155
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Deep brain stimulation: Anatomical, physiological, and computational mechanisms

, &
Pages 186-207 | Received 02 Nov 2011, Accepted 02 Nov 2011, Published online: 07 Dec 2011

References

  • Abosch A, Kapur S, Lang AE, et al. Stimulation of the subthalamic nucleus in Parkinson’s disease does not produce striatal dopamine release. Neurosurgery 2003; 53(5)1095–1102; discussion 102–105
  • Afsharpour S. Topographical projections of the cerebral cortex to the subthalamic nucleus. J Comp Neurol 1985; 236: 14–28
  • Aizman O, Brismar H, Uhlen P, et al. Anatomical and physiological evidence for D1 and D2 dopamine receptor colocalization in neostriatal neurons. Nat Neurosci 2000; 3(3)226–230
  • Albin R, Young A, Penney J. The functional anatomy of basal ganglia disorders. Trends Neurosci 1989; 12(10)366–375
  • Alexander GE, DeLong MR, Strick PL. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 1986; 9: 357–381
  • Anderson ME, Postupna N, Ruffo M. Effects of high-frequency stimulation in the internal globus pallidus on the activity of thalamic neurons in the awake monkey. J Neurophysiol 2003; 89(2)1150–1160
  • Arbuthnott GW, Ingham CA, Wickens JR. Dopamine and synaptic plasticity in the neostriatum. J Anat 2000; 196 (Pt 4)587–596
  • Bar-Gad I, Bergman H. Stepping out of the box: Information processing in the neural networks of the basal ganglia. Current Opinion in Neurobiology 2001; 11: 689–695
  • Barto AG. Adaptive critics and the basal ganglia. Models of Information Processing in the Basal Ganglia, JC Houk, JL Davis, DG Beiser. MIT Press, Cambridge, MA 1995; 215–232
  • Beiser D, Houk J. Model of cortical-basal ganglionic processing: Encoding the serial order of sensory events. J Neurophysiol 1998; 79: 3168–3188
  • Benazzouz A, Gao DM, Ni ZG, Piallat B, Bouali-Benazzouz R, Benabid AL. Effect of high-frequency stimulation of the subthalamic nucleus on the neuronal activities of the substantia nigra pars reticulata and ventrolateral nucleus of the thalamus in the rat. Neuroscience 2000; 99(2)289–295
  • Bergman H, Feingold A, Nini A, et al. Physiological aspects of information processing in the basal ganglia of normal and parkinsonian primates. Trends Neurosci 1998; 21(1)32–38
  • Berns G, Sejnowski T. A computational model of how the basal ganglia produce sequences. Journal of Cognitive Neuroscience 1998; 10(1)108–121
  • Bar-Gad I, Morris G, Bergman H. Information processing, dimensionality reduction and reinforcement learning in the basal ganglia. Prog Neurobiol 2003; 71: 439–473
  • Beurrier C, Bioulac B, Audin J, Hammond C. High-frequency stimulation produces a transient blockade of voltage-gated currents in subthalamic neurons. J Neurophysiol 2001; 85(4)1351–1356
  • Bevan MD, Wilson CJ. Mechanisms underlying spontaneous oscillation and rhythmic firing in rat subthalamic neurons. J Neurosci 1999; 19(17)7617–7628
  • Blackwell KT, Czubayko U, Plenz D. Quantitative estimate of synaptic inputs to striatal neurons during up and down states in vitro. J Neurosci 2003; 23(27)9123–9132
  • Bolam JP, Hanley JJ, Booth PA, Bevan MD. Synaptic organisation of the basal ganglia. J Anat 2000; 196 (Pt 4)527–542
  • Brown P. Oscillatory nature of human basal ganglia activity: Relationship to the pathophysiology of Parkinson’s disease. Mov Disord 2003; 18(4)357–363
  • Brown P, Mazzone P, Oliviero A, et al. Effects of stimulation of the subthalamic area on oscillatory pallidal activity in Parkinson’s disease. Exp Neurol 2004; 188(2)480–490
