367
Views
4
CrossRef citations to date
0
Altmetric
Review Article

Cbl proteins in platelet activation

, , &
Pages 419-427 | Received 13 Jun 2012, Accepted 16 Jul 2012, Published online: 29 Aug 2012

References

  • Franchini M, Favaloro EJ, Lippi G. Glanzmann thrombasthenia: An update. Clin Chim Acta 2010; 411(1–2)1–6
  • Ho-Tin-Noe B, Demers M, Wagner DD. How platelets safeguard vascular integrity. J Thromb Haemost 2010; 9(Suppl. 1)56–65
  • Leslie M. Cell biology. Beyond clotting: The powers of platelets. Science 2010; 328(5978)562–564
  • Helft G, Worthley SG. Anti-thrombotic, anti-platelet and fibrinolytic therapy: Current management of acute myocardial infarction. Heart Lung Circ 2001; 10(2)68–74
  • Shattil SJ. Signaling through platelet integrin alpha IIb beta 3: Inside-out, outside-in, and sideways. Thromb Haemost 1999; 82(2)318–325
  • Farndale RW. Collagen-induced platelet activation. Blood Cells Mol Dis 2006; 36(2)162–165
  • Nonne C, Lenain N, Hechler B, Mangin P, Cazenave JP, Gachet C, Lanza F. Importance of platelet phospholipase Cgamma2 signaling in arterial thrombosis as a function of lesion severity. Arterioscler Thromb Vasc Biol 2005; 25(6)1293–1298
  • Hynes RO. Integrins: Bidirectional, allosteric signaling machines. Cell 2002; 110(6)673–687
  • Bergmeier W, Goerge T, Wang HW, Crittenden JR, Baldwin AC, Cifuni SM, Housman DE, Graybiel AM, Wagner DD. Mice lacking the signaling molecule CalDAG-GEFI represent a model for leukocyte adhesion deficiency type III. J Clin Invest 2007; 117(6)1699–1707
  • Crittenden JR, Bergmeier W, Zhang Y, Piffath CL, Liang Y, Wagner DD, Housman DE, Graybiel AM. CalDAG-GEFI integrates signaling for platelet aggregation and thrombus formation. Nat Med 2004; 10(9)982–986
  • Bernardi B, Guidetti GF, Campus F, Crittenden JR, Graybiel AM, Balduini C, Torti M. The small GTPase Rap1b regulates the cross talk between platelet integrin alpha2beta1 and integrin alphaIIbbeta3. Blood 2006; 107(7)2728–2735
  • Watanabe N, Bodin L, Pandey M, Krause M, Coughlin S, Boussiotis VA, Ginsberg MH, Shattil SJ. Mechanisms and consequences of agonist-induced talin recruitment to platelet integrin alphaIIbbeta3. J Cell Biol 2008; 181(7)1211–1222
  • Vinogradova O, Velyvis A, Velyviene A, Hu B, Haas T, Plow E, Qin J. A structural mechanism of integrin alpha(IIb)beta(3) “inside-out” activation as regulated by its cytoplasmic face. Cell 2002; 110(5)587–597
  • Watson SP, Herbert JM, Pollitt AY. GPVI and CLEC-2 in hemostasis and vascular integrity. J Thromb Haemost 2010; 8(7)1456–1467
  • Obergfell A, Eto K, Mocsai A, Buensuceso C, Moores SL, Brugge JS, Lowell CA, Shattil SJ. Coordinate interactions of Csk, Src, and Syk kinases with [alpha]IIb[beta]3 initiate integrin signaling to the cytoskeleton. J Cell Biol 2002; 157(2)265–275
  • Pan L, Pei P. Signaling transduction by IgG receptors. Chin Med J (Engl) 2003; 116(4)487–494
  • Kasirer-Friede A, Kahn ML, Shattil SJ. Platelet integrins and immunoreceptors. Immunol Rev 2007; 218: 247–264
  • Shattil SJ, Newman PJ. Integrins: Dynamic scaffolds for adhesion and signaling in platelets. Blood 2004; 104(6)1606–1615
  • Ezumi Y, Shindoh K, Tsuji M, Takayama H. Physical and functional association of the Src family kinases Fyn and Lyn with the collagen receptor glycoprotein VI-Fc receptor gamma chain complex on human platelets. J Exp Med 1998; 188(2)267–276
  • Quek LS, Pasquet JM, Hers I, Cornall R, Knight G, Barnes M, Hibbs ML, Dunn AR, Lowell CA, Watson SP. Fyn and Lyn phosphorylate the Fc receptor gamma chain downstream of glycoprotein VI in murine platelets, and Lyn regulates a novel feedback pathway. Blood 2000; 96(13)4246–4253
