19
Views
15
CrossRef citations to date
0
Altmetric
Miscellaneous Article

Role of HLA and T lymphocytes in the immune response

, &
Pages 57-91 | Accepted 19 Jan 1994, Published online: 08 Jul 2009

References

  • Simpson G G. The Mechanism of Evolution. Yale University Press, Connecticut 1967
  • Nasrallah M E, Nasrallah J B. Molecular biology of self-incompatibility in plants. Trends Genet 1986; 2: 239–244
  • Sonneborn T M. Sex, sex inheritance and sex determination in Paramecium aurelia. Proc Natl Acad Sci USA 1937; 23: 378–385
  • Hildemann W H. Specific immunorecognition by histocompatibility markers: The original polymorphic system of immunoreactivity characteristic of all multicellular animals. Immunogenetics 1977; 5: 193–202
  • Gorer P A. The detection of antigenic differences in mouse erythrocytes by the employment of immune sera. Br J Exp Pathol 1936; 17: 42–50
  • Snell G D, Stimfling J F. Biology of the laboratory mouse. Genetics of Ti Transplantation, 2nd edn, E L Green. McGraw-Hill, New York 1966; 457–491
  • Benacerraf B, McDevitt H O. Histocompatibility-linked immune response genes. Science 1972; 175: 273–279
  • Benacerraf B. Role of MHC gene products in immune regulation. Science 1981; 212: 1229–1238
  • Blackman M, Kappler J, Marrack P. The role of the T cell receptor in positive and negative selection of developing T cells. Science 1990; 248: 1335–1341
  • Brown J H, Jardetzky T S, Gorga J C, et al. Three-dimensional structure of the human classs II histocompatibility antigen HLA-DRI. Nature 1993; 364: 33–39
  • Hammer J, Valsasnini P, Tolba K, et al. Promiscuous and allele-specific anchors in HLA-DR-binding peptides. Cell 1993; 74: 197–203
  • Kimura M. Evolutionary rate at the molecular level. Nature 1968; 217: 624–626
  • Kimura M. The neutral theory of molecular evolution. Cambridge Univ Press, Cambridge 1983
  • Nei M, Hughes A. Polymorphism and evolution of the major histocompatible loci mammals. ‘Evolution at the molecular level’. Sinauer Association Inc Publ. 1991; 222–247
  • Kallman K D. An estimate of the number of histocompatibility loci in the teleost Xiphophorus maculatus. Genomics 1964; 50: 583–595
  • Balner H. Evolutionary aspects of the major histocompatibility complex. Transplant Proc 1983; 15: 29–35
  • Klein J. Natural History of the Major Histocompatibility Complex. Wiley Interscience Publ, New York 1986; 715–757
  • Nakanishi T. Transferability of immune plasma and pronephric cells in isogeneic, allogeneic and xenogeneic transfer systems in crucian carp. Devel Comp Immunol 1987; 11: 521–528
  • Flajnik M F, Canel C, Kramer J, et al. Which came first, MHC class I or class II?. Immunogenetics 1991; 33: 295–300
  • Zijlstra M, Bix M, Simister N E, et al. β2-Microglobulin deficient mice lack CD4-8+ cytolytic T cells. Nature 1990; 344: 742–746
  • Koller B H, Geraghty D E, Shimizu Y, et al. HLA-E, a novel HLA class I gene expressed in resting T lymphocytes. J Immunol 1988; 141: 897–904
  • Geraghty D E, Wei X, Orr H T, et al. Human leukocyte antigen F (HLA-F). An expressed HLA gene composed of a class I coding sequence linked to a novel transcribed repetitive element. J Exp Med 1990; 171: 1–18
  • Geraghty D E, Koller B H, Orr H T. A human major histocompatibility complex class I gene that encodes a protein with a shortened cytoplasmic segment. Proc Natl Acad Sci USA 1987; 84: 9145–9149
  • Ellis S A, Palmer M S, McMichael A J. Human trophoblast and the choriocarcinoma cell line BeWo express a truncated HLA class I molecule. J Immunol 1990; 144: 731–735