  • Brown P, Oliviero A, Mazzone P, Insola A, Tonali P, Di Lazzaro V. Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson’s disease. J Neurosci 2001; 21(3)1033–1038
  • Bruet N, Windels F, Bertrand A, Feuerstein C, Poupard A, Savasta M. High frequency stimulation of the subthalamic nucleus increases the extracellular contents of striatal dopamine in normal and partially dopaminergic denervated rats. J Neuro-pathol Exp Neurol 2001; 60(1)15–24
  • Carpenter MB, Batton RR, Carleton SC, Keller JT. Interconnections and organization of pallidal and subthalamic nucleus neurons in the monkey. J Comp Neurol 1981; 197: 579–603
  • Carpenter MB, Carleton SC, Keller JT, Conte P. Connections of the subthalamic nucleus in the monkey. Brain Res 1981; 224: 1–29
  • Ceballos-Baumann AO, Boecker H, Bartenstein P, et al. A positron emission tomo-graphic study of subthalamic nucleus stimulation in Parkinson disease: Enhanced movement-related activity of motor-association cortex and decreased motor cortex resting activity. Arch Neurol 1999; 56(8)997–1003
  • Centonze D, Picconi B, Gubellini P, Bernardi G, Calabresi P. Dopaminergic control of synaptic plasticity in the dorsal striatum. Eur JNeurosci 2001; 13(6)1071–1077
  • Courtemanche R, Fujii N, Graybiel AM. Synchronous, focally modulated beta-band oscillations characterize local field potential activity in the striatum of awake behaving monkeys. J Neurosci 2003; 23(37)11741–11752
  • Cromwell HC, Hassani OK, Schultz W. Relative reward processing in primate striatum. Exp Brain Res 2005; 162(4)520–525
  • Deadwyler SA, Hayashizaki S, Cheer J, Hampson RE. Reward, memory and substance abuse: Functional neuronal circuits in the nucleus accumbens. Neurosci Biobehav Rev 2004; 27(8)703–711
  • Delong M. Primate models of movement disorders of basal ganglia origin. Trends Neurosci 1990; 13(7)281–285
  • Do MT, Bean BP. Subthreshold sodium currents and pacemaking of subthalamic neurons: modulation by slow inactivation. Neuron 2003; 39(1)109–120
  • Dobrunz LE, Stevens CF. Response of hippocampal synapses to natural stimulation patterns. Neuron 1999; 22(1)157–166
  • Dostrovsky JO, Levy R, Wu JP, Hutchison WD, Tasker RR, Lozano AM. Microstimulation-induced inhibition of neuronal firing in human globus pallidus. J Neurophysiol 2000; 84(1)570–574
  • Dostrovsky JO, Lozano AM. Mechanisms of deep brain stimulation. Mov Disord 2002; 17(suppl 3)S63–S68
  • Drouot X, Oshino S, Jarraya B, et al. Functional recovery in a primate model of Parkinson’s disease following motor cortex stimulation. Neuron 2004; 44: 769–778
  • Filali M, Hutchison WD, Palter VN, Lozano AM, Dostrovsky JO. Stimulation-induced inhibition of neuronal firing in human subthalamic nucleus. Exp Brain Res 2004; 156(3)274–281
  • Floresco SB, West AR, Ash B, Moore H, Grace AA. Afferent modulation of dopa-mine neuron firing differentially regulates tonic and phasic dopamine transmission. Nat Neurosci 2003; 6(9)968–973
  • Foffani G, Priori A, Egidi M, et al. 300-Hz subthalamic oscillations in Parkinson’s disease. Brain 2003; 126(Pt 10)2153–2163
  • Fogelson N, Williams D, Tijssen M, vanBruggen G, Speelman H, Brown P. Different functional loops between cerebral cortex and the subthalamic area in Parkinson’s disease. Cerebral Cortex 2006; 16(1)1664–1675
  • Garcia L, Audin J, D’Alessandro G, Bioulac B, Hammond C. Dual effect of high-frequency stimulation on subthalamic neuron activity. J Neurosci 2003; 23(25)8743–8751
  • Garcia L, D’Alessandro G, Bioulac B, Hammond C. High-frequency stimulation in Parkinson’s disease: more or less?. Trends Neurosci 2005; 28(4)209–216