  • Arias-Salgado EG, Lizano S, Sarkar S, Brugge JS, Ginsberg MH, Shattil SJ. Src kinase activation by direct interaction with the integrin beta cytoplasmic domain. Proc Nat Acad Sci USA 2003; 100(23)13298–13302
  • Clark EA, Shattil SJ, Brugge JS. Regulation of protein tyrosine kinases in platelets. Trends Biochem Sci 1994; 19(11)464–469
  • Buitrago L, Langdon WY, Sanjay A, Kunapuli SP. Tyrosine phosphorylated c-Cbl regulates platelet functional responses mediated by outside-in signaling. Blood 2011; 118(20)5631–5640
  • Saci A, Rendu F, Bachelot-Loza C. Platelet alpha IIb-beta 3 integrin engagement induces the tyrosine phosphorylation of Cbl and its association with phosphoinositide 3-kinase and Syk. Biochem J 2000; 351(Pt. 3)669–676
  • Cho MJ, Pestina TI, Steward SA, Lowell CA, Jackson CW, Gartner TK. Role of the Src family kinase Lyn in TxA2 production, adenosine diphosphate secretion, Akt phosphorylation, and irreversible aggregation in platelets stimulated with gamma-thrombin. Blood 2002; 99(7)2442–2447
  • Dorsam RT, Kim S, Murugappan S, Rachoor S, Shankar H, Jin J, Kunapuli SP. Differential requirements for calcium and Src family kinases in platelet GPIIb/IIIa activation and thromboxane generation downstream of different G-protein pathways. Blood 2005; 105(7)2749–2756
  • Nash CA, Séverin S, Dawood BB, Makris M, Mumford A, Wilde J, Senis YA, Watson SP. Src family kinases are essential for primary aggregation by G(i) -coupled receptors. J Thromb Haemost 2010; 8(10)2273–2282
  • Kim S, Kunapuli SP. Negative regulation of Gq-mediated pathways in platelets by G(12/13) pathways through Fyn kinase. J Biol Chem 2011; 286(27)24170–24179
  • Jakus Z, Fodor S, Abram CL, Lowell CA, Mócsai A. Immunoreceptor-like signaling by beta 2 and beta 3 integrins. Trends Cell Biol 2007; 17(10)493–501
  • Kerrigan AM, Brown GD. Syk-coupled C-type lectins in immunity. Trends Immunol 2011; 32(4)151–156
  • Poole A, Gibbins JM, Turner M, van Vugt MJ, van de Winkel JG, Saito T, Tybulewicz VL, Watson SP. The Fc receptor gamma-chain and the tyrosine kinase Syk are essential for activation of mouse platelets by collagen. EMBO J 1997; 16(9)2333–2341
  • Boylan B, Gao C, Rathore V, Gill JC, Newman DK, Newman PJ. Identification of FcgammaRIIa as the ITAM-bearing receptor mediating alphaIIbbeta3 outside-in integrin signaling in human platelets. Blood 2008; 112(7)2780–2786
  • Severin S, Pollitt AY, Navarro-Nuñez L, Nash CA, Mourão-Sá D, Eble JA, Senis YA, Watson SP. Syk-dependent phosphorylation of CLEC-2: A novel mechanism of hem-immunoreceptor tyrosine-based activation motif signaling. J Biol Chem 2011; 286(6)4107–4116
  • Keane MM, Rivero-Lezcano OM, Mitchell JA, Robbins KC, Lipkowitz S. Cloning and characterization of cbl-b: A SH3 binding protein with homology to the c-cbl proto-oncogene. Oncogene 1995; 10(12)2367–2377
  • Keane MM, Ettenberg SA, Nau MM, Banerjee P, Cuello M, Penninger J, Lipkowitz S. Cbl-3: A new mammalian cbl family protein. Oncogene 1999; 18(22)3365–3375
  • Kim M, Tezuka T, Suziki Y, Sugano S, Hirai M, Yamamoto T. Molecular cloning and characterization of a novel cbl-family gene, cbl-c. Gene 1999; 239(1)145–154
  • Joazeiro CA, Wing SS, Huang H, Leverson JD, Hunter T, Liu YC. The tyrosine kinase negative regulator c-Cbl as a RING-type, E2-dependent ubiquitin-protein ligase. Science 1999; 286(5438)309–312
  • Ahmed Z, Smith BJ, Pillay TS. The APS adapter protein couples the insulin receptor to the phosphorylation of c-Cbl and facilitates ligand-stimulated ubiquitination of the insulin receptor. FEBS Lett 2000; 475(1)31–34