  • Wei X, Orr H T. Differential expression of HLA-E, HLA-F, and HLA-G transcripts in human ti. Hum Immunol 1990; 29: 131–142
  • Long E O. Intracellular traffic and antigen processing. Immunol Today 1989; 10: 232–234
  • Peterson M, Miller J. Invariant chain influences the immunological recognition of MHC class II molecules. Nature 1990; 345: 172–174
  • Inoko H, Ando A, Kimura M, et al. Isolation and characterization of the cDNA clone and genomic clones of a new class II antigen heavy chain DOα. J Immunol 1985; 135: 2156–2159
  • Trowsdale J, Kelly A. The human class II α chain gene DZα is distinct from genes in the DP, DQ and DR subregion. EMBO J 1985; 4: 2231–2237
  • Blanck G, Strominger J L. Cosmid clones in the HLA-DZ and -DP subregions. Hum Immunol 1990; 27: 265–268
  • Kelly A P, Monaco J J, Cho S, et al. A new human HLA class II-related locus, DM. Nature 1991; 353: 571–576
  • Tonnelle C, DeMars R. Long EO. DOβ: a new β chain gene in HLA-D with a distinct regulation of expression. EMBO J 1985; 4: 2839–2847
  • Kappes D, Strominger J L. Human class II major histocompatibility complex genes and proteins. Ann Rev Biochem 1988; 57: 991–1028
  • Benoist C, Mathis D. Regulation of major histocompatibility complex class-II genes: X, Y and other letters of the alphabet. Ann Rev Immunol 1990; 8: 681–715
  • Olaisen B, Sakaguchi A Y, Naylor S L. Report of the committee on the genetic constitution of chromosomes 5 and 6. Cytogenet Cell Genet 1987; 46: 147–149
  • Lawrance S K, Smith C L, Srivastava R, et al. Megabasescale mapping of the HLA gene complex by pulsed field gel electrophoresis. Science 1987; 235: 1387–1390
  • Campbell R D, Trowsdale J. Map of the human MHC. Immunol Today 1993; 14: 349–352
  • Carroll M C, Katzman P, Alicot E M, et al. Linkage map of the human major histocompatibility complex including the tumor necrosis factor genes. Proc Natl Acad Sci USA 1987; 84: 8535–8539
  • Dunham I, Sargent C A, Trowsdale J, et al. Molecular mapping of the human major histocompatibility complex by pulsed-field gel electrophoresis. Proc Natl Acad Sci USA 1987; 84: 7237–7241
  • Carroll M C, Campbell R D, Bentley D R, et al. A molecular map of the human major histocompatibility complex class III region linking complement genes C4, C2 and factor B. Nature 1984; 307: 237–241
  • White P C, Grossberger D, Onufer B J, et al. Two genes encoding steroid 21-hydroxylase are located near the genes encoding the fourth component of complement in man. Proc Natl Acad Sci USA 1985; 82: 1089–1093
  • Nedwin G E, Naylor S L, Sakaguchi A Y, et al. Human lymphotoxin and tumor necrosis factor genes; structure, homology and chromosomal localization. Nucl Acids Res 1985; 13: 6361–6373
  • Spies T, Morton C C, Nedospasov S A, et al. Genes for the tumor necrosis factors α and β are linked to the human major histocompatibility complex. Proc Natl Acad Sci USA 1986; 83: 8699–8702
  • Carroll M C, Katzman P, Alicot E M, et al. Linkage map of the human major histocompatibility complex including the tumor necrosis factor genes. Proc Natl Acad Sci USA 1987; 84: 8535–8539
  • Dunham I, Sargent C A, Trowsdale J, et al. Molecular mapping of the human major histocompatibility complex by pulsed-field gel electrophoresis. Proc Natl Acad Sci USA 1987; 84: 7237–7241
  • Hunt C, Morimoto R I. Conserved features of eukaryotic hsp70 genes revealed by comparison with the nucleotide sequence of human hsp70. Proc Natl Acad Sci USA 1985; 82: 6455–6459
  • Milner C M, Campbell R D. Structure and expression of the three MHC-linked HSP 70 genes. Immunogenetics 1990; 32: 242–251
