475
Views
3
CrossRef citations to date
0
Altmetric
Review Articles

Age-related Defects in Ocular and Nasal Mucosal Immune System and the Immunopathology of Dry Eye Disease

, MD, , PhD, , MS, , MD, , MS, , MD & , PhD show all
Pages 327-347 | Received 07 Apr 2014, Accepted 05 Nov 2014, Published online: 23 Dec 2014

References

  • Galor A, Feuer W, Lee DJ, et al. Prevalence and risk factors of dry eye syndrome in a United States veterans affairs population. Am J Ophthalmol. 2011;152:377–384 e372
  • Thelin WR, Johnson MR, Hirsh AJ, et al. Effect of topically applied epithelial sodium channel inhibitors on tear production in normal mice and in mice with induced aqueous tear deficiency. J Ocul Pharmacol Ther. 2012;28:433–438
  • Zoukhri D. Mechanisms involved in injury and repair of the murine lacrimal gland: role of programmed cell death and mesenchymal stem cells. Ocul Surf. 2010;8:60–69
  • Schaumberg DA, Dana R, Buring JE, Sullivan DA. Prevalence of dry eye disease among US men: estimates from the Physicians' Health Studies. Arch Ophthalmol. 2009;127:763–768
  • Schaumberg DA, Sullivan DA, Buring JE, Dana MR. Prevalence of dry eye syndrome among US women. Am J Ophthalmol. 2003;136:318–326
  • Yu J, Asche CV, Fairchild CJ. The economic burden of dry eye disease in the United States: a decision tree analysis. Cornea. 2011;30:379–387
  • Mizuno Y, Yamada M, Miyake Y. Association between clinical diagnostic tests and health-related quality of life surveys in patients with dry eye syndrome. Jpn J Ophthalmol. 2010;54:259–265
  • Reddy P, Grad O, Rajagopalan K. The economic burden of dry eye: a conceptual framework and preliminary assessment. Cornea. 2004;23:751–761
  • Zoukhri D. Effect of inflammation on lacrimal gland function. Exp Eye Res. 2006;82:885–898
  • Zoukhri D, Hodges RR, Dartt DA. Lacrimal gland innervation is not altered with the onset and progression of disease in a murine model of Sjögren's syndrome. Clin Immunol Immunopathol. 1998;89:126–133
  • Zoukhri D, Macari E, Choi SH, Kublin CL. c-Jun NH2-terminal kinase mediates interleukin-1beta-induced inhibition of lacrimal gland secretion. J Neurochem. 2006;96:126–135
  • Zoukhri D, Macari E, Kublin CL. A single injection of interleukin-1 induces reversible aqueous-tear deficiency, lacrimal gland inflammation, and acinar and ductal cell proliferation. Exp Eye Res. 2007;84:894–904
  • Paiva CS, Pflugfelder SC. Rationale for anti-inflammatory therapy in dry eye syndrome. Arq Bras Oftalmol. 2008;71:89–95
  • DeVoss JJ, LeClair NP, Hou Y, et al. An autoimmune response to odorant binding protein 1a is associated with dry eye in the Aire-deficient mouse. J Immunol. 2010;184:4236–4246
  • Knop N, Knop E. Regulation of the inflammatory component in chronic dry eye disease by the eye-associated lymphoid tissue (EALT). Dev Ophthalmol. 2010;45:23–39
  • Barabino S, Chen Y, Chauhan S, Dana R. Ocular surface immunity: homeostatic mechanisms and their disruption in dry eye disease. Prog Retin Eye Res. 2012;31:271–285
  • Redfern RL, Patel N, Hanlon S, et al. Toll-like receptor expression and activation in mice with experimental dry eye. Invest Ophthalmol Vis Sci. 2013;54:1554–1563
  • Narayanan S, Redfern RL, Miller WL, et al. Dry eye disease and microbial keratitis: is there a connection? Ocul Surf. 2013;11:75–92
  • McDermott AM. New insight into dry eye inflammation. Invest Ophthalmol Vis Sci. 2012;53--72:8264
  • Kolar SS, McDermott AM. Role of host-defence peptides in eye diseases. Cell Mol Life Sci. 2011;68:2201–2213
  • Redfern RL, McDermott AM. Toll-like receptors in ocular surface disease. Exp Eye Res. 2010;90:679–687
  • Liu Q, McDermott AM, Miller WL. Elevated nerve growth factor in dry eye associated with established contact lens wear. Eye Contact Lens. 2009;35:232–237
  • Tomlinson A, Giesbrecht C. Effect of age on human tear film evaporation in normals. Adv Exp Med Biol. 1994;350:271–274
  • Tsubota K, Yamada M. Tear evaporation from the ocular surface. Invest Ophthalmol Vis Sci. 1992;33:2942–2950
  • Borchman D, Foulks GN, Yappert MC, et al. Factors affecting evaporation rates of tear film components measured in vitro. Eye Contact Lens. 2009;35:32–37
  • Guillon M, Maissa C. Tear film evaporation—effect of age and gender. Cont Lens Anterior Eye. 2010;33:171–175
  • Klein R, Myers CE, Cruickshanks KJ, et al. Markers of inflammation, oxidative stress, and endothelial dysfunction and the 20-year cumulative incidence of early age-related macular degeneration: the Beaver Dam Eye Study. JAMA Ophthalmol. 2014;132:446–455
  • Rodrigues EB. Inflammation in dry age-related macular degeneration. Ophthalmologica. 2007;221:143–152
  • Cevenini E, Caruso C, Candore G, et al. Age-related inflammation: the contribution of different organs, tissues and systems: how to face it for therapeutic approaches. Curr Pharm Des. 2010;16:609–618
  • Magrone T, Jirillo E. The interaction between gut microbiota and age-related changes in immune function and inflammation. Immun Ageing. 2013;10:31
  • Rehman T. Role of the gut microbiota in age-related chronic inflammation. Endocr Metab Immune Disord Drug Targets. 2012;12:361–367
  • Konttinen YT, Fuellen G, Bing Y, et al. Sex steroids in Sjögren's syndrome. J Autoimmun. 2012;39:49–56
  • Porola P, Laine M, Virkki L, et al. The influence of sex steroids on Sjögren's syndrome. Ann N Y Acad Sci. 2007;1108:426–432
  • Di Tommaso C, Valamanesh F, Miller F, et al. A novel cyclosporin a aqueous formulation for dry eye treatment: in vitro and in vivo evaluation. Invest Ophthalmol Vis Sci. 2012;53:2292–2299
  • Di Tommaso C, Bourges JL, Valamanesh F, et al. Novel micelle carriers for cyclosporin A topical ocular delivery: in vivo cornea penetration, ocular distribution and efficacy studies. Eur J Pharm Biopharm. 2012;81:257–264
