124
Views
10
CrossRef citations to date
0
Altmetric
Research Article

Platelet membranes induce airway smooth muscle cell proliferation

, , &
Pages 43-53 | Received 03 Jun 2010, Accepted 11 Aug 2010, Published online: 03 Jan 2011

References

  • Beckett PA, Howarth PH. Pharmacotherapy and airway remodelling in asthma?. Thorax 2003; 58: 163–174
  • Dekkers BG, Bos IS, Gosens R, Halayko AJ, Zaagsma J, Meurs H. The integrin-blocking peptide RGDS inhibits airway smooth muscle remodeling in a guinea pig model of allergic asthma. Am J Respir Crit Care Med 2010; 181: 556–565
  • She W, Takeuchi K, Suzuki S, Sakaida H, Ishinaga H, Majima Y. Remodeling of nasal mucosa by allergen exposure in guinea pigs is suppressed by steroid and pranlukast. Rhinology 2009, 47(2)199–206
  • Chen PF, Luo YL, Wang W, Wang JX, Lai WY, Hu SM, Cheng KF, Al-Abed Y. ISO-1, an MIF antagonist, inhibits airway remodeling in a murine model of chronic asthma. Mol Med 2010; 16: 400–408
  • Pitchford SC, Riffo-Vasquez Y, Sousa A, Momi S, Gresele P, Spina D, Page CP. Platelets are necessary for airway wall remodeling in a murine model of chronic allergic inflammation. Blood 2004; 103(2)639–647
  • Du CL, Xu YJ, Liu XS, Xie JG, Xie M, Zhang ZX, Zhang J, Qiao LF, Up-regulation of cyclin D1 expression in asthma serum-sensitized human airway smooth muscle promotes proliferation via protein kinase C alpha. Exp Lung Res 2010;36(4):201–210
  • Pitchford SC, Momi S, Giannini S, Casali L, Spina D, Page CP, Gresele P. Platelet P-selectin is required for pulmonary eosinophil and lymphocyte recruitment in a murine model of allergic inflammation. Blood 2005; 105: 2074–2081
  • Moritani C, Ishioka S, Haruta Y, Kambe M, Yamakido M. Activation of platelets in bronchial asthma. Chest 1998; 113: 452–458
  • Pitchford SC, Yano H, Lever R, Riffo-Vasquez Y, Ciferri S, Rose MJ, Giannini S, Momi S, Spina D, O'Connor B, et al. Platelets are essential for leukocyte recruitment in allergic inflammation. J Allergy Clin Immunol 2003; 112: 109–118
  • Cheng CM, Hawiger J. Affinity isolation and characterization of immunoglobulin GFc fragment-binding glycoprotein from human blood platelets. J Biol Chem 1979; 254: 2165–2167
  • Kornerup KN, Page CP. The role of platelets in the pathophysiology of asthma. Platelets 2007; 18: 319–328
  • Pitchford SC. Novel uses for anti-platelet agents as anti-inflammatory drugs. Br J Pharmacol 2007; 152: 987–1002
  • Svensson Holm AC, Bengtsson T, Grenegard M, Lindstrom EG. Platelets stimulate airway smooth muscle cell proliferation through mechanisms involving 5-lipoxygenase and reactive oxygen species. Platelets 2008; 19: 528–536
  • Berg C, Hammarstrom S, Herbertsson H, Lindstrom E, Svensson AC, Soderstrom M, Tengvall P, Bengtsson T. Platelet-induced growth of human fibroblasts is associated with an increased expression of 5-lipoxygenase. Thromb Haemost 2006; 96: 652–659
  • Berg C, Trofast C, Bengtsson T. Platelets induce reactive oxygen species-dependent growth of human skin fibroblasts. Eur J Cell Biol 2003; 82: 565–571
  • Ford-Hutchinson AW, Gresser M, Young RN. 5-Lipoxygenase. Ann Rev Biochem 1994; 63: 383–417
  • Ishii K, Zaitsu M, Yonemitsu N, Kan Y, Hamasaki Y, Matsuo M. 5-lipoxygenase pathway promotes cell proliferation in human glioma cell lines. Clin Neuropathol 2009; 28: 445–452
  • Yuan YM, Fang SH, Qian XD, Liu LY, Xu LH, Shi WZ, Zhang LH, Lu YB, Zhang WP, Wei EQ. Leukotriene D4 stimulates the migration but not proliferation of endothelial cells mediated by the cysteinyl leukotriene cyslt(1) receptor via the extracellular signal-regulated kinase pathway. J Pharmacol Sci 2009; 109(2)285–292
  • Bokoch GM, Knaus UG. NADPH oxidases: Not just for leukocytes anymore! Trends. Biochem Sci 2003; 28: 502–508
  • Sauer H, Wartenberg M, Hescheler J. Reactive oxygen species as intracellular messengers during cell growth and differentiation. Cell Physiol Biochem 2001; 11: 173–186
  • Chiarugi P, Pani G, Giannoni E, Taddei L, Colavitti R, Raugei G, Symons M, Borrello S, Galeotti T, GR. Reactive oxygen species as essential mediators of cell adhesion: The oxidative inhibition of a FAK tyrosine phosphatase is required for cell adhesion. J Cell Biol 2003; 161: 933–944