  • Tsuge I, Shen F W, Steinmetz M, et al. A gene in the H-2S:H-2D interval of the major histocompatibility complex which is transcribed in B cell and macrophages. Immunogenetics 1987; 26: 378–380
  • Spies T, Blanck G, Bresnahan M, et al. A new cluster of genes within the human major histocompatibility complex. Science 1989; 243: 214–217
  • Banerji J, Sands J, Strominger J L, et al. A gene pair from the human major histocompatibility complex encodes large proline-rich proteins with multiple repeated motifs and a single ubiquitin-like domain. Proc Natl Acad Sci USA 1990; 87: 2374–2378
  • Sargent C A, Dunham I, Campbell R D. Identification of multiple HTF-island associated genes in the human major histocompatibility complex class III region. EMBO J 1989; 8: 2305–2312
  • Bird A P. CpG-rich islands and the function of DNA methylation. Nature 1986; 321: 209–213
  • Larsen F, Gundersen G, Lopez R, et al. CpG islands as gene markers in the human genome. Genomics 1992; 13: 1095–1107
  • Orr H T, Bach F H, Ploegh H L, et al. Use of HLA loss mutants to analyze the structure of the human major histocompatibility complex. Nature 1982; 296: 454–456
  • Sollid L M, Markussen G, Ek J, et al. Evidence for a primary association of celiac disease to a particular HLA-DQ α/β heterodimer. J Exp Med 1989; 169: 345–350
  • Lundin K EA, Sollid L M, Qvigstad E, et al. T lymphocyte recognition of a celiac disease-associated cis- or transencoded HLA-DQ α/β-heterodimer. J Immunol 1990; 145: 136–139
  • Bodmer J G, Marsh S GE, Albert E D, et al. Nomenclature for factors of the HLA system, 1991. Ti Antigens 1992; 39: 161–173
  • Zemmour J, Parham P. HLA class I nucleotide sequences, 1992. Hum Immunol 1992; 34: 225–241
  • Marsh S GE, Bodmer J G. HLA class II nucleotide sequences, 1992. Hum Immunol 1992; 35: 1–17
  • Eckels D D, Sell T W, Bronson S R, et al. Human helper T cell clones that recognize different influenza hemagglutinin determinants are restricted by different HLA-D region epitopes. Immunogenetics 1984; 19: 409–423
  • Sweetser M T, Morrison L A, Braciale V L, et al. Recognition of pre-processed endogenous antigen by class I but not class II MHC-restricted T cells. Nature 1989; 342: 180–182
  • Roof R W, Luescher I F, Unanue E R. Phospholipids enhance the binding of peptides to class II major histocompatibility molecules. Proc Natl Acad Sci USA 1990; 87: 1735–1739
  • Zamvil S S, Mitchell D J, Moore A C, et al. T-cell epitope of the autoantigen myelin basic protein that induces encephalomyelitis. Nature 1986; 324: 258–260
  • Donermeyer D L, Allen P M. Binding to la protects an immunogenic peptide from proteolytic degradation. J Immunol 1989; 142: 1063–1068
  • Srinivasan M, Pierce S K. Isolation of a functional antigen-Ia complex. Proc Natl Acad Sci USA 1990; 87: 919–922
  • Brown M G, Driscoll J, Monaco J J. Structural and serological similarity of MHC-linked LMP and proteasome (multicatalytic proteinase) complexes. Nature 1991; 353: 355–357
  • Glynne R, Powis S H, Beck S, et al. A proteasome related gene between the two ABC transporter loci in the class II region of the human MHC. Nature 1991; 353: 357–360
  • Martinez C K, Monaco J J. Homology of proteasome subunits to a major histocompatibility complex-linked LMP gene. Nature 1991; 353: 664–667
  • Kelly A, Powis S H, Glynne R, et al. Second proteasome-related gene in the human MHC class II region. Nature 1991; 353: 667–668