  • Di Tommaso C, Torriglia A, Furrer P, et al. Ocular biocompatibility of novel cyclosporin A formulations based on methoxy poly(ethylene glycol)-hexylsubstituted poly(lactide) micelle carriers. Int J Pharm. 2011;416:515–524
  • Di Tommaso C, Behar-Cohen F, Gurny R, Moller M. Colloidal systems for the delivery of cyclosporin A to the anterior segment of the eye. Ann Pharm Fr. 2011;69:116–123
  • Stevenson W, Chauhan SK, Dana R. Dry eye disease: an immune-mediated ocular surface disorder. Arch Ophthalmol. 2012;130:90–100
  • Galor A, Feuer W, Lee DJ, et al. Depression, post-traumatic stress disorder, and dry eye syndrome: a study utilizing the national United States Veterans Affairs administrative database. Am J Ophthalmol. 2012;154:340–346 e342
  • Pouyeh B, Viteri E, Feuer W, et al. Impact of ocular surface symptoms on quality of life in a United States veterans affairs population. Am J Ophthalmol. 2012;153:1061–1066, e1063
  • Galor A, Feuer W, Lee DJ, et al. Ocular surface parameters in older male veterans. Invest Ophthalmol Vis Sci. 2013;54:1426–1433
  • Mircheff AK, Wang Y, Thomas PB, et al. Systematic variations in immune response-related gene transcript abundance suggest new questions about environmental influences on lacrimal gland immunoregulation. Curr Eye Res. 2011;36:285–294
  • Schechter JE, Warren DW, Mircheff AK. A lacrimal gland is a lacrimal gland, but rodent's and rabbit's are not human. Ocul Surf. 2010;8:111–134
  • Trousdale MD, Stevenson D, Zhu Z, et al. Effect of anti-inflammatory cytokines on the activation of lymphocytes by lacrimal gland acinar cells in an autologous mixed cell reaction. Adv Exp Med Biol. 2002;506:789–794
  • The definition and classification of dry eye disease: report of the Definition and Classification Subcommittee of the International Dry Eye WorkShop (2007). Ocul Surf. 2007;5:75–92
  • De Paiva CS, Hwang CS, Pitcher JD III, et al. Age-related T-cell cytokine profile parallels corneal disease severity in Sjögren's syndrome-like keratoconjunctivitis sicca in CD25KO mice. Rheumatology (Oxford). 2010;49:246–258
  • De Paiva CS, Volpe EA, Gandhi NB, et al. Disruption of TGF-beta signaling improves ocular surface epithelial disease in experimental autoimmune keratoconjunctivitis sicca. PLoS One. 2011;6:e29017
  • Gumus K, Cavanagh DH. The role of inflammation and antiinflammation therapies in keratoconjunctivitis sicca. Clin Ophthalmol. 2009;3:57–67
  • Jiang G, Ke Y, Sun D, et al. A new model of experimental autoimmune keratoconjunctivitis sicca (KCS) induced in Lewis rat by the autoantigen Klk1b22. Invest Ophthalmol Vis Sci. 2009;50:2245–2254
  • Na KS, Mok JW, Kim JY, et al. Correlations between tear cytokines, chemokines, and soluble receptors and clinical severity of dry eye disease. Invest Ophthalmol Vis Sci. 2012;53:5443–5450
  • Lee SY, Han SJ, Nam SM, et al. Analysis of tear cytokines and clinical correlations in Sjögren syndrome dry eye patients and non-Sjögren syndrome dry eye patients. Am J Ophthalmol. 2013;156:247–253 e241
  • Massingale ML, Li X, Vallabhajosyula M, et al. Analysis of inflammatory cytokines in the tears of dry eye patients. Cornea. 2009;28:1023–1027
  • Alunno A, Petrillo MG, Nocentini G, et al. Characterization of a new regulatory CD4+ T cell subset in primary Sjögren's syndrome. Rheumatology (Oxford). 2013;52:1387–1396
  • Bianchini R, Bistoni O, Alunno A, et al. CD4(+) CD25(low) GITR(+) cells: a novel human CD4(+) T-cell population with regulatory activity. Eur J Immunol. 2011;41:2269–2278
  • Alunno A, Nocentini G, Bistoni O, et al. Expansion of CD4+CD25–GITR+ regulatory T-cell subset in the peripheral blood of patients with primary Sjögren's syndrome: correlation with disease activity. Reumatismo. 2012;64:293–298
  • Prakash S, Agrawal S, Siraj H, et al. Dendritic cells from aged subjects contribute to chronic airway inflammation by activating bronchial epithelial cells under steady state. Mucosal Immunol. 2014;in press:1–14
  • Ullrich SE. Two-way traffic on the bridge from innate to adaptive immunity. J Invest Dermatol. 2010;130:1773–1775
  • Ank N, Paludan SR. Type III IFNs: new layers of complexity in innate antiviral immunity. Biofactors. 2009;35:82–87
  • Martin LD, Rochelle LG, Fischer BM, et al. Airway epithelium as an effector of inflammation: molecular regulation of secondary mediators. Eur Respir J. 1997;10:2139–2146
  • Skalicky SE, Petsoglou C, Gurbaxani A, et al. New agents for treating dry eye syndrome. Curr Allergy Asthma Rep. 2013;13:322–328
  • McCann LC, Tomlinson A, Pearce EI, Papa V. Effectiveness of artificial tears in the management of evaporative dry eye. Cornea. 2012;31:1–5
  • Rolando M, Barabino S, Mingari C, et al. Distribution of conjunctival HLA-DR expression and the pathogenesis of damage in early dry eyes. Cornea. 2005;24:951–954
  • Uchino M, Schaumberg DA. Dry eye disease: impact on quality of life and vision. Curr Ophthalmol Rep. 2013;1:51–57
  • Li M, Gong L, Chapin WJ, Zhu M. Assessment of vision-related quality of life in dry eye patients. Invest Ophthalmol Vis Sci. 2012;53:5722–5727
  • Denoyer A, Rabut G, Baudouin C. Tear film aberration dynamics and vision-related quality of life in patients with dry eye disease. Ophthalmology. 2012;119:1811–1818
  • Borrelli E, Diadori A, Zalaffi A, Bocci V. Effects of major ozonated autohemotherapy in the treatment of dry age related macular degeneration: a randomized controlled clinical study. Int J Ophthalmol. 2012;5:708–713
  • Larose J, Boulay P, Wright-Beatty HE, et al. Age-related differences in heat loss capacity occur under both dry and humid heat stress conditions. J Appl Physiol. (1985) 2014;117:69–79
