913.
  • Bodaghi B, Gendron G, Wechsler B, et al. Efficacy of interferon alpha in the treatment of refractory and sight threatening uveitis: a retrospective monocentric study of 45 patients. Br J Ophthalmol. 2007;91(3):335–339.
  • Onal S, Kazokoglu H, Koc A, et al. Long-term efficacy and safety of low-dose and dose-escalating interferon alfa-2a therapy in refractoryBehcetuveitis. Arch Ophthalmol. 2011;129(3):288.
  • Tian L, Yang P, Lei B, et al. AAV2-mediated subretinal gene transfer of hIFN-α attenuates experimental autoimmune uveoretinitis in mice. PLoS ONE. 2011;6(5):e19542.
  • Kertes PJ, Britton WA, Leonard BC. Intravitreal interferon alpha-2b for the treatment of neovascular age-related macular degeneration: a pilot study. Can J Ophthalmol. 1997;32(3):185–188.
  • Porter R. Uveitis in association with multiple sclerosis. Br J Ophthalmol. 1972;56(6):478–481.
  • Becker MD. Interferon as a treatment for uveitis associated with multiple sclerosis. Br J Ophthalmol. 2005;89(10):1254–1257.
  • Wong J, Gomes T, Mamdani M, Manno M, O’Connor PW. Adherence to multiple sclerosis disease-modifying therapies in Ontario is low. Can J Neurol Sci. 2011;38(3):429–433.
  • Shih C-S, Laurie N, Holzmacher J, et al. AAV-mediated local delivery of interferon-beta for the treatment of retinoblastoma in preclinical models. Neuromolecular Med. 2009;11(1):43–52.
  • Luna JD, Chan CC, Derevjanik NL, et al. Blood–retinal barrier (BRB) breakdown in experimental autoimmune uveoretinitis: comparison with vascular endothelial growth factor, tumor necrosis factor alpha, and interleukin-1beta-mediated breakdown. J Neurosci Res. 1997;49(3):268–280.
  • Hu D-N, Chen M, Zhang DY, Ye F, McCormick SA, Chan C-C. Interleukin-1β increases baseline expression and secretion of interleukin-6 by human uveal melanocytes in vitro via p38 MAPK/NFκB pathway. Invest OphthalmolVisual Sci. 2011;52(6):3767–3774.
  • Ikeda M, Ikeda U, Shimada K, Minota S, Kano S. Regulation of ICAM-1 expression by inflammatory cytokines in rat mesangial cells. Cytokine. 1996;8(2):109–114.
  • Arend WP. The balance between IL-1 and IL-1Ra in disease.Cytokine Growth Factor Rev. 2002;13(4–5):323–340.
  • Teoh SCB, Sharma S, Hogan A, Lee R, Ramanan AV, Dick AD. Tailoring biological treatment: anakinra treatment of posterior uveitis associated with the CINCA syndrome. Br J Ophthalmol. 2007;91(2):263–264.
  • Botsios C, Sfriso P, Furlan A, Punzi L, Dinarello CA. Resistant Behçet disease responsive to anakinra. Ann Intern Med. 2008;149(4):284–286.
  • Lim W-K, Fujimoto C, Ursea R, et al. Suppression of immune-mediated ocular inflammation in mice by interleukin 1 receptor antagonist administration. Arch Ophthalmol. 2005;123(7):957–963.
  • Stein-Streilein J, Taylor AW. An eye’s view of T regulatory cells. J Leukocyte Biol. 2006;81(3):593–598.
  • Li D, Taylor AW. Diminishment of alpha-MSH anti-inflammatory activity in MC1r siRNA-transfected RAW264.7 macrophages. J Leukocyte Biol. 2008;84(1):191–198.
  • Lee DJ, Biros DJ, Taylor AW. Injection of an alpha-melanocyte stimulating hormone expression plasmid is effective in suppressing experimental autoimmune uveitis. IntImmunopharmacol. 2009;9(9):1079–1086.
  • Chan CC, Li Y, Sun B, et al. Recombinant adenovirus encoding gp100 modulates experimental melanin-protein induced uveitis (EMIU). J Autoimmun. 1998;11(2):111–118.
  • Agarwal RK, Kang Y, Zambidis E, Scott DW, Chan CC, Caspi RR. Retroviral gene therapy with an immunoglobulin-antigen fusion construct protects from experimental autoimmune uveitis. J Clin Invest. 2000;106(2):245–252.
  • Copland DA, Wertheim MS, Armitage WJ, Nicholson LB, Raveney BJE, Dick AD. The clinical time-course of experimental autoimmune uveoretinitis using topical endoscopic fundal imaging with histologic and cellular infiltrate correlation. Invest Ophthalmol Visual Sci. 2008;49(12):5458–5465.
  • Chen M, Copland DA, Zhao J, et al. Persistent inflammation subverts thrombospondin-1-induced regulation of retinal angiogenesis and is driven by CCR2 ligation. Am J Pathol. 2012;180(1):235–245.
  • Pennesi G, Mattapallil MJ, Sun S-H, et al. A humanized model of experimental autoimmune uveitis in HLA class II transgenic mice. J Clin Invest. 2003;111(8):1171–1180.
  • Lambe T, Leung JCH, Ferry H, et al. Limited peripheral T cell anergy predisposes to retinal autoimmunity. J Immunol. 2007;178(7):4276–4283.
  • Mukhopadhyay S, Plüddemann A, Hoe JC, et al. Immune inhibitory ligand CD200 induction by TLRs and NLRs limits macrophage activation to protect the host from meningococcal septicemia. Cell Host Microbe. 2010;8(3):236–247.
  • Novosad BD, Astley RA, Callegan MC. Role of Toll-like receptor (TLR) 2 in experimental Bacillus cereusendophthalmitis. PLoS ONE. 2011;6(12):e28619.