  • Arnold D, Driscoll J, Androlewicz M, et al. Proteasome subunits encoded in the MHC are not generally required for the processing of peptides bound by MHC class I molecules. Nature 1992; 360: 171–174
  • Momburg F, Ortiz-Navarrete V, Neefjes J, et al. Proteasome subunits encoded by the major histocompatibility complex are not essential for antigen presentation. Nature 1992; 360: 174–177
  • Trowsdale J. Genomic structure and function in the MHC. Immunol Today 1993; 9: 117–122
  • Deverson E V, Gow I R, Coadwell W J, et al. MHC class II region encoding proteins related to the multidrug resistance family of transmembrane transporters. Nature 1990; 348: 738–741
  • Trowsdale J, Hanson I, Mockridge I, et al. Sequences encoded in the class II region of the MHC related to the ‘ABC’ superfamily of transporters. Nature 1990; 348: 741–744
  • Spies T, Bresnahan M, Bahram S, et al. A gene in the human major histocompatibility complex class II region controlling the class I antigen presentation pathway. Nature 1990; 348: 744–747
  • Monaco J J. A molecular model of MHC class-I-restricted antigen processing. Immunol Today 1992; 13: 173–179
  • Kelly A, Powis S H, Kerr L-A, et al. Assembly and function of the two ABC transporter proteins encoded in the human major histocompatibility complex. Nature 1992; 355: 641–644
  • Spies T, Cerundolo V, Colonna M, et al. Presentation of viral antigen class I molecules is dependent on a putative peptide transporter heterodimer. Nature 1992; 355: 644–646
  • Powis S H, Mockridge I, Kelly A, et al. Polymorphism in a second ABC transporter gene located within the class II region of the human major histocompatibility complex. Proc Natl Acad Sci USA 1992; 89: 1463–1467
  • Bahram S, Arnold D, Bresnahan M, et al. Two putative subunits of a peptide pump encoded in the human major histocompatibility complex class II region. Proc Natl Acad Sci USA 1991; 88: 10094–10098
  • Falk K, Rotzshke O, Stevanovic S, et al. Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature 1991; 351: 290–296
  • Powis S J, Deverson E V, Coadwell W J, et al. Effect of polymorphism of an MHC-linked transporter on the peptides assembled in a class I molecule. Nature 1992; 357: 211–215
  • Colonna M, Bresnahan M, Bahram S, et al. Allelic variants of the human putative peptide transporter involved in antigen processing. Proc Natl Acad Sci USA 1992; 89: 3932–3936
  • van Endert P M, Lopez M T, Pater S D, et al. Genomic polymorphism, recombination, and linkage disequilibrium in human major histocompatibility complex-encoded antigen-processing genes. Proc Natl Acad Sci USA 1992; 89: 11594–11597
  • Powis S H, Tonks S, Mockridge I, et al. Alleles and haplotypes of the MHC-encoded ABC transporters TAP1 and TAP2. Immunogenetics 1993; 37: 373–380
  • Carrington M, Colonna M, Spies T, et al. Haplotypic variation of the transporter associated with antigen processing (TAP) genes and their extension of HLA class II region haplotypes. Immunogenetics 1993; 37: 266–273
  • Zhou P, Cao H, Smart M, et al. Molecular basis of genetic polymorphism in major histocompatibility complex-linked proteasome gene (Lmp-2). Proc Natl Acad Sci USA 1993; 90: 2681–2684
  • Mellins E, Kempin S, Smith L, et al. A gene required for class II-restricted antigen presentation maps to the major histocompatibility complex. J Exp Med 1991; 174: 1607–1615
  • Neefjes J J, Ploegh H L. Intracellular transport of MHC class II molecules. Immunol Today 1992; 13: 179–184
  • Levine T P, Chain B M. The cell biology of antigen processing. Crit Rev Biochem Mol Biol 1991; 26: 439–473
  • Neefjes J J, Momburg F. Cell biology of antigen presentation. Curr Opin Immunol 1993; 5: 27–34