  • Schafer G, Hoffmann W, Berry M, Paulsen F. Lacrimal gland-associated mucins: age related production and their role in the pathophysiology of dry eye. Ophthalmologe. 2005;102:175–183
  • Dana MR, Hamrah P. Role of immunity and inflammation in corneal and ocular surface disease associated with dry eye. Adv Exp Med Biol. 2002;506:729–738
  • Jarka ES, Kahrhoff M, Crane JB. Dry-eye—is inflammation just the tip of the iceberg? Optometry. 2012;83:111–113
  • Stern ME, Pflugfelder SC. Inflammation in dry eye. Ocul Surf. 2004;2:124–130
  • Stern ME, Siemasko KF, Gao J, et al. Evaluation of ocular surface inflammation in the presence of dry eye and allergic conjunctival disease. Ocul Surf. 2005;3:S161–S164
  • Wilson SE. Inflammation: a unifying theory for the origin of dry eye syndrome. Manag Care. 2003;12:14–19
  • Agrawal A, Gupta S. Impact of aging on dendritic cell functions in humans. Ageing Res Rev. 2011;10:336–345
  • Agrawal A, Agrawal S, Gupta S. Dendritic cells in human aging. Exp Gerontol. 2007;42:421–426
  • Sridharan A, Esposo M, Kaushal K, et al. Age-associated impaired plasmacytoid dendritic cell functions lead to decreased CD4 and CD8 T cell immunity. Age (Dordr). 2011;33:363–376
  • Williams GP, Tomlins PJ, Denniston AK, et al. Elevation of conjunctival epithelial CD45INTCD11b(+)CD16(+)CD14(−) neutrophils in ocular Stevens-Johnson syndrome and toxic epidermal necrolysis. Invest Ophthalmol Vis Sci. 2013;54:4578–4585
  • Williams GP, Denniston AK, Oswal KS, et al. The dominant human conjunctival epithelial CD8alphabeta+ T cell population is maintained with age but the number of CD4+ T cells increases. Age (Dordr). 2012;34:1517–1528
  • Saito T, Nishida K, Sugiyama H, et al. Abnormal keratocytes and stromal inflammation in chronic phase of severe ocular surface diseases with stem cell deficiency. Br J Ophthalmol. 2008;92:404–410
  • Polisetty N, Fatima A, Madhira SL, et al. Mesenchymal cells from limbal stroma of human eye. Mol Vis. 2008;14:431–442
  • Yang P, Das PK, Kijlstra A. Localization and characterization of immunocompetent cells in the human retina. Ocul Immunol Inflamm. 2000;8:149–157
  • Chentoufi AA, Dasgupta G, Nesburn AB, et al. Nasolacrimal duct closure modulates ocular mucosal and systemic CD4(+) T-cell responses induced following topical ocular or intranasal immunization. Clin Vaccine Immunol. 2010;17:342–353
  • Franceschi C, Campisi J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci. 2014;69:S4–S9
  • Goto M. Inflammaging (inflammation + aging): a driving force for human aging based on an evolutionarily antagonistic pleiotropy theory? Biosci Trends. 2008;2:218–230
  • Navarrete-Reyes AP, Montana-Alvarez M. Inflammaging: aging inflammatory origin. Rev Invest Clin. 2009;61:327–336
  • Chauhan SK, El Annan J, Ecoiffier T, et al. Autoimmunity in dry eye is due to resistance of Th17 to Treg suppression. J Immunol. 2009;182:1247–1252
  • Coursey TG, Gandhi NB, Volpe EA, et al. Chemokine receptors CCR6 and CXCR3 are necessary for CD4(+) T cell mediated ocular surface disease in experimental dry eye disease. PLoS One. 2013;8:e78508
  • Dohlman TH, Chauhan SK, Kodati S, et al. The CCR6/CCL20 axis mediates Th17 cell migration to the ocular surface in dry eye disease. Invest Ophthalmol Vis Sci. 2013;54:4081–4091
  • Pflugfelder SC, Corrales RM, de Paiva CS. T helper cytokines in dry eye disease. Exp Eye Res. 2013;117:118–125
  • Turpie B, Yoshimura T, Gulati A, et al. Sjögren's syndrome-like ocular surface disease in thrombospondin-1 deficient mice. Am J Pathol. 2009;175:1136–1147
  • Nesburn AB, Bettahi I, Zhang X, et al. Topical/mucosal delivery of sub-unit vaccines that stimulate the ocular mucosal immune system. Ocul Surf. 2006;4:178–187
  • Wohlfert EA, Grainger JR, Bouladoux N, et al. GATA3 controls Foxp3(+) regulatory T cell fate during inflammation in mice. J Clin Invest. 2011;121:4503–4515
  • Nesburn AB, Bettahi I, Dasgupta G, et al. Functional Foxp3+ CD4+ CD25(Bright+) “natural” regulatory T cells are abundant in rabbit conjunctiva and suppress virus-specific CD4+ and CD8+ effector T cells during ocular herpes infection. J Virol. 2007;81:7647–7661
  • Siemasko KF, Gao J, Calder VL, et al. In vitro expanded CD4+CD25+Foxp3+ regulatory T cells maintain a normal phenotype and suppress immune-mediated ocular surface inflammation. Invest Ophthalmol Vis Sci. 2008;49:5434–5440
  • Chentoufi AA, Dasgupta G, Christensen ND, et al. A novel HLA (HLA-A*0201) transgenic rabbit model for preclinical evaluation of human CD8+ T cell epitope-based vaccines against ocular herpes. J Immunol. 2010;184:2561–2571
  • Research in dry eye: report of the Research Subcommittee of the International Dry Eye WorkShop (2007). Ocul Surf. 2007;5:179–193
  • Management and therapy of dry eye disease: report of the Management and Therapy Subcommittee of the International Dry Eye WorkShop (2007). Ocul Surf. 2007;5:163–178
  • Chen Y, Chauhan SK, Lee HS, et al. Effect of desiccating environmental stress versus systemic muscarinic AChR blockade on dry eye immunopathogenesis. Invest Ophthalmol Vis Sci. 2013;54:2457–2464
  • Fabiani C, Barabino S, Rashid S, Dana MR. Corneal epithelial proliferation and thickness in a mouse model of dry eye. Exp Eye Res. 2009;89:166–171
  • Goyal S, Chauhan SK, El Annan J, et al. Evidence of corneal lymphangiogenesis in dry eye disease: a potential link to adaptive immunity? Arch Ophthalmol. 2010;128:819–824
  • Lee HS, Hattori T, Park EY, et al. Expression of Toll-like receptor 4 contributes to corneal inflammation in experimental dry eye disease. Invest Ophthalmol Vis Sci. 2012;53:5632–5640
  • Vijmasi T, Chen FY, Chen YT, et al. Topical administration of interleukin-1 receptor antagonist as a therapy for aqueous-deficient dry eye in autoimmune disease. Mol Vis. 2013;19:1957–1965