  • Gillies A, Arbuthnott G. Computational models of the basal ganglia. Mov Disord 2000; 15(5)762–770
  • Goto Y, Grace AA. Dopamine-dependent interactions between limbic and prefrontal cortical plasticity in the nucleus accumbens: disruption by cocaine sensitization. Neuron 2005a; 47(2)255–266
  • Goto Y, Grace AA. Dopaminergic modulation of limbic and cortical drive of nucleus accumbens in goal-directed behavior. Nat Neurosci 2005b; 8(6)805–812
  • Grill WM, Snyder AN, Miocinovic S. Deep brain stimulation creates an informational lesion of the stimulated nucleus. Neuroreport 2004; 15(7)1137–1140
  • Gurney K, Prescott T, Wickens J, Redgrave P. Computational models of the basal ganglia: From robots to membranes. Trends in Neurosciences 2004; 27(8)453–459
  • Hallworth NE, Wilson CJ, Bevan MD. Apamin-sensitive small conductance calcium-activated potassium channels, through their selective coupling to voltage-gated calcium channels, are critical determinants of the precision, pace, and pattern of action potential generation in rat subthalamic nucleus neurons in vitro. J Neurosci 2003; 23(20)7525–7542
  • Hamani C, Saint-Cyr J, Fraser J, Kaplitt M, Lozano A. The subthalamic nucleus in the context of movement disorders. Brain 2004; 127: 4–20
  • Hampson RE, Simeral JD, Deadwyler SA. Distribution of spatial and nonspatial information in dorsal hippocampus. Nature 1999; 402(6762)610–614
  • Hashimoto T, Elder CM, Okun MS, Patrick SK, Vitek JL. Stimulation of the subthalamic nucleus changes the firing pattern of pallidal neurons. J Neurosci 2003; 23(5)1916–1923
  • Hauptmann C, Popovych O, Tass P. Effectively desynchronizing deep brain stimulation based on a coordinated delayed feedback stimulation via several sites: A computational study. Biol Cybern 2005; 93: 463–470
  • Hefti F, Melamed E. Dopamine release in rat striatum after administration of L-dope as studied with in vivo electrochemistry. Brain Res 1981; 225(2)333–346
  • Hernandez-Lopez S, Bargas J, Surmeier DJ, Reyes A, Galarraga E. D1 receptor activation enhances evoked discharge in neostriatal medium spiny neurons by modulating an L-type Ca2þ conductance. J Neurosci 1997; 17(9)3334–3342
  • Hernandez-Lopez S, Tkatch T, Perez-Garci E, et al. D2 dopamine receptors in striatal medium spiny neurons reduce L-type Ca2þ currents and excitability via a novel PLC[beta] 1-IP3-calcineurin-signaling cascade. J Neurosci 2000; 20(24)8987–8995
  • Hershey T, Revilla FJ, Wernle AR, et al. Cortical and subcortical blood flow effects of subthalamic nucleus stimulation in PD. Neurology 2003; 61(6)816–821
  • Hilker R, Voges J, Ghaemi M, et al. Deep brain stimulation of the subthalamic nucleus does not increase the striatal dopamine concentration in parkinsonian humans. Mov Disord 2003; 18(1)41–48
  • Hollerman JR, Schultz W. Dopamine neurons report an error in the temporal prediction of reward during learning. Nat Neurosci 1998; 1(4)304–309
  • Hopf FW, Cascini MG, Gordon AS, Diamond I, Bonci A. Cooperative activation of dopamine D1 and D2 receptors increases spike firing of nucleus accumbens neurons via G-protein betagamma subunits. J Neurosci 2003; 23(12)5079–5087
  • Houk JC. Information processing in modular circuits linking basal ganglia and cerebral cortex. Models of Information Processing in the Basal Ganglia, JC Houk, JL Davis, DG Beiser. The MIT Press, Cambridge, MA 1995; 3–9
  • Houk JC, Davis JL, Beiser DG, eds. Models of Information Processing in the Basal Ganglia. Cambridge, MA: The MIT Press, 1995.