  • Hirayama K, Matushita S, Kikuchi I, et al. HLA-DQ is epistatic to HLA-DR in controlling the immune response to schistosomal antigen in humans. Nature 1987; 327: 426–430
  • Jardetzky T S, Lane W S, Robinson R A, et al. Identification of self peptides bound to purified HLA-B27. Nature 1991; 353: 326–329
  • Matsumura M, Saito Y, Jackson M R, et al. In vitro peptide binding to soluble empty class I major histocompatibility complex molecules isolated from transfected Drosophila melanogaster cells. J Biol Chem 1992; 267: 23589–23595
  • Saper M A, Bjorkman P J, Wiley D C. Refined structure of the human histocompatibility antigen HLA-A2 at 2.6 resolution. J Mol Biol 1991; 219: 277–319
  • Madden D R, Gorga J C, Strominger J L, et al. The structure of HLA-B27 reveals nonamer self-peptides bound in an extended conformation. Nature 1991; 353: 321–325
  • Fremont D H, Matsumura M, Stura E A, et al. Crystal structure of two viral peptides in complex with murine MHC class I H-2Kb. Science 1992; 257: 919–927
  • Matsumura M, Fremont D H, Peterson P A, et al. Emerging principles for the recognition of peptide antigens by MHC class I molecules. Science 1992; 257: 927–934
  • Brown J H, Jardetzky T, Saper M A, et al. A hypothetical model of the foreign antigen binding site of class II histocompatibility molecules. Nature 1988; 332: 845–850
  • Rudensky A Y, Preston-Hurlburt P, Hong S-C, et al. Sequence analysis of peptides bound to MHC class II molecules. Nature 1991; 353: 622–627
  • Latron F, Pazmany L, Morrison J, et al. A critical role for conserved residues in the cleft of HLA-A2 in presentation of a nonapeptide to T cells. Science 1992; 257: 964–967
  • Rötzschke O, Falk K, Deres K, et al. Isolation and analysis of naturally processed viral peptides as recognized by cytotoxic T cells. Nature 1990; 348: 252–254
  • Falk K, Rötzschke O, Deres K, et al. Identification of naturally processed viral nonapeptides allows their quantification in infected cells and suggests an allelespecific T cell epitope forecast. J Exp Med 1991; 174: 425–434
  • Falk K, Rötzschke O, Rammensee H-G. Cellular peptide composition governed by major histocompatibility complex class I molecules. Nature 1990; 348: 248–251
  • Carbone F R, Bevan M J. Induction of ovalbumin-specific cytotoxic T cells by in vivo peptide immunization. J Exp Med 1989; 169: 603–612
  • Bjorkman P J, Saper M A, Samraoui B, et al. Structure of the human class I histocompatibility antigen, HLA-A2. Nature 1987; 329: 506–512
  • Bjorkman P J, Saper M A, Samraoui B, et al. The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens. Nature 1987; 329: 512–518
  • Schwartz R H. T-lymphocyte recognition of antigen in association with gene products of the major histocompatibility complex. Annu Rev Immunol 1985; 3: 237–261
  • Rothbard J B. Major histocompatibility complex-peptide interactions. Curr Opinion Immunol 1989; 2: 99–105
  • Clevers H, Alarcon B, Wileman T, et al. The T cell receptor/CD3 complex: A dynamic protein ensemble. Ann Rev Immunol 1988; 6: 629–662
  • Weissman A M, Baniyash M, Hou D, et al. Molecular cloning of the zeta chain of the T cell antigen receptor. Science 1988; 239: 1018–1021
  • Wilson R K, Lai E, Concannon P, et al. Structure, organization and polymorphism of murine and human T-cell receptor α and β chain gene families. Immunol Rev 1988; 101: 149–172
  • Davis M M, Bjorkman P J. T-cell antigen receptor genes and T-cell recognition. Nature 1988; 334: 395–402