  • Taddei ML, Parri M, Mello T, Catalano A, Levine AD, Raugei G, Ramponi G, Chiarugi P. Integrin-mediated cell adhesion and spreading engage different sources of reactive oxygen species. Antioxidants & Redox Signaling 2007; 9: 469–481
  • Kim C, Kim JY, Kim JH. Cytosolic phospholipase A(2), lipoxygenase metabolites, and reactive oxygen species. BMB Rep 2008; 41: 555–559
  • Kim C, Dinauer MC. Impaired NADPH oxidase activity in Rac2-deficient murine neutrophils does not result from defective translocation of p47phox and p67phox and can be rescued by exogenous arachidonic acid. J Leukoc Biol 2006; 79: 223–234
  • Shiose A, Sumimoto H. Arachidonic acid and phosphorylation synergistically induce a conformational change of p47phox to activate the phagocyte NADPH oxidase. J Biol Chem 2000; 275: 13793–13801
  • Heijnen HF, Schiel AE, Fijnheer R, Geuze HJ, Sixma JJ. Activated platelets release two types of membrane vesicles: Microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood 1999; 94: 3791–3799
  • Nieuwland R, Sturk A. Platelet-derived microparticles. Platelets, AD Michelson. Elsevier science, San DiegoUSA 2007; 403–413
  • Nieuwland R, Berckmans RJ, Rotteveel-Eijkman RC, Maquelin KN, Roozendaal KJ, Jansen PG, ten Have K, Eijsman L, Hack CE, Sturk A. Cell-derived microparticles generated in patients during cardiopulmonary bypass are highly procoagulant. Circulation 1997; 96: 3534–3541
  • Merten M, Pakala R, Thiagarajan P, Benedict CR. Platelet microparticles promote platelet interaction with subendothelial matrix in a glycoprotein IIb/IIIa-dependent mechanism. Circulation 1999; 99: 2577–2582
  • Baj-Krzyworzeka M, Majka M, Pratico D, Ratajczak J, Vilaire G, Kijowski J, Reca R, Janowska-Wieczorek A, Ratajczak MZ. Platelet-derived microparticles stimulate proliferation, survival, adhesion, and chemotaxis of hematopoietic cells. Exp Hematol 2002; 30: 450–459
  • Weber A, Koppen HO, Schror K. Platelet-derived microparticles stimulate coronary artery smooth muscle cell mitogenesis by a PDGF-independent mechanism. Thromb Res 2000; 98: 461–466
  • Pakala R. Serotonin and thromboxane A2 stimulate platelet-derived microparticle-induced smooth muscle cell proliferation. Cardiovasc Radiat Med 2004; 5: 20–26
  • Barry OP, Pratico D, Lawson JA, FitzGerald GA. Transcellular activation of platelets and endothelial cells by bioactive lipids in platelet microparticles. J Clin Invest 1997; 99: 2118–2127
  • Pfister SL. Role of platelet microparticles in the production of thromboxane by rabbit pulmonary artery. Hypertension 2004; 43: 428–433
  • Ko EM, Lee IY, Cheon IS, Kim J, Choi JS, Hwang JY, Cho JS, Lee DH, Kang D, Kim SH, et al. Monoclonal antibody to CD9 inhibits platelet-induced human endothelial cell proliferation. Mol Cells 2006; 22: 70–77
  • Matsuo R, Ohkohchi N, Murata S, Ikeda O, Nakano Y, Watanabe M, Hisakura K, Myronovych A, Kubota T, Narimatsu H, et al. Platelets Strongly Induce Hepatocyte Proliferation with IGF-1 and HGF In Vitro. J Surg Res 2008; 145: 279–286
  • Weber AA, Zucker TP, Schror K. Platelet surface membranes are highly mitogenic for coronary artery smooth muscle cells–A novel mechanism for sustained proliferation after vessel injury?. Biochem Biophys Res Commun 1999; 259: 341–343
  • Pietramaggiori G, Scherer SS, Mathews JC, Gennaoui T, Lancerotto L, Ragno G, Valeri CR, Orgill DP, Quiescent Platelets Stimulate Angiogenesis and Diabetic Wound Repair. J Surg Res 2010;160:169–177
  • Sum R, Hager S, Pietramaggiori G, Orgill DP, Dee J, Rudolph A, Orser C, Fitzpatrick GM, Ho D. Wound-healing properties of trehalose-stabilized freeze-dried outdated platelets. Transfusion 2007; 47: 672–679
  • Pietramaggiori G, Kaipainen A, Czeczuga JM, Wagner CT, Orgill DP. Freeze-dried platelet-rich plasma shows beneficial healing properties in chronic wounds. Wound Repair Regen 2006; 14: 573–580
  • Campbell JH, Campbell GR. Culture techniques and their applications to studies of vascular smooth muscle. Clin Sci (Lond) 1993; 85: 501–513