  • Jacob C, Cottrell GS, Gehringer D, Schmidlin F, Grady EF, Bunnett NW. c-Cbl mediates ubiquitination, degradation, and down-regulation of human protease-activated receptor 2. J Biol Chem 2005; 280(16)16076–16087
  • Sanjay A, Horne WC, Baron R, The Cbl family: Ubiquitin ligases regulating signaling by tyrosine kinases. Science's STKE 2001;(110):pe40. Available from http://stke.sciencemag.org/cgi/content/full/OC_sigtrans;2001/110/pe40
  • Swaminathan G, Tsygankov AY. The Cbl family proteins: Ring leaders in regulation of cell signaling. J Cell Physiol 2006; 209(1)21–43
  • Thien CBF, Langdon WY. Cbl: Many adaptations to regulate protein tyrosine kinases. Nat Rev Mol Cell Biol 2001; 2: 294–305
  • Kales SC, Ryan PE, Nau MM, Lipkowitz S. Cbl and human myeloid neoplasms: The Cbl oncogene comes of age. Cancer Res 2010; 70(12)4789–4794
  • Naramura M, Nandwani N, Gu H, Band V, Band H. Rapidly fatal myeloproliferative disorders in mice with deletion of Casitas B-cell lymphoma (Cbl) and Cbl-b in hematopoietic stem cells. Proc Natl Acad Sci USA 2010; 107(37)16274–16279
  • Lipkowitz S, Weissman AM. RINGs of good and evil: RING finger ubiquitin ligases at the crossroads of tumour suppression and oncogenesis. Nat Rev Cancer 2011; 11(9)629–643
  • Bartkiewicz M, Houghton A, Baron R. Leucine zipper-mediated homodimerization of the adaptor protein c-Cbl. A role in c-Cbl's tyrosine phosphorylation and its association with epidermal growth factor receptor. J Biol Chem 1999; 274(43)30887–30895
  • Davies GC, Ettenberg SA, Coats AO, Mussante M, Ravichandran S, Collins J, Nau MM, Lipkowitz S. Cbl-b interacts with ubiquitinated proteins; differential functions of the UBA domains of c-Cbl and Cbl-b. Oncogene 2004; 23(42)7104–7115
  • Ota S, Hazeki K, Rao N, Lupher ML, Jr, Andoniou CE, Druker B, Band H. The RING finger domain of Cbl is essential for negative regulation of the Syk tyrosine kinase. J Biol Chem 2000; 275(1)414–422
  • Lupher ML, Jr, Rao N, Lill NL, Andoniou CE, Miyake S, Clark EA, Druker B, Band H. Cbl-mediated negative regulation of the Syk tyrosine kinase. A critical role for Cbl phosphotyrosine-binding domain binding to Syk phosphotyrosine 323. J Biol Chem 1998; 273(52)35273–35281
  • Dikic I, Szymkiewicz I, Soubeyran P. Cbl signaling networks in the regulation of cell function. Cell Mol Life Sci 2003; 60(9)1805–1827
  • Feshchenko EA, Langdon WY, Tsygankov AY. Fyn, Yes, and Syk phosphorylation sites in c-Cbl map to the same tyrosine residues that become phosphorylated in activated T cells. J Biol Chem 1998; 273(14)8323–8331
  • Tsygankov AY, Mahajan S, Fincke JE, Bolen JB. Specific association of tyrosine-phosphorylated c-Cbl with Fyn tyrosine kinase in T cells. J Biol Chem 1996; 271(43)27130–27137
  • Yokouchi M, Kondo T, Sanjay A, Houghton A, Yoshimura A, Komiya S, Zhang H, Baron R. Src-catalyzed phosphorylation of c-Cbl leads to the interdependent ubiquitination of both proteins. J Biol Chem 2001; 276(37)35185–35193
  • Schmidt MH, Dikic I. The Cbl interactome and its functions. Nat Rev Mol Cell Biol 2005; 6(12)907–918
  • Mosesson Y, Shtiegman K, Katz M, Zwang Y, Vereb G, Szollosi J, Yarden Y. Endocytosis of receptor tyrosine kinases is driven by monoubiquitylation, not polyubiquitylation. J Biol Chem 2003; 278(24)21323–21326
  • Kitaura Y, Jang IK, Wang Y, Han YC, Inazu T, Cadera EJ, Schlissel M, Hardy RR, Gu H. Control of the B cell-intrinsic tolerance programs by ubiquitin ligases Cbl and Cbl-b. Immunity 2007; 26(5)567–578
  • Horne WC, Sanjay A, Bruzzaniti A, Baron R. The role(s) of Src kinase and Cbl proteins in the regulation of osteoclast differentiation and function. Immunol Rev 2005; 208: 106–125