  • Ruoslahti E. Fibronectin and its receptors. Ann Rev Biochem 1988; 57: 375–413
  • Veillette A, Bookman M A, Horak E M, et al. Signal transduction through the CD4 receptor involves the activation of the internal membrane tyrosine-protein kinase p56lck. Nature 1989; 338: 257–259
  • Veillette A, Bookman M A, Horak E M, et al. The CD4 and CD8 T cell surface antigens are associated with the internal membrane tyrosineprotein kinase p56lck. Cell 1988; 55: 301–308
  • Iwasaki H, Taniguchi M, Shinohara N. Recognition of alloantigen by cytotoxic T cell precursors is independent of the function of Ia+ cells. J Immunol 1985; 134: 3592–3596
  • Rosenberg A S, Mizuochi T, Sharrow S O, et al. Phenotype, specificity, and function of T cell subsets and T cell interactions involved in skin allograft rejection. J Exp Med 1987; 165: 1296–1315
  • Greenbaum L A, Horowitz J B, Woods A, et al. Autocrine growth of CD4+ T cells. Differential effects of IL-1 on helper and inflammatory T cells. J Immunol 1988; 140: 1555–1560
  • Romagnani S. Human TH1 and TH2 subsets: doubt no more. Immunol Today 1991; 12: 256–257
  • Mueller D L, Jenkins M K, Schwartz R H. Clonal expansion versus functional clonal inactivation: A costimulatory signalling pathway determines the outcome of T cell antigen receptor occupancy. Ann Rev Immunol 1989; 7: 445–480
  • Weaver C T, Unanue E R. The costimulatory function of antigenpresenting cells. Immunol Today 1990; 11: 49–55
  • Weaver C T, Hawrylowicz C M, Unanue E R. T helper cell subsets require the expression of distinct costimulatory signals by antigen-presenting cells. Proc Natl Acad Sci USA 1988; 85: 8181–8185
  • Kurt-Jones E A, Hamberg S, O'Hara J, et al. Heterogeneity of helper/inducer T lymphocytes. I. Lymphokine production and lymphokine responsiveness. J Exp Med 1987; 166: 1774–1787
  • Singer A, Kruisbeek A M, Andrysiak P M. T cell-accessory cell interactions that initiate allospecific cytotoxic T lymphocyte responses: Existence of both la-restricted and la-unrestricted cellular interaction pathways. J Immunol 1984; 132: 2199–2209
  • Singer A, Munitz T I, Golding H, et al. Recognition requirements for the activation, differentiation and function of T-helper cells specific for class I MHC alloantigens. Immunol Rev 1987; 98: 143–170
  • Mizuochi T, Ono S, Malek T R, et al. Characterization of two distinct primary T cell populations that secrete interleukin 2 upon recognition of class I or class II major histocompatibility antigens. J Exp Med 1986; 163: 603–619
  • Fleischer B. Acquisition of specific cytotoxic activity by human T4+ T lymphocytes in culture. Nature 1984; 308: 365–367
  • Moretta A. Frequency and surface phenotype of human T lymphocytes producing interleukin 2. Analysis by limiting dilution and cell cloning. Eur J Immunol 1983; 15: 148–155
  • Philips J H, Lanier L L. Lectin-dependent and anti-CD3 induced cytotoxicity are preferentially mediated by peripheral blood cytotoxic T lymphocytes expressing Leu-7 antigen. J Immunol 1986; 136: 1579–1585
  • Kitagawa S, Iwata H, Sato S, et al. Heterogenous graft rejection pathways in class I major histocompatibility complex-disparate combinations and their differential susceptibility to immunomodulation induced by intravenous presensitization with relevant alloantigens. J Exp Med 1991; 174: 571–581
  • Kourilsky P, Chaouat G, Rabourdin-Combe C, et al. Working principles in the immune system implied by the ‘peptidic self’ model. Proc Natl Acad Sci USA 1987; 84: 3400–3404
  • von Boehmer H, Kisielow P. Selfnonself discrimination by T cells. Science 1990; 248: 1369–1373