  • Barabino S, Dana MR. Dry eye syndromes. Chem Immunol Allergy. 2007;92:176–184
  • Gao J, Morgan G, Tieu D, et al. ICAM-1 expression predisposes ocular tissues to immune-based inflammation in dry eye patients and Sjögrens syndrome-like MRL/lpr mice. Exp Eye Res. 2004;78:823–835
  • Brignole F, Pisella PJ, Goldschild M, et al. Flow cytometric analysis of inflammatory markers in conjunctival epithelial cells of patients with dry eyes. Invest Ophthalmol Vis Sci. 2000;41:1356–1363
  • Pflugfelder SC. Differential diagnosis of dry eye conditions. Adv Dent Res. 1996;10:9–12
  • Nguyen CQ, Gao JH, Kim H, et al. IL-4-STAT6 signal transduction-dependent induction of the clinical phase of Sjögren's syndrome-like disease of the nonobese diabetic mouse. J Immunol. 2007;179:382–390
  • Nguyen CQ, Kim H, Cornelius JG, Peck AB. Development of Sjögren's syndrome in nonobese diabetic-derived autoimmune-prone C57BL/6.NOD-Aec1Aec2 mice is dependent on complement component-3. J Immunol. 2007;179:2318–2329
  • Hayashi Y, Arakaki R, Ishimaru N. The role of caspase cascade on the development of primary Sjögren's syndrome. J Med Invest. 2003;50:32–38
  • Manganelli P, Fietta P. Apoptosis and Sjögren syndrome. Semin Arthritis Rheum. 2003;33:49–65
  • Nguyen CQ, Cornelius JG, Cooper L, et al. Identification of possible candidate genes regulating Sjögren's syndrome-associated autoimmunity: a potential role for TNFSF4 in autoimmune exocrinopathy. Arthritis Res Ther. 2008;10:R137
  • Wildenberg ME, Welzen-Coppens JM, van Helden-Meeuwsen CG, et al. Increased frequency of CD16+ monocytes and the presence of activated dendritic cells in salivary glands in primary Sjögren syndrome. Ann Rheum Dis. 2009;68:420–426
  • Chen YT, Li S, Nikulina K, et al. Immune profile of squamous metaplasia development in autoimmune regulator-deficient dry eye. Mol Vis. 2009;15:563–576
  • Marko CK, Menon BB, Chen G, et al. Spdef null mice lack conjunctival goblet cells and provide a model of dry eye. Am J Pathol. 2013;183:35–48
  • Xu J, Wang D, Liu D, et al. Allogeneic mesenchymal stem cell treatment alleviates experimental and clinical Sjögren syndrome. Blood. 2012;120:3142–3151
  • Sullivan DA, Krenzer KL, Sullivan BD, et al. Does androgen insufficiency cause lacrimal gland inflammation and aqueous tear deficiency? Invest Ophthalmol Vis Sci. 1999;40:1261–1265
  • Sullivan DA, Sullivan BD, Evans JE, et al. Androgen deficiency, meibomian gland dysfunction, and evaporative dry eye. Ann N Y Acad Sci. 2002;966:211–222
  • Suhalim JL, Parfitt GJ, Xie Y, et al. Effect of desiccating stress on mouse meibomian gland function. Ocul Surf. 2014;12:59–68
  • Parfitt GJ, Xie Y, Geyfman M, et al. Absence of ductal hyper-keratinization in mouse age-related meibomian gland dysfunction (ARMGD). Aging (Albany NY). 2013;5:825–834
  • Nien CJ, Massei S, Lin G, et al. Effects of age and dysfunction on human meibomian glands. Arch Ophthalmol. 2011;129:462–469
  • Nien CJ, Flynn KJ, Chang M, et al. Reducing peak corneal haze after photorefractive keratectomy in rabbits: prednisolone acetate 1.00% versus cyclosporine A 0.05%. J Cataract Refract Surg. 2011;37:937–944
  • Fujihara T, Nagano T, Nakamura M, Shirasawa E. Lactoferrin suppresses loss of corneal epithelial integrity in a rabbit short-term dry eye model. J Ocul Pharmacol Ther. 1998;14:99–107
  • Fujihara T, Nagano T, Nakamura M, Shirasawa E. Establishment of a rabbit short-term dry eye model. J Ocul Pharmacol Ther. 1995;11:503–508
  • Zhou L, Wei R, Zhao P, et al. Proteomic analysis revealed the altered tear protein profile in a rabbit model of Sjögren's syndrome-associated dry eye. Proteomics. 2013;13:2469–2481
  • Toshida H, Ohta T, Suto C, Murakami A. Effect of subconjunctival lacrimal gland transplantation in a rabbit dry eye model. Cornea. 2013;32:S46–S51
  • Li C, Song Y, Luan S, et al. Research on the stability of a rabbit dry eye model induced by topical application of the preservative benzalkonium chloride. PLoS One. 2012;7:e33688
  • Toshida H, Nguyen DH, Beuerman RW, Murakami A. Neurologic evaluation of acute lacrimomimetic effect of cyclosporine in an experimental rabbit dry eye model. Invest Ophthalmol Vis Sci. 2009;50:2736–2741
  • Xiong C, Chen D, Liu J, et al. A rabbit dry eye model induced by topical medication of a preservative benzalkonium chloride. Invest Ophthalmol Vis Sci. 2008;49:1850–1856
  • Toshida H, Nguyen DH, Beuerman RW, Murakami A. Evaluation of novel dry eye model: preganglionic parasympathetic denervation in rabbit. Invest Ophthalmol Vis Sci. 2007;48:4468–4475
  • Oh JY, In YS, Kim MK, et al. Protective effect of uridine on cornea in a rabbit dry eye model. Invest Ophthalmol Vis Sci. 2007;48:1102–1109
  • Beutel J, Schroder C, von Hof K, et al. Pharmacological prevention of radiation-induced dry eye—an experimental study in a rabbit model. Graefes Arch Clin Exp Ophthalmol. 2007;245:1347–1355
  • Altinors DD, Bozbeyoglu S, Karabay G, Akova YA. Evaluation of ocular surface changes in a rabbit dry eye model using a modified impression cytology technique. Curr Eye Res. 2007;32:301–307
  • Nagelhout TJ, Gamache DA, Roberts L, et al. Preservation of tear film integrity and inhibition of corneal injury by dexamethasone in a rabbit model of lacrimal gland inflammation-induced dry eye. J Ocul Pharmacol Ther. 2005;21:139–148
  • Gamache DA, Wei ZY, Weimer LK, et al. Preservation of corneal integrity by the mucin secretagogue 15(S)-HETE in a rabbit model of desiccation-induced dry eye. Adv Exp Med Biol. 2002;506:335–340
  • Fujihara T, Murakami T, Nagano T, et al. INS365 suppresses loss of corneal epithelial integrity by secretion of mucin-like glycoprotein in a rabbit short-term dry eye model. J Ocul Pharmacol Ther. 2002;18:363–370