  • Marengere LE, Mirtsos C, Kozieradzki I, Veillette A, Mak TW, Penninger JM. Proto-oncoprotein Vav interacts with c-Cbl in activated thymocytes and peripheral T cells. J Immunol 1997; 159(1)70–76
  • Andoniou CE, Thien CB, Langdon WY. The two major sites of cbl tyrosine phosphorylation in abl-transformed cells select the crkL SH2 domain. Oncogene 1996; 12(9)1981–1989
  • Lottin-Divoux S, Jean D, Le Romancer M, Frade R. Activation of Epstein-Barr virus/C3d receptor (gp140, CR2, CD21) on human B lymphoma cell surface triggers Cbl tyrosine phosphorylation, its association with p85 subunit, Crk-L and Syk and its dissociation with Vav. Cell Signal 2006; 18(8)1219–1225
  • Tsygankov AY, Teckchandani AM, Feshchenko EA, Swaminathan G. Beyond the RING: CBL proteins as multivalent adapters. Oncogene 2001; 20(44)6382–6402
  • Tanaka S, Amling M, Neff L, Peyman A, Uhlmann E, Levy JB, Baron R. c-Cbl is downstream of c-Src in a signalling pathway necessary for bone resorption. Nature 1996; 383(6600)528–531
  • Liu Y, Liu YC, Meller N, Giampa L, Elly C, Doyle M, Altman A. Protein kinase C activation inhibits tyrosine phosphorylation of Cbl and its recruitment of Src homology 2 domain-containing proteins. J Immunol 1999; 162(12)7095–7101
  • Melander F, Andersson T, Dib K. Engagement of beta2 integrins recruits 14-3-3 proteins to c-Cbl in human neutrophils. Biochem Biophys Res Commun 2004; 317(4)1000–1005
  • Gruber T, Hermann-Kleiter N, Hinterleitner R, Fresser F, Schneider R, Gastl G, Penninger JM, Baier G. PKC-theta modulates the strength of T cell responses by targeting Cbl-b for ubiquitination and degradation. Sci Signal 2009; 2(76)ra30
  • Blake TJ, Shapiro M, Morse HC, 3rd, Langdon WY. The sequences of the human and mouse c-cbl proto-oncogenes show v-cbl was generated by a large truncation encompassing a proline-rich domain and a leucine zipper-like motif. Oncogene 1991; 6(4)653–657
  • Langdon WY, Heath KG, Blake TJ. The localization of the products of the c-cbl and v-cbl oncogenes during mitosis and transformation. Curr Top Microbiol Immunol 1992; 182: 467–474
  • Checquolo S, Palermo R, Cialfi S, Ferrara G, Oliviero C, Talora C, Bellavia D, Giovenco A, Grazioli P, Frati L, et al. Differential subcellular localization regulates c-Cbl E3 ligase activity upon Notch3 protein in T-cell leukemia. Oncogene 2010; 29(10)1463–1474
  • Feshchenko EA, Shore SK, Tsygankov AY. Tyrosine phosphorylation of C-Cbl facilitates adhesion and spreading while suppressing anchorage-independent growth of V-Abl-transformed NIH3T3 fibroblasts. Oncogene 1999; 18(25)3703–3715
  • Miao H, Yuan S, Wang Y, Tsygankov A, Chien S. Role of Cbl in shear-activation of PI 3-kinase and JNK in endothelial cells. Biochem Biophys Res Commun 2002; 292(4)892–899
  • Meng F, Lowell CA. A beta 1 integrin signaling pathway involving Src-family kinases, Cbl and PI-3 kinase is required for macrophage spreading and migration. Embo J 1998; 17(15)4391–4403
  • Miyazaki T, Sanjay A, Neff L, Tanaka S, Horne WC, Baron R. SRC kinase activity is essential for osteoclast function. J Biol Chem 2004; 279(17)17660–17666
  • Adapala NS, Barbe MF, Langdon WY, Nakamura MC, Tsygankov AY, Sanjay A. The loss of Cbl-phosphatidylinositol 3-kinase interaction perturbs RANKL-mediated signaling, inhibiting bone resorption and promoting osteoclast survival. J Biol Chem 2010; 285(47)36745–36758
  • Oda A, Ozaki K, Druker BJ, Miyakawa Y, Miyazaki H, Handa M, Morita H, Ohashi H, Ikeda Y. p120c-cbl is present in human blood platelets and is differentially involved in signaling by thrombopoietin and thrombin. Blood 1996; 88(4)1330–1338
  • Saci A, Pain S, Rendu F, Bachelot-Loza C. Fc receptor-mediated platelet activation is dependent on phosphatidylinositol 3-kinase activation and involves p120(Cbl). J Biol Chem 1999; 274(4)1898–1904
