410
Views
1
CrossRef citations to date
0
Altmetric
Reviews

The development of biophysical models of the electrically stimulated auditory nerve: Single-node and cable models

&
Pages 135-156 | Received 24 Nov 2015, Accepted 01 Mar 2016, Published online: 12 Apr 2016

References

  • Adamson CL, Reid Ma, Mo ZL, Bowne-English J, Davis RL. 2002. Firing features and potassium channel content of murine spiral ganglion neurons vary with cochlear location. J Comp Neurol. 447:331–350.
  • Bialek W, Rieke F, de Ruyter van Steveninck RR, Warland D. 1991. Reading a neural code. Science (New York, N.Y.) 252:1854–1857.
  • Boulet J, White M, Bruce IC. 2016. Temporal considerations for stimulating spiral ganglion neurons with cochlear implants. J Assoc Res Otolaryngology 17(1):1–17.
  • Briaire JJ, Frijns JH. 2005. Unraveling the electrically evoked compound action potential. Hearing Res. 205(1–2):143–56.
  • Briaire JJ, Frijns JH. 2006. The consequences of neural degeneration regarding optimal cochlear implant position in scala tympani: a model approach. Hearing Res. 214(1–2):17–27.
  • Brown MC. 1987. Morphology of labeled efferent fibers in the guinea pig cochlea. J Comp Neurol. 260:605–18.
  • Bruce IC, Irlicht LS, White MW, O’Leary SJ, Dynes S, Javel E, Clark GM. 1999. A stochastic model of the electrically stimulated auditory nerve: pulse-train response. IEEE Trans Bio-med Eng. 46:630–637.
  • Cartee LA. 2000. Evaluation of a model of the cochlear neural membrane. II: comparison of model and physiological measures of membrane properties measured in response to intrameatal electrical stimulation. Hearing Res. 146(1–2):153–166.
  • Cartee LA. 2006. Spiral ganglion cell site of excitation II: numerical model analysis. Hearing Res. 215:22–30.
  • Cartee LA, van den Honert C, Finley CC, Miller RL. 2000. Evaluation of a model of the cochlear neural membrane. I. Physiological measurement of membrane characteristics in response to intrameatal electrical stimulation. Hearing Res. 146(1–2):143–152.
  • Chiu SY, Ritchie JM, Rogart RB, Stagg D. 1979. A quantitative description of membrane currents in rabbit myelinated nerve