  • Burgalassi S, Panichi L, Chetoni P, et al. Development of a simple dry eye model in the albino rabbit and evaluation of some tear substitutes. Ophthalmic Res. 1999;31:229–235
  • Ding J, Sullivan DA. Aging and dry eye disease. Exp Gerontol. 2012;47:483–490
  • Gilbard JP, Rossi SR, Azar DT, Heyda KG. Effect of punctal occlusion by Freeman silicone plug insertion on tear osmolarity in dry eye disorders. CLAO J. 1989;15:216–218
  • Barabino S, Shen L, Chen L, et al. The controlled–environment chamber: a new mouse model of dry eye. Invest Ophthalmol Vis Sci. 2005;46:2766–2771
  • Gonzalez-Garcia MJ, Gonzalez-Saiz A, de la Fuente B, et al. Exposure to a controlled adverse environment impairs the ocular surface of subjects with minimally symptomatic dry eye. Invest Ophthalmol Vis Sci. 2007;48:4026–4032
  • Lopez-Miguel A, Teson M, Martin-Montanez V, et al. Dry eye exacerbation in patients exposed to desiccating stress under controlled environmental conditions. Am J Ophthalmol. 2014;157:788–798 e782
  • Madden LC, Tomlinson A, Simmons PA. Effect of humidity variations in a controlled environment chamber on tear evaporation after dry eye therapy. Eye Contact Lens. 2013;39:169–174
  • Singh G, Bhinder HS. Closed chamber thermometry and humidity measurements in normal and dry eye patients: a pilot study. Eur J Ophthalmol. 2003;13:343–350
  • Steagall RJ, Yamagami H, Wickham LA, Sullivan DA. Androgen control of gene expression in the rabbit meibomian gland. Adv Exp Med Biol. 2002;506:465–476
  • Frame NJ, Burkat CN. Identifying an appropriate animal model for the nasolacrimal drainage system. Ophthal Plast Reconstr Surg. 2009;25:354–358
  • Bergmanson JP, Doughty MJ, Blocker Y. The acinar and ductal organisation of the tarsal accessory lacrimal gland of Wolfring in rabbit eyelid. Exp Eye Res. 1999;68:411–421
  • Wood RL, Mircheff AK. Apical and basal-lateral Na/K-ATPase in rat lacrimal gland acinar cells. Invest Ophthalmol Vis Sci. 1986;27:1293–1296
  • Wood RL, Park KH, Gierow JP, Mircheff AK. Immunogold localization of prolactin in acinar cells of lacrimal gland. Adv Exp Med Biol. 1994;350:75–77
  • Wood RL, Trousdale MD, Stevenson D, et al. Adenovirus infection of the cornea causes histopathologic changes in the lacrimal gland. Curr Eye Res. 1997;16:459–466
  • Wood RL, Zhang J, Huang ZM, et al. Prolactin and prolactin receptors in the lacrimal gland. Exp Eye Res. 1999;69:213–226
  • Thomas PB, Samant DM, Selvam S, et al. Adeno-associated virus-mediated IL-10 gene transfer suppresses lacrimal gland immunopathology in a rabbit model of autoimmune dacryoadenitis. Invest Ophthalmol Vis Sci. 2010;51:5137–5144
  • Hodges RR, Dartt DA. Regulatory pathways in lacrimal gland epithelium. Int Rev Cytol. 2003;231:129–196
  • Ohashi Y, Tsuzaka K, Takeuchi T, et al. Altered distribution of aquaporin 5 and its C-terminal binding protein in the lacrimal glands of a mouse model for Sjögren's syndrome. Curr Eye Res. 2008;33:621–629
  • Ding C, Chang N, Fong YC, et al. Interacting influences of pregnancy and corneal injury on rabbit lacrimal gland immunoarchitecture and function. Invest Ophthalmol Vis Sci. 2006;47:1368–1375
  • McClellan KA, Robertson FG, Kindblom J, et al. Investigation of the role of prolactin in the development and function of the lacrimal and harderian glands using genetically modified mice. Invest Ophthalmol Vis Sci. 2001;42:23–30
  • Botelho SY. Tears and the lacrimal gland. Sci Am 1964;211:78–86
  • Dartt DA. Neural regulation of lacrimal gland secretory processes: relevance in dry eye diseases. Prog Retin Eye Res. 2009;28:155–177
  • Janowsky DS, Drennan M, Berkowitz A, et al. Comparative effects of scopolamine and atropine in preventing cholinesterase inhibitor induced lethality. Mil Med. 1985;150:693–695
  • Thiermann H, Radtke M, Spohrer U, et al. Pharmacokinetics of atropine in dogs after i.m. injection with newly developed dry/wet combination autoinjectors containing HI 6 or HLo 7. Arch Toxicol. 1996;70:293–299
  • Salminen L. Review: systemic absorption of topically applied ocular drugs in humans. J Ocul Pharmacol. 1990;6:243–249
  • Odaka A, Toshida H, Ohta T, et al. Efficacy of retinol palmitate eye drops for dry eye in rabbits with lacrimal gland resection. Clin Ophthalmol. 2012;6:1585–1593
  • Thomas PB, Samant DM, Zhu Z, et al. Long-term topical cyclosporine treatment improves tear production and reduces keratoconjunctivitis in rabbits with induced autoimmune dacryoadenitis. J Ocul Pharmacol Ther. 2009;25:285–292
  • Trousdale MD, Zhu Z, Stevenson D, et al. Expression of TNF inhibitor gene in the lacrimal gland promotes recovery of tear production and tear stability and reduced immunopathology in rabbits with induced autoimmune dacryoadenitis. J Autoimmune Dis. 2005;2:6
  • Oprea L, Tiberghien A, Creuzot-Garcher C, Baudouin C. Hormonal regulatory influence in tear film. J Fr Ophtalmol. 2004;27:933–941
  • Zhu Z, Stevenson D, Schechter JE, et al. Lacrimal histopathology and ocular surface disease in a rabbit model of autoimmune dacryoadenitis. Cornea. 2003;22:25–32
  • Paulsen F. The human nasolacrimal ducts. Adv Anat Embryol Cell Biol. 2003;170:III–XI, 1–106
  • Schonthal AH, Warren DW, Stevenson D, et al. Proliferation of lacrimal gland acinar cells in primary culture: stimulation by extracellular matrix, EGF, and DHT. Exp Eye Res. 2000;70:639–649
  • Guo Z, Song D, Azzarolo AM, et al. Autologous lacrimal-lymphoid mixed-cell reactions induce dacryoadenitis in rabbits. Exp Eye Res. 2000;71:23–31
  • Romanowski EG, Gordon YJ, Araullo-Cruz T, et al. The antiviral resistance and replication of cidofovir-resistant adenovirus variants in the New Zealand White rabbit ocular model. Invest Ophthalmol Vis Sci. 2001;42:1812–1815