  • Hurtado JM, Gray CM, Tamas LB, Sigvardt KA. Dynamics of tremor-related oscillations in the human globus pallidus: A single case study. Proc Natl Acad Sci USA 1999; 96(4)1674–1679
  • Hutchison WD, Allan RJ, Opitz H, et al. Neurophysiological identification of the subthalamic nucleus in surgery for Parkinson’s disease. Annals of Neurology 1998; 44(4)622–628
  • Jech R, Urgosik D, Tintera J, et al. Functional magnetic resonance imaging during deep brain stimulation: a pilot study in four patients with Parkinson’s disease. Mov Disord 2001; 16(6)1126–1132
  • Jones MW, Wilson MA. Theta rhythms coordinate hippocampal-prefrontal interactions in a spatial memory task. PLoS Biol 2005; 3(12)e402
  • Kita H, Kitai ST. Intracellular study of rat globus pallidus neurons: membrane properties and responses to neostriatal, subthalamic and nigral stimulation. Brain Res 1991; 564: 296–305
  • Kitai ST, Deniau JM. Cortical inputs to the subthalamus: Intracellular analysis. Brain Res 1981; 214: 411–415
  • Kotter R. Postsynaptic integration of glutamatergic and dopaminergic signals in the striatum. Prog Neurobiol 1994; 44(2)163–196
  • Krack P, Benazzouz A, Pollak P, et al. Treatment of tremor in Parkinson’s disease by subthalamic nucleus stimulation. Mov Disord 1998; 13: 907–914
  • Lee KH, Chang SY, Roberts DW, Kim U. Neurotransmitter release from high-frequency stimulation of the subthalamic nucleus. JNeurosurg 2004; 101(3)511–517
  • Lee H, Simpson GV, Logothetis NK, Rainer G. Phase locking of single neuron activity to theta oscillations during working memory in monkey extrastriate visual cortex. Neuron 2005; 45(1)147–156
  • Levesque JC, Parent A. GABAergic interneurons in human subthalamic nucleus. Mov Disord 2005; 20(5)574–584
  • Levy R, Ashby P, Hutchison WD, Lang AE, Lozano AM, Dostrovsky JO. Dependence of subthalamic nucleus oscillations on movement and dopamine in Parkinson’s disease. Brain 2002; 125: 1196–1209
  • Levy R, Dostrovsky JO, Lang AE, Sime E, Hutchison WD, Lozano AM. Effects of apomorphine on subthalamic nucleus and globus pallidus internus neurons in patients with Parkinson’s disease. J Neurophysiol 2001; 86(1)249–260
  • Levy R, Hutchison WD, Lozano AM, Dostrovsky JO. High-frequency synchronization of neuronal activity in the subthalamic nucleus of Parkinsonian patients with limb tremor. J Neurosci 2000; 20(20)7766–7775
  • Limousin P, Pollak P, Benazzouz A, et al. Effect of parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation. Lancet 1995; 345(8942)91–95
  • Ljungberg T, Apicella P, Schultz W. Responses of monkey dopamine neurons during learning of behavioral reactions. J Neurophysiol 1992; 67(1)145–163
  • Maurice N, Thierry AM, Glowinski J, Deniau JM. Spontaneous and evoked activity of substantia nigra pars reticulata neurons during high-frequency stimulation of the subthalamic nucleus. J Neurosci 2003; 23(30)9929–9936
  • McHaffie J, Stanford T, Stein B, Coizet V, Redgrave P. Subcortical loops through the basal ganglia. Trends Neurosci 2005; 28(8)401–407
  • McIntyre CC, Grill WM, Sherman DL, Thakor NV. Cellular effects of deep brain stimulation: Model-based analysis of activation and inhibition. J Neurophysiol 2004a; 91(4)1457–1469
  • McIntyre CC, Savasta M, Walter BL, Vitek JL. How does deep brain stimulation work? Present understanding and future questions. J Clin Neurophysiol 2004b; 21(1)40–50
  • Meissner W, Harnack D, Reese R, et al. High-frequency stimulation of the subthalamic nucleus enhances striatal dopamine release and metabolism in rats. J Neuro-chem 2003; 85(3)601–609
  • Meissner W, Leblois A, Hansel D, et al. Subthalamic high frequency stimulation resets subthalamic firing and reduces abnormal oscillations. Brain 2005; 128: 2372–2382
  • Mink JW. The basal ganglia: Focused selection and inhibition of competing motor programs. Prog Neurobiol 1996; 50(4)381–425