  • Regan JW, Matsui H. alpha 2-Adrenergic receptor purification. Receptor biochemistry: A practical approach, EC Hulme. Oxford University Press, Oxford 1990; 141–161
  • Cory AH, Owen TC, Barltrop JA, Cory JG. Use of an aqueous soluble tetrazolium/formazan assay for cell growth assays in culture. Cancer Commun 1991; 3: 207–212
  • Agis H, Stampfl B, Watzek G, Gruber R. Activated platelets increase proliferation and protein synthesis of human dental pulp-derived cells. Int Endod J 2010; 43: 115–124
  • Gruber R, Varga F, Fischer MB, Watzek G. Platelets stimulate proliferation of bone cells: Involvement of platelet-derived growth factor, microparticles and membranes. Clin Oral Implants Res 2002; 13: 529–535
  • Han B, Woodell-May J, Ponticiello M, Yang Z, Nimni M. The effect of thrombin activation of platelet-rich plasma on demineralized bone matrix osteoinductivity. J Bone Joint Surg Am 2009; 91: 1459–1470
  • Roussy Y, Bertrand Duchesne MP, Gagnon G. Activation of human platelet-rich plasmas: Effect on growth factors release, cell division and in vivo bone formation. Clin Oral Implants Res 2007; 18: 639–648
  • Kanabar V, Hirst SJ, O'Connor BJ, Page CP. Some structural determinants of the antiproliferative effect of heparin-like molecules on human airway smooth muscle. Br J Pharmacol 2005; 146: 370–377
  • Kanabar V, Page CP, Simcock DE, Karner C, Mahn K, O'Connor BJ, Hirst SJ. Heparin and structurally related polymers attenuate eotaxin-1 (CCL11) release from human airway smooth muscle. Br J Pharmacol 2008; 154: 833–842
  • Mahn K, Hirst SJ, Ying S, Holt MR, Lavender P, Ojo OO, Siew L, Simcock DE, McVicker CG, Kanabar V, et al. Diminished sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) expression contributes to airway remodelling in bronchial asthma. Proc Natl Acad Sci USA 2009; 106: 10775–10780
  • Buchdunger E, O'Reilly T, Wood J. Pharmacology of imatinib (STI571). Eur J Cancer 2002; 38(Suppl 5)S28–S36
  • Suzuki M, Abe A, Imagama S, Nomura Y, Tanizaki R, Minami Y, Hayakawa F, Ito Y, Katsumi A, Yamamoto K, et al. BCR-ABL-independent and RAS/MAPK pathway-dependent form of imatinib resistance in Ph-positive acute lymphoblastic leukemia cell line with activation of EphB4. Eur J Haematol 2009; 84: 229–238
  • Konig H, Copland M, Chu S, Jove R, Holyoake TL, Bhatia R. Effects of dasatinib on SRC kinase activity and downstream intracellular signaling in primitive chronic myelogenous leukemia hematopoietic cells. Cancer Res 2008; 68: 9624–9633
  • Ravasi S, Citro S, Viviani B, Capra V, Rovati GE. CysLT1 receptor-induced human airway smooth muscle cells proliferation requires ROS generation, EGF receptor transactivation and ERK1/2 phosphorylation. Respir Res 2006; 7: 42
  • Antoniotti S, Fiorio Pla A, Pregnolato S, Mottola A, Lovisolo D, Munaron L. Control of endothelial cell proliferation by calcium influx and arachidonic acid metabolism: A pharmacological approach. J Cell Physiol 2003; 197: 370–378
  • Naidu KA, Wiranowska M, Phuphanich S, Prockop LD. Modulation of glioma cell growth and 5-lipoxygenase expression by interferon. Anticancer Res 1996; 16: 3475–3482
  • Nishii K, Nishizawa Y, Matsumoto K, Sato B. Inhibition of murine transformed Leydig cell proliferation by leukotrienes in serum-free culture. Cancer Res 1991; 51: 5573–5578
  • Back M, Bu DX, Branstrom R, Sheikine Y, Yan ZQ, Hansson GK. Leukotriene B4 signaling through NF-kappaB-dependent BLT1 receptors on vascular smooth muscle cells in atherosclerosis and intimal hyperplasia. Proc Natl Acad Sci USA 2005; 102: 17501–17506
  • Huo Y, Qiu W, Pan Q, Yao Y, Xing K, Lou M, Reactive oxygen species (ROS) are essential mediators in epidermal growth factor (EGF)-stimulated corneal epithelial cell proliferation, adhesion, migration, and wound healing. Experimental Eye Research 2009;89:876–886
  • Jeffery PK, Wardlaw AJ, Nelson FC, Collins JV, Kay AB. Bronchial biopsies in asthma. An ultrastructural, quantitative study and correlation with hyperreactivity. Am Rev Respir Dis 1989; 140: 1745–1753

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.