  • Nesburn AB, Ramos TV, Zhu X, et al. Local and systemic B cell and Th1 responses induced following ocular mucosal delivery of multiple epitopes of herpes simplex virus type 1 glycoprotein D together with cytosine-phosphate-guanine adjuvant. Vaccine. 2005;23:873–883
  • Trousdale MD, Dunkel EC, Nesburn AB. Effect of flurbiprofen on herpes simplex keratitis in rabbits. Invest Ophthalmol Vis Sci. 1980;19:267–270
  • Knop E, Knop N. The role of eye-associated lymphoid tissue in corneal immune protection. J Anat. 2005;206:271–285
  • Knop N, Knop E. Ultrastructural anatomy of CALT follicles in the rabbit reveals characteristics of M-cells, germinal centres and high endothelial venules. J Anat. 2005;207:409–426
  • Liang H, Baudouin C, Daull P, et al. Ocular safety of cationic emulsion of cyclosporine in an in vitro corneal wound-healing model and an acute in vivo rabbit model. Mol Vis. 2012;18:2195–2204
  • Liang H, Baudouin C, Dupas B, Brignole-Baudouin F. Live conjunctiva-associated lymphoid tissue analysis in rabbit under inflammatory stimuli using in vivo confocal microscopy. Invest Ophthalmol Vis Sci. 2010;51:1008–1015
  • Liu H, Meagher CK, Moore CP, Phillips TE. M cells in the follicle-associated epithelium of the rabbit conjunctiva preferentially bind and translocate latex beads. Invest Ophthalmol Vis Sci. 2005;46:4217–4223
  • Dasgupta G, Chentoufi AA, You S, et al. Engagement of TLR2 reverses the suppressor function of conjunctiva CD4+CD25+ regulatory T cells and promotes herpes simplex virus epitope-specific CD4+CD25− effector T cell responses. Invest Ophthalmol Vis Sci. 2011;52:3321–3333
  • Lanning D, Sethupathi P, Rhee KJ, et al. Intestinal microflora and diversification of the rabbit antibody repertoire. J Immunol. 2000;165:2012–2019
  • McDonald ML, Wang Y, Selvam S, et al. Cytopathology and exocrine dysfunction induced in ex vivo rabbit lacrimal gland acinar cell models by chronic exposure to histamine or serotonin. Invest Ophthalmol Vis Sci. 2009;50:3164–3175
  • Li N, Deng X, Gao Y, et al. Establishment of the mild, moderate and severe dry eye models using three methods in rabbits. BMC Ophthalmol. 2013;13:50
  • Narayanan S, Miller WL, McDermott AM. Conjunctival cytokine expression in symptomatic moderate dry eye subjects. Invest Ophthalmol Vis Sci. 2006;47:2445–2450
  • Zhao C, Cai Y, He X, et al. Synthesis and anti-inflammatory evaluation of novel mono-carbonyl analogues of curcumin in LPS-stimulated RAW 264.7 macrophages. Eur J Med Chem. 2010;45:5773–5780
  • Bereswill S, Munoz M, Fischer A, et al. Anti-inflammatory effects of resveratrol, curcumin and simvastatin in acute small intestinal inflammation. PLoS One. 2010;5:e15099
  • Kim HY, Park EJ, Joe EH, Jou I. Curcumin suppresses Janus kinase-STAT inflammatory signaling through activation of Src homology 2 domain-containing tyrosine phosphatase 2 in brain microglia. J Immunol. 2003;171:6072–6079
  • Xu YX, Pindolia KR, Janakiraman N, et al. Curcumin, a compound with anti-inflammatory and anti-oxidant properties, down-regulates chemokine expression in bone marrow stromal cells. Exp Hematol. 1997;25:413–422
  • Vaughan RA, Garcia-Smith R, Dorsey J, et al. Tumor necrosis factor alpha induces Warburg-like metabolism and is reversed by anti-inflammatory curcumin in breast epithelial cells. Int J Cancer. 2013;133:2504–2510
  • Saja K, Babu MS, Karunagaran D, Sudhakaran PR. Anti-inflammatory effect of curcumin involves downregulation of MMP-9 in blood mononuclear cells. Int Immunopharmacol. 2007;7:1659–1667
  • Klawitter M, Quero L, Klasen J, et al. Curcuma DMSO extracts and curcumin exhibit an anti-inflammatory and anti-catabolic effect on human intervertebral disc cells, possibly by influencing TLR2 expression and JNK activity. J Inflamm (Lond). 2012;9:29
  • Rogers NM, Kireta S, Coates PT. Curcumin induces maturation-arrested dendritic cells that expand regulatory T cells in vitro and in vivo. Clin Exp Immunol. 2010;162:460–473
  • Goto R, You S, Zaitsu M, et al. Delayed anti-CD3 therapy results in depletion of alloreactive T cells and the dominance of Foxp3+ CD4+ graft infiltrating cells. Am J Transplant. 2013;13:1655–1664
  • Baas MC, Besancon A, Sawitzki B, et al. Intragraft mechanisms associated with the immunosuppressive versus the tolerogenic effect of CD3 antibodies in a mouse model of islet allografts. Transplant Proc. 2013;45:1895–1898
  • You S, Zuber J, Kuhn C, et al. Induction of allograft tolerance by monoclonal CD3 antibodies: a matter of timing. Am J Transplant. 2012;12:2909–2919
  • Chatenoud L, Bluestone JA. CD3-specific antibodies: a portal to the treatment of autoimmunity. Nat Rev Immunol. 2007;7:622–632
  • Bhagwat SP, Wright TW, Gigliotti F. Anti-CD3 antibody decreases inflammation and improves outcome in a murine model of pneumocystis pneumonia. J Immunol. 2010;184:497–502
  • You S, Leforban B, Garcia C, et al. Adaptive TGF-beta-dependent regulatory T cells control autoimmune diabetes and are a privileged target of anti-CD3 antibody treatment. Proc Natl Acad Sci U S A. 2007;104:6335–6340
  • Chatenoud L. CD3 antibody treatment stimulates the functional capability of regulatory T cells. Novartis Found Symp. 2003;252:279–286; discussion 286–290
  • Zhang JL, Sun DJ, Hou CM, et al. CD3 mAb treatment ameliorated the severity of the cGvHD-induced lupus nephritis in mice by up-regulation of Foxp3+ regulatory T cells in the target tissue: kidney. Transpl Immunol. 2010;24:17–25
  • Sasaki N, Yamashita T, Takeda M, et al. Oral anti-CD3 antibody treatment induces regulatory T cells and inhibits the development of atherosclerosis in mice. Circulation. 2009;120:1996–2005
  • Mfarrej B, Keir M, Dada S, et al. Anti-CD3 mAb treatment cures PDL1−/−. NOD mice of diabetes but precipitates fatal myocarditis. Clin Immunol. 2011;140:47–53
  • Milgrom H, Huang H. Allergic disorders at a venerable age: a mini-review. Gerontology. 2014;60:99–107