  • Donovan JA, Wange RL, Langdon WY, Samelson LE. The protein product of the c-cbl protooncogene is the 120-kDa tyrosine-phosphorylated protein in Jurkat cells activated via the T cell antigen receptor. J Biol Chem 1994; 269(37)22921–22924
  • Fukazawa T, Reedquist KA, Trub T, Soltoff S, Panchamoorthy G, Druker B, Cantley L, Shoelson SE, Band H. The SH3 domain-binding T cell tyrosyl phosphoprotein p120. Demonstration of its identity with the c-cbl protooncogene product and in vivo complexes with Fyn, Grb2, and phosphatidylinositol 3-kinase. J Biol Chem 1995; 270(32)19141–19150
  • Graham LJ, Stoica BA, Shapiro M, DeBell KE, Rellahan B, Laborda J, Bonvini E. Sequences surrounding the Src-homology 3 domain of phospholipase Cgamma-1 increase the domain's association with Cbl. Biochem Biophys Res Commun 1998; 249(2)537–541
  • Auger JM, Best D, Snell DC, Wilde JI, Watson SP. c-Cbl negatively regulates platelet activation by glycoprotein VI. JThromb Haemost 2003; 1(11)2419–2426
  • Dangelmaier CA, Quinter PG, Jin J, Tsygankov AY, Kunapuli SP, Daniel JL. Rapid ubiquitination of Syk following GPVI activation in platelets. Blood 2005; 105(10)3918–3924
  • Sigismund S, Woelk T, Puri C, Maspero E, Tacchetti C, Transidico P, Di Fiore PP, Polo S. Clathrin-independent endocytosis of ubiquitinated cargos. Proc Nat Acad Sci USA 2005; 102(8)2760–2765
  • Thomas DH, Getz TM, Newman TN, Dangelmaier CA, Carpino N, Kunapuli SP, Tsygankov AY, Daniel JL. A novel histidine tyrosine phosphatase, TULA-2, associates with Syk and negatively regulates GPVI signaling in platelets. Blood 2010; 116(14)2570–2578
  • Best D, Pasquet S, Littlewood TJ, Brunskill SJ, Pallister CJ, Watson SP. Platelet activation via the collagen receptor GPVI is not altered in platelets from chronic myeloid leukaemia patients despite the presence of the constitutively phosphorylated adapter protein CrkL. Br J Haematol 2001; 112(3)609–615
  • Thien CB, Langdon WY. c-Cbl and Cbl-b ubiquitin ligases: Substrate diversity and the negative regulation of signalling responses. Biochem J 2005; 391(Pt. 2)153–166
  • Daniel JL, Dangelmaier CA, Mada S, Buitrago L, Jin J, Langdon WY, Tsygankov AY, Kunapuli SP, Sanjay A. Cbl-b is a novel physiologic regulator of glycoprotein VI-dependent platelet activation. J Biol Chem 2010; 285(23)17282–17291
  • Yasuda T, Tezuka T, Maeda A, Inazu T, Yamanashi Y, Gu H, Kurosaki T, Yamamoto T. Cbl-b positively regulates Btk-mediated activation of phospholipase C-gamma2 in B cells. J Exp Med 2002; 196(1)51–63
  • Miranti CK, Leng L, Maschberger P, Brugge JS, Shattil SJ. Identification of a novel integrin signaling pathway involving the kinase Syk and the guanine nucleotide exchange factor Vav1. Curr Biol 1998; 8(24)1289–1299
  • Ghigo A, Morello F, Perino A, Hirsch E. Phosphoinositide 3-kinases in health and disease. Subcell Biochem 2012; 58: 183–213
  • Fox JE. On the role of calpain and Rho proteins in regulating integrin-induced signaling. Thromb Haemost 1999; 82(2)385–391
  • Brass LF, Hoxie JA, Manning DR. Signaling through G proteins and G protein-coupled receptors during platelet activation. Thromb Haemost 1993; 70(1)217–223
  • Brass LF, Manning DR, Cichowski K, Abrams CS. Signaling through G proteins in platelets: To the integrins and beyond. Thromb Haemost 1997; 78(1)581–589
  • Schoenwaelder SM, Ono A, Nesbitt WS, Lim J, Jarman K, Jackson SP. Phosphoinositide 3-kinase p110 beta regulates integrin alpha IIb beta 3 avidity and the cellular transmission of contractile forces. J Biol Chem 2010; 285(4)2886–2896

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.