  • Kyewski B A, Fathman C G, Kaplan H S. Intrathymic presentation of circulating non-major histocompatibility complex antigens. Nature 1984; 308: 196–199
  • Kappler J W, Roehm N, Marrack P. T. cell tolerance by clonal elimination in the thymus. Cell 1987; 49: 273–280
  • Kisielow P, Bluthmann H, Staerz U D, et al. Tolerance in T cell receptor transgenic mice involves deletion of non-mature CD4+8− thymocytes. Nature 1988; 333: 742–746
  • Pircher H, Burki K, Lang R, et al. Tolerance induction in double specific T-cell receptor transgenic mice varies with antigen. Nature 1989; 342: 559–561
  • Berg L J, St Groth B F, Pullen A M, et al. Phenotypic differences between αβ versus β T-cell receptor transgenic mice undergoing negative selection. Nature 1989; 340: 559–562
  • Sha W C, Nelson C A, Newberry R D, et al. Positive and negative selection of an antigen receptor on T cells in transgenic mice. Nature 1988; 336: 73–76
  • Sprent J, Lo D, Gao E K, et al. T cell selection in the thymus. Immunol Rev 1988; 101: 173–190
  • Cosgrove D, Chan S H, Waltzinger C, et al. The thymic compartment responsible for positive selection of CD4+ T cells. Int Immunol 1992; 4: 707–710
  • Matsuhashi N, Kawase Y, Suzuki G. Tolerogenic ability of thymocytes in organ-cultured thymus lobes. J Immunol 1991; 146: 444–448
  • Burkley L C, Lo D, Kanagawa O, et al. T-cell tolerance by clonal anergy in transgenic mice with nonlymphoid expression of MHC class II I-E. Nature 1989; 342: 564–566
  • Lo D, Burkley L C, Flavell R A, et al. Tolerance in transgenic mice expressing class II major histocompatibility complex on pancreatic acinar cells. J Exp Med 1989; 170: 87–104
  • Alters S E, Shizuru J A, Ackerman J, et al. Anti-CD4 mediates clonal anergy during transplantation tolerance induction. J Exp Med 1991; 173: 491–494
  • Lo D, Burkly L C, Widera G, et al. Diabetes and tolerance in transgenic mice expressing class II MHC molecules in pancreatic beta cells. Cell 1988; 53: 159–168
  • Allison J, Campbell I L, Morahan G, et al. Diabetes in transgenic mice resulting from over-expression of class I histocompatibility molecules in pancreatic β cells. Nature 1988; 333: 529–533
  • Murphy K M, Weaver C T, Elish M, et al. Peripheral tolerance to allogeneic class II histocompatibility antigens expressed in transgenic mice: evidence against a clonal-deletion mechanism. Proc Natl Acad Sci USA 1989; 86: 10034–10038
  • Morahan G, Allison J, Miller J FAP. Tolerance of class I histocompatibility antigens expressed extrathymically. Nature 1989; 339: 622–624
  • Wieties K, Hammer R E, Jones-Youngblood S, et al. Peripheral tolerance in mice expressing a liverspecific class I molecule: Inactivation/deletion of a T-cell subpopulation. Proc Natl Acad Sci USA 1990; 87: 6604–6608
  • Lindsten T, June C H, Ledbetter J A, et al. Regulation of lymphokine messenger RNA stability by a surfacemediated T cell activation pathway. Science 1989; 244: 339–343
  • Fraser J D, Irving B A, Crabtree G R, et al. Regulation of interleukin-2 gene enhancer activity by the T cell accessory molecule CD28. Science 1991; 251: 313–316
  • Sakaguchi S, Fukuma K, Kuribayashi K, et al. Organ-specific autoimmune diseases induced in mice by elimination of T cell subset. I. Evidence for the active participation of T cells in natural self-tolerance: Deficit of a T cell subset as a possible cause of autoimmune disease. J Exp Med 1985; 161: 72–87