  • Ventura MT, Gelardi M, D'Amato A, et al. Clinical and cytologic characteristics of allergic rhinitis in elderly patients. Ann Allergy Asthma Immunol. 2012;108:141–144
  • Knop E, Knop N. Eye-associated lymphoid tissue (EALT) is continuously spread throughout the ocular surface from the lacrimal gland to the lacrimal drainage system. Ophthalmologe. 2003;100:929–942
  • Knop E, Knop N. Influence of the eye-associated lymphoid tissue (EALT) on inflammatory ocular surface disease. Ocul Surf. 2005;3:S180–186
  • Matsuda M, Ina K, Kitamura H, et al. Demonstration and organization of duct-associated lymphoid tissue (DALT) of the main excretory duct in the monkey parotid gland. Arch Histol Cytol. 1997;60:493–502
  • Nair PN, Schroeder HE. Duct-associated lymphoid tissue (DALT) of minor salivary glands and mucosal immunity. Immunology. 1986;57:171–180
  • Kaila T, Huupponen R, Salminen L. Effects of eyelid closure and nasolacrimal duct occlusion on the systemic absorption of ocular timolol in human subjects. J Ocul Pharmacol. 1986;2:365–369
  • Kakizaki H, Takahashi Y, Miyazaki H, Nakamura Y. Movement of internal canalicular orifice in association with blinking: direct observation after dacryocystorhinostomy. Am J Ophthalmol. 2013;156:1051–1055 e1051
  • McLean CJ, Rose GE. Postherpetic lacrimal obstruction. Ophthalmology. 2000;107:496–499
  • Thompson CJ. Review of the diagnosis and management of acquired nasolacrimal duct obstruction. Optometry. 2001;72:103–111
  • Gamache DA, Dimitrijevich SD, Weimer LK, et al. Secretion of proinflammatory cytokines by human conjunctival epithelial cells. Ocul Immunol Inflamm. 1997;5:117–128
  • Yanni JM, Miller ST, Gamache DA, et al. Comparative effects of topical ocular anti-allergy drugs on human conjunctival mast cells. Ann Allergy Asthma Immunol. 1997;79:541–545
  • Chodosh J, Kennedy RC. The conjunctival lymphoid follicle in mucosal immunology. DNA Cell Biol. 2002;21:421–433
  • Hamrah P, Dana MR. Corneal antigen–presenting cells. Chem Immunol Allergy. 2007;92:58–70
  • Hamrah P, Yamagami S, Liu Y, et al. Deletion of the chemokine receptor CCR1 prolongs corneal allograft survival. Invest Ophthalmol Vis Sci. 2007;48:1228–1236
  • Dana R. Corneal antigen presentation: molecular regulation and functional implications. Ocul Surf. 2005;3:S169–S172
  • Qian Y, Dana MR. Molecular mechanisms of immunity in corneal allotransplantation and xenotransplantation. Expert Rev Mol Med. 2001;2001:1–21
  • Hamrah P, Chen L, Zhang Q, Dana MR. Novel expression of vascular endothelial growth factor receptor (VEGFR)-3 and VEGF-C on corneal dendritic cells. Am J Pathol. 2003;163:57–68
  • Qian L, Xie J, Rose CM, et al. Altered traffic to the lysosome in an ex vivo lacrimal acinar cell model for chronic muscarinic receptor stimulation. Exp Eye Res. 2004;79:665–675
  • Chen W, Chan AS, Dawson AJ, et al. FLT3 ligand administration after hematopoietic cell transplantation increases circulating dendritic cell precursors that can be activated by CpG oligodeoxynucleotides to enhance T-cell and natural killer cell function. Biol Blood Marrow Transplant. 2005;11:23–34
  • Bauer D, Schmitz A, Van Rooijen N, et al. Conjunctival macrophage-mediated influence of the local and systemic immune response after corneal herpes simplex virus-1 infection. Immunology. 2002;107:118–128
  • Nesburn AB, Bettahi I, Dasgupta G, et al. Functional Foxp3+ CD4+CD25(Bright+) “natural” regulatory T cells are abundant in rabbit conjunctiva and suppress virus-specific CD4+ and CD8+ effector T cells during ocular herpes infection. J Virol. 2007;81:6911–6919
  • Zhang X, Schaumburg CS, Coursey TG, et al. CD8(+) cells regulate the T helper-17 response in an experimental murine model of Sjögren syndrome. Mucosal Immunol. 2014;7:417–427
  • Niederkorn JY, Stern ME, Pflugfelder SC, et al. Desiccating stress induces T cell-mediated Sjögren's syndrome-like lacrimal keratoconjunctivitis. J Immunol. 2006;176:3950–3957
  • Lagranderie M, Abolhassani M, Vanoirbeek JA, et al. Mycobacterium bovis bacillus Calmette-Guerin killed by extended freeze-drying targets plasmacytoid dendritic cells to regulate lung inflammation. J Immunol. 2010;184:1062–1070
  • Schaumburg CS, Siemasko KF, De Paiva CS, et al. Ocular surface APCs are necessary for autoreactive T-cell-mediated experimental autoimmune lacrimal keratoconjunctivitis. J Immunol. 2011;187:3653–3662
  • Zhang X, Volpe EA, Gandhi NB, et al. NK cells promote Th-17 mediated corneal barrier disruption in dry eye. PLoS One. 2012;7:e36822
  • De Paiva CS, Chotikavanich S, Pangelinan SB, et al. IL-17 disrupts corneal barrier following desiccating stress. Mucosal Immunol. 2009;2:243–253
  • De Paiva CS, Villarreal AL, Corrales RM, et al. Dry eye-induced conjunctival epithelial squamous metaplasia is modulated by interferon-gamma. Invest Ophthalmol Vis Sci. 2007;48:2553–2560
  • Ridley Lathers DM, Gill RF, Montgomery PC. Inductive pathways leading to rat tear IgA antibody responses. Invest Ophthalmol Vis Sci. 1998;39:1005–1011
  • Barabino S, Chen W, Dana MR. Tear film and ocular surface tests in animal models of dry eye: uses and limitations. Exp Eye Res. 2004;79:613–621
  • Pockley AG, Montgomery PC. In vivo adjuvant effect of interleukins 5 and 6 on rat tear IgA antibody responses. Immunology. 1991;73:19–23
  • Hessel T, Dhital SP, Plank R, Dean D. Immune response to chlamydial 60-kilodalton heat shock protein in tears from Nepali trachoma patients. Infect Immun. 2001;69:4996–5000
  • Meek B, Klaren VN, van Haeringen NJ, et al. IgA antibodies to Toxoplasma gondii in human tears. Invest Ophthalmol Vis Sci. 2000;41:2584–2590