  • Montague PR, Hyman SE, Cohen JD. Computational roles for dopamine in behavioural control. Nature 2004; 431(7010)760–767
  • Montgomery Jr EB, Baker KB. Mechanisms of deep brain stimulation and future technical developments. Neurol Res 2000; 22(3)259–266
  • Moyer JT, Wolf JA, Contreras D, Finkel LH. Dopaminergic modulation and afferent input integration in a computational model of the nucleus accumbens medium spiny neuron. In: Society for Neuroscience, Washington, DC 2005
  • Nicola SM, Surmeier J, Malenka RC. Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Annu Rev Neurosci 2000; 23: 185–215
  • Nini A, Feingold A, Slovin H, Bergman H. Neurons in the globus pallidus do not show correlated activity in the normal monkey, but phase-locked oscillations appear in the MPTP model of parkinsonism. J Neurophysiol 1995; 74(4)1800–1805
  • Parent A, Hazrati L. Functional anatomy of the basal ganglia II. The place of the sub thalamic nucleus and external pallidum in basal ganglia circuitry. Brain Res Rev 1995a; 20: 128–154
  • Parent A, Hazrati LN. Functional anatomy of the basal ganglia I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Rev 1995b; 20: 91–127
  • Payoux P, Remy P, Damier P, et al. Subthalamic nucleus stimulation reduces abnormal motor cortical overactivity in Parkinson disease. Arch Neurol 2004; 61: 1307–1313
  • Pennartz CM, Ameerun RF, Groenewegen HJ, Lopes da Silva FH. Synaptic plasticity in an in vitro slice preparation of the rat nucleus accumbens. Eur J Neurosci 1993; 5(2)107–117
  • Pennartz CM, Groenewegen HJ, Lopes da Silva FH. The nucleus accumbens as a complex of functionally distinct neuronal ensembles: an integration of behavioural, electrophysiological and anatomical data. Prog Neurobiol 1994; 42(6)719–761
  • Pennartz CM, Lee E, Verheul J, Lipa P, Barnes CA, McNaughton BL. The ventral striatum in off-line processing: Ensemble reactivation during sleep and modulation by hippocampal ripples. J Neurosci 2004; 24(29)6446–6456
  • Plenz D, Kital ST. A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus. Nature 1999; 400(6745)677–682
  • Rafols JA, Fox CA. The neurons in the primate subthalamic nucleus: A Golgi and electron microscopic study. J Comp Neurol 1976; 168: 75–112
  • Rodriguez-Oroz MC, Rodriguez M, Guridi J, et al. The subthalamic nucleus in Parkinson’s disease: Somatotopic organization and physiological characteristics. Brain 2001; 124: 1777–1790
  • Romanelli P, Heit G, Hill BC, Kraus A, Hastie T, Bronte-Stewart HM. Microelec-trode recording revealing a somatotopic body map in the subthalamic nucleus in humans with Parkinson disease. J Neurosurg 2004; 100: 611–618
  • Rubin JE, Terman D. High frequency stimulation of the subthalamic nucleus eliminates pathological thalamic rhythmicity in a computational model. J Comput Neurosci 2004; 16(3)211–235
  • Sato F, Parent M, Levesque M, Parent A. Axonal branching pattern of neurons of the subthalamic nucleus in primates. J Comp Neurol 2000; 424: 142–152
  • Schultz W, Apicella P, Ljungberg T. Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task. J Neurosci 1993; 13(3)900–913
  • Shannon CE. A mathematical theory of communication. Bell System Technical Journal 1948; 27: 379–423
  • Shen K, Zhu Z, Munhall A, Johnson S. Synaptic plasticity in rat subthalamic nucleus induced by high-frequency stimulation. Synapse 2003; 50: 314–319
  • Shink E, Smith Y. Differential synaptic innervation of neurons in the internal and external segments of the globus pallidus by the GABA- and glutamate-containing terminals in the squirrel monkey. J Comp Neurol 1995; 358(1)119–141
  • Silberstein P, Kuhn AA, Kupsch A, et al. Patterning of globus pallidus local field potentials differs between Parkinson’s disease and dystonia. Brain 2003; 126(Pt 12)2597–2608