  • Sugihara S, Izumi Y, Yoshioka T, et al. Autoimmune thyroiditis induced in mice depleted of particular T cell subsets. I. Requirement of Lyt-Idull L3T4bright normal T cells for the induction of thyroiditis. J Immunol 1988; 141: 105–113
  • Sugihara S, Maruo S, Tsujimura T, et al. Autoimmune thyroiditis induced in mice depleted of particular T cell subsets. III. Analysis of regulatory cells suppressing the induction of thyroiditis. Int Immunol 1990; 2: 343–351
  • Gail M, Williams R, Byar D P, et al. How many controls?. J Chron Dis 1976; 29: 723–731
  • Walter S D. Determination of significant relative risks and optimal sampling procedures in prospective and retrospective comparative studies of various sizes. Am J Epidemiol 1977; 105: 387–397
  • Todd J A, Bell J I, McDevitt H O. HLA-DQβ gene contributes to susceptibility and resistance to insulin-dependent diabetes mellitus. Nature 1987; 329: 599–604
  • Thomson G. HLA disease associations; models for insulin dependent diabetes mellitus and the study of complex human genetic disorders. Ann Rev Genet 1988; 22: 31–50
  • Todd J A, Acha-Orbea H, Bell J I, et al. A molecular basis for MHC class II-associated autoimmunity. Science 1988; 240: 1003–1009
  • Scharf S J, Friedmann A, Brautbar C, et al. HLA class II allelic variation and susceptibility to pemphigus vulgaris. Proc Natl Acad Sci USA 1988; 85: 3504–3508
  • White P C, New M I, Dupont B. HLA-linked congenital adrenal hyperplasia results from a defective gene encoding a cytochrome P-450 specific for steroid 21-hydroxylation. Proc Natl Acad Sci USA 1984; 81: 7505–7509
  • Benjamin R, Parham P. Guilt by association: HLA-B27 and ankylosing spondylitis. Immunol Today 1990; 11: 137–142
  • Ohno S, Aoki K, Sugiura S, et al. HL-A5 and Behcet's disease. Lancet 1973; 2: 1383–1384
  • Ohno S, Ohguchi M., Hirose S, et al. Close association of HLA-Bw51 with Behcet's disease. Arch Ophthalmol 1982; 100: 1455–1458
  • Mizuki N, Ohno S, Kamata K, et al. Immunogenetic mechanism of Behcet's disease. Acta Soc Ophthalmol Jpn 1991; 95: 783–789
  • Mizuki N, Ohno S, Tanaka H, et al. Association of HLA-B51 and lack of association of class II alleles with Behcet's disease. Ti Antigens 1992; 40: 22–30
  • Mizuki N, Inoko H, Mizuki N, et al. Human leukocyte antigen serologic and DNA typing of Behcet's disease and its primary association with B51. Invest Ophthalmol Vis Sci 1992; 33: 3332–3340
  • Mizuki N, Ohno S, Nakamura S, et al. Possible effects of genes in the HLA region on susceptibility to Behcet's disease. Chibret Int J Ophthalmol 1992; 9: 10–24
  • Spies T, Bresnahan M, Strominger J L. Human major histocompatibility complex contains a minimum of 19 genes between the complement cluster and HLA-B. Proc Natl Acad Sci USA 1989; 86: 8955–8958
  • Mizuki N, Inoko H, Sugimura K, et al. RFLP analysis in the TNF-β gene and the susceptibility to alloreactive NK cells in Behcet's disease. Invest Ophthalmol Vis Sci 1992; 33: 3084–3090
  • Ohno S, Ichibayashi Y, Ichiishi A, . Studies of HLA antigens in Vogt-Koyanagi-Harada's disease and sympathetic ophthalmia. Modern Trends in Immunology and Immunopathology of the Eye, A G Secci, I A Fregona, et al, 1989; 452–453
  • Shindo Y, Inoko H, Yamamoto T, et al. HLA-DRBI typing of Vogt-Koyanagi-Harada's disease by PCR-RFLP and the strong association with DRBI0405 and DRBI0410. Br J Ophthalmol 1994; 78: 223–226
  • Ryan S J, Maumenee A, Birdshot E. retinochoroidopathy. Am J Ophthalmol 1980; 89: 31–45
  • Baarsma G S, Priem H A, Kijlstra A. Association of birdshot retinochoroidopathy and HLA-A29 antigen. Curr Eye Res 1990; 9(Suppl)63–68

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.