  • Denniston AK, Kottoor SH, Khan I, et al. Endogenous cortisol and TGF-beta in human aqueous humor contribute to ocular immune privilege by regulating dendritic cell function. J Immunol. 2011;186(1):305–311.
  • Tran DQ. TGF-β: the sword, the wand, and the shield of FOXP3+ regulatory T cells. J Mol Cell Biol. 2012;4(1):29–37.
  • Ohta K, Wiggert B, Yamagami S, Taylor AW, Streilein JW. Analysis of immunomodulatory activities of aqueous humor from eyes of mice with experimental autoimmune uveitis. J Immunol. 2000;164(3):1185–1192.
  • Li MO, Sanjabi S, Flavell RA. Transforming growth factor-beta controls development, homeostasis, and tolerance of T cells by regulatory T cell-dependent and -independent mechanisms. Immunity. 2006;25(3):455–471.
  • Haruta H, Ohguro N, Fujimoto M, et al. Blockade of interleukin-6 signaling suppresses not only th17 but also interphotoreceptor retinoid binding protein-specific Th1 by promoting regulatory T cells in experimental autoimmune uveoretinitis. Invest Ophthalmol Visual Sci. 2011;52(6):3264–3271.
  • Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004;25(12):677–686.
  • Erwig LP, Kluth DC, Walsh GM, Rees AJ. Initial cytokine exposure determines function of macrophages and renders them unresponsive to other cytokines. J Immunol. 1998;161(4):1983–1988.
  • Erwig LP, Stewart K, Rees AJ. Macrophages from inflamed but not normal glomeruli are unresponsive to anti-inflammatory cytokines. Am J Pathol. 2000;156(1):295–301.
  • Simon D, Denniston AKO, Tomlins PJ, et al. Soluble gp130, an antagonist of IL-6 transsignaling, is elevated in uveitis aqueous humor. Invest Ophthalmol Visual Sci. 2008;49(9):3988–3991.
  • Roberts AB, Sporn MB, Assoian RK, et al. Transforming growth factor type beta: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci USA. 1986;83(12):4167–4171.
  • Varin A, Gordon S. Alternative activation of macrophages: immune function and cellular biology. Immunobiology. 2009;214(7):630–641.
  • Caspi RR. Th1 and Th2 responses in pathogenesis and regulation of experimental autoimmune uveoretinitis. Int Rev Immunol. 2002;21(2–3):197–208.
  • Fenton MJ, Buras JA, Donnelly RP. IL-4 reciprocally regulates IL-1 and IL-1 receptor antagonist expression in human monocytes. J Immunol. 1992;149(4):1283–1288.
  • Cheung DL, Hart PH, Vitti GF, Whitty GA, Hamilton JA. Contrasting effects of interferon-gamma and interleukin-4 on the interleukin-6 activity of stimulated human monocytes. Immunology. 1990;71(1):70–75.
  • Lee YS, Amadi-Obi A, Yu C-R, Egwuagu CE. Retinal cells suppress intraocular inflammation (uveitis) through production of interleukin-27 and interleukin-10. Immunology. 2011;132(4):492–502.
  • Ramanathan S, de Kozak Y, Saoudi A, et al. Recombinant IL-4 aggravates experimental autoimmune uveoretinitis in rats. J Immunol. 1996;157(5):2209–2215.
  • Lee SI, Kwon HJ, Lee E-S, et al. Using pCIN-mIL-4 DNA vector to express mRNA and protein and to improve herpes simplex virus-induced Behcet’s disease symptoms in mice. Vaccine. 2007;25(41):7047–7055.
  • Dick AD, Broderick C, Forrester JV, Wright GJ. Distribution of OX2 antigen and OX2 receptor within retina. Invest Ophthalmol Visual Sci. 2001;42(1):170–176.
  • Broderick C, Hoek RM, Forrester JV, Liversidge J, Sedgwick JD, Dick AD. Constitutive retinal CD200 expression regulates resident microglia and activation state of inflammatory cells during experimental autoimmune uveoretinitis. Am J Pathol. 2002;161(5):1669–1677.
  • Banerjee D, Dick A. Blocking CD200-CD200 receptor axis augments NOS-2 expression and aggravates experimental autoimmune uveoretinitis in Lewis rats. OculImmunolInflamm. 2004;12(2):115–125.
  • Copland DA, Calder CJ, Raveney BJE, et al. Monoclonal antibody-mediated CD200 receptor signaling suppresses macrophage activation and tissue damage in experimental autoimmune uveoretinitis. Am J Pathol. 2007;171(2):580–588.
  • Lee RWJ, Dick AD. Current concepts and future directions in the pathogenesis and treatment of non-infectious intraocular inflammation. Eye (Lond). 2012;26(1):17–28.
  • Natkunarajah M, Trittibach P, McIntosh J, et al. Assessment of ocular transduction using single-stranded and self-complementary recombinant adeno-associated virus serotype 2/8. Gene Ther. 2008;15(6):463–467.
  • Tsai M-L, Horng C-T, Chen S-L, Xiao X, Wang C-H, Tsao Y-P. Suppression of experimental uveitis by a recombinant adeno-associated virus vector encoding interleukin-1 receptor antagonist. Mol Vis. 2009;15:1542–1552.
  • Balaggan KS, Ali RR. Ocular gene delivery using lentiviral vectors.Gene Ther. 2012;19(2):145–153.
  • Verwaerde C, Naud M-C, Delanoye A, et al. Ocular transfer of retinal glial cells transduced ex vivo with adenovirus expressing viral IL-10 or CTLA4-Ig inhibits experimental autoimmune uveoretinitis. Gene Ther. 2003;10(23):1970–1981.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.