  • Saitoh-Inagawa W, Hiroi T, Yanagita M, et al. Unique characteristics of lacrimal glands as a part of mucosal immune network: high frequency of IgA-committed B-1 cells and NK1.1+ alphabeta T cells. Invest Ophthalmol Vis Sci. 2000;41:138–144
  • Montgomery PC, Majumdar AS, Skandera CA, Rockey JH. The effect of immunization route and sequence of stimulation on the induction of IgA antibodies in tears. Curr Eye Res. 1984;3:861–865
  • Gill RF, Montgomery PC. Enhancement of rat tear IgA antibody responses following intranasal immunization with antigen and CpG ODN. Curr Eye Res. 2002;24:228–233
  • Gill RF, Pirockinaite G, O'Sullivan NL, Montgomery PC. Nasal-associated lymphoid tissue is not an absolute requirement for the induction of rat tear IgA antibody responses. Curr Eye Res. 2010;35:1–8
  • Carr RM, Lolachi CM, Albaran RG, et al. Nasal-associated lymphoid tissue is an inductive site for rat tear IgA antibody responses. Immunol Invest. 1996;25:387–396
  • Peppard JV, Montgomery PC. Studies on the origin and composition of IgA in rat tears. Immunology. 1987;62:193–198
  • Peppard JV, Mann RV, Montgomery PC. Antibody production in rats following ocular-topical or gastrointestinal immunization: kinetics of local and systemic antibody production. Curr Eye Res. 1988;7:471–481
  • Aghayan-Ugurluoglu R, Ball T, Vrtala S, et al. Dissociation of allergen-specific IgE and IgA responses in sera and tears of pollen-allergic patients: a study performed with purified recombinant pollen allergens. J Allergy Clin Immunol. 2000;105:803–813
  • German AJ, Hall EJ, Day MJ. Measurement of IgG, IgM and IgA concentrations in canine serum, saliva, tears and bile. Vet Immunol Immunopathol. 1998;64:107–121
  • Knop E, Knop N. Lacrimal drainage-associated lymphoid tissue (LDALT): a part of the human mucosal immune system. Invest Ophthalmol Vis Sci. 2001;42:566–574
  • Lan JX, Willcox MD, Jackson GD, Thakur A. Effect of tear secretory IgA on chemotaxis of polymorphonuclear leucocytes. Aust N Z J Ophthalmol. 1998;26 (Suppl 1):S36–S39
  • Nesburn AB, Burke RL, Ghiasi H, et al. Therapeutic periocular vaccination with a subunit vaccine induces higher levels of herpes simplex virus-specific tear secretory immunoglobulin A than systemic vaccination and provides protection against recurrent spontaneous ocular shedding of virus in latently infected rabbits. Virology. 1998;252:200–209
  • Phillips TE, Sharp J, Rodgers K, Liu H. M cell-targeted ocular immunization: effect on immunoglobulins in tears, feces, and serum. Invest Ophthalmol Vis Sci. 2010;51:1533–1539
  • Paulsen AJ, Cruickshanks KJ, Fischer ME, et al. Dry eye in the beaver dam offspring study: prevalence, risk factors, and health-related quality of life. Am J Ophthalmol. 2014;157:799–806
  • Paulsen F. Functional anatomy and immunological interactions of ocular surface and adnexa. Dev Ophthalmol. 2008;41:21–35
  • Knop N, Knop E. Conjunctiva-associated lymphoid tissue in the human eye. Invest Ophthalmol Vis Sci. 2000;41:1270–1279
  • Liu SH, Tagawa Y, Prendergast RA, et al. Secretory component of IgA: a marker for differentiation of ocular epithelium. Invest Ophthalmol Vis Sci. 1981;20:100–109
  • Mircheff AK, Wang Y, Jean Mde S, et al. Mucosal immunity and self-tolerance in the ocular surface system. Ocul Surf. 2005;3:182–192
  • Eksteen B, Miles A, Curbishley SM, et al. Epithelial inflammation is associated with CCL28 production and the recruitment of regulatory T cells expressing CCR10. J Immunol. 2006;177:593–603
  • Lan RY, Mackay IR, Gershwin ME. Regulatory T cells in the prevention of mucosal inflammatory diseases: patrolling the border. J Autoimmun. 2007;29:272–280
  • Tsuji NM. Antigen-specific CD4(+) regulatory T cells in the intestine. Inflamm Allergy Drug Targets. 2006;5:191–201
  • Design and conduct of clinical trials: report of the Clinical Trials Subcommittee of the International Dry Eye WorkShop (2007). Ocul Surf. 2007;5:153–162
  • Methodologies to diagnose and monitor dry eye disease: report of the Diagnostic Methodology Subcommittee of the International Dry Eye WorkShop (2007). Ocul Surf. 2007;5:108–152
  • The epidemiology of dry eye disease: report of the Epidemiology Subcommittee of the International Dry Eye WorkShop (2007). Ocul Surf. 2007;5:93–107
  • Bouchard CS, Lasky JB, Cundiff JE, Smith BS. Ocular surface upregulation of intercellular adhesive molecule-1 (ICAM-1) by local interferon-gamma (IFN-gamma) in the rat. Curr Eye Res. 1996;15:203–208
  • Dasgupta G, Nesburn AB, Wechsler SL, BenMohamed L. Developing an asymptomatic mucosal herpes vaccine: the present and the future. Future Microbiol. 2010;5:1–4
  • Nesburn AB, Burke RL, Ghiasi H, et al. A therapeutic vaccine that reduces recurrent herpes simplex virus type 1 corneal disease. Invest Ophthalmol Vis Sci. 1998;39:1163–1170
  • Nesburn AB, Slanina S, Burke RL, et al. Local periocular vaccination protects against eye disease more effectively than systemic vaccination following primary ocular herpes simplex virus infection in rabbits. J Virol. 1998;72:7715–7721
  • Bettahi I, Nesburn AB, Yoon S, et al. Protective immunity against ocular herpes infection and disease induced by highly immunogenic self-adjuvanting glycoprotein D lipopeptide vaccines. Invest Ophthalmol Vis Sci. 2007;48:4643–4653
  • Kuper CF, Koornstra PJ, Hameleers DM, et al. The role of nasopharyngeal lymphoid tissue. Immunol Today. 1992;13:219–224
  • Dasgupta G, Chentoufi AA, Nesburn AB, et al. New concepts in herpes simplex virus vaccine development: notes from the battlefield. Expert Rev Vaccines. 2009;8:1023–1035
  • Nochi T, Kiyono H. Innate immunity in the mucosal immune system. Curr Pharm Des. 2006;12:4203–4213
  • Takahashi I, Nochi T, Yuki Y, Kiyono H. New horizon of mucosal immunity and vaccines. Curr Opin Immunol. 2009;21:352–358

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.