  • Smith Y, Charara A, Hanson JE, Hubert WG, Kuwajima M. Chemical anatomy and synaptic connectivity of the globus pallidus and subthalamic nucleus. Basal ganglia and thalamus in movement disorders, K Kultas-Ilinsky, I Ilinsky. Kluwer Academic/Plenum Publishers, New York 2001; 119–134
  • Smith ID, Grace AA. Role of the subthalamic nucleus in the regulation of nigral dopamine neuron activity. Synapse 1992; 12(4)287–303
  • Smith Y, Hazrati LN, Parent A. Efferent projections of the subthalamic nucleus in the squirrel monkey as studied by the PHA-L anterograde tracing method. J Comp Neurol 1990; 294: 306–323
  • Smith Y, Parent A. Neurons of the subthalamic nucleus in primates display gluta-mate but not GABA immunoreactivity. Brain Res 1988; 453: 353–356
  • Stanton GB, Goldberg ME, Bruce CJ. Frontal eye field efferents in the macaque monkey: II. Topography of terminal fields in midbrain and pons. J Comp Neurol 1988; 271: 493–506
  • Strafella AP, Vanderwerf Y, Sadikot AF. Transcranial magnetic stimulation of the human motor cortex influences the neuronal activity of subthalamic nucleus. Eur J Neurosci 2004; 20: 2245–2249
  • Surmeier DJ, Eberwine J, Wilson CJ, Cao Y, Stefani A, Kitai ST. Dopamine receptor subtypes colocalize in rat striatonigral neurons. Proc Natl Acad Sci USA 1992; 89(21)10178–10182
  • Sutton RS. Learning to predict by the method of temporal differences. Machine Learning 1988; 3: 9–44
  • Tai CH, Boraud T, Bezard E, Bioulac B, Gross C, Benazzouz A. Electrophysiological and metabolic evidence that high-frequency stimulation of the subthalamic nucleus bridles neuronal activity in the subthalamic nucleus and the substantia nigra reticulata. Faseb J 2003; 17(13)1820–1830
  • Tass PA. Desynchronization of brain rhythms with soft phase-resetting techniques. Biol Cybern 2002; 87(2)102–115
  • Temel Y, Blokland A, Steinbusch HW, Visser-Vandewalle V. The functional role of the subthalamic nucleus in cognitive and limbic circuits. Prog Neurobiol 2005; 76(6)393–413
  • Terman D, Rubin JE, Yew AC, Wilson CJ. Activity patterns in a model for the sub-thalamopallidal network of the basal ganglia. J Neurosci 2002; 22(7)2963–2976
  • Thomas MJ, Beurrier C, Bonci A, Malenka RC. Long-term depression in the nucleus accumbens: a neural correlate of behavioral sensitization to cocaine. Nat Neurosci 2001; 4(12)1217–1223
  • Wichmann T, Bergman H, DeLong MR. The primate subthalamic nucleus. I. Functional properties in intact animals. J Neurophysiol 1994; 72(2)494–506
  • Wichmann T, DeLong MR. Pathophysiology of Parkinson’s disease: The MPTP primate model of the human disorder. Ann NY Acad Sci 2003; 991: 199–213
  • Wickens JR, Kotter R. Cellular models of reinforcement. Models of information processing in the basal ganglia, JC Houk, JL Davis, DG Beiser. MIT Press, Cambridge, MA 1995; 187–214
  • Wickens JR, Reynolds JN, Hyland BI. Neural mechanisms of reward-related motor learning. Curr Opin Neurobiol 2003; 13(6)685–690
  • Williams D, Tijssen M, Van Bruggen G, et al. Dopamine-dependent changes in the functional connectivity between basal ganglia and cerebral cortex in humans. Brain 2002; 125(Pt7)1558–1569
  • Windels F, Bruet N, Poupard A, et al. Effects of high frequency stimulation of subthalamic nucleus on extracellular glutamate and GABA in substantia nigra and globus pallidus in the normal rat. Eur J Neurosci 2000; 12(11)4141–4146
  • Wolf JA, Moyer JT, Lazarewicz MT, et al. NMDA/AMPA ratio impacts state transitions and entrainment to oscillations in a computational model of the nucleus accumbens medium spiny projection neuron. J Neurosci 2005; 25(40)9080–9095
  • Zheng T, Wilson CJ. Corticostriatal combinatorics: The implications of corticostriatal axonal arborizations. J Neurophysiol 2002; 87(2)1007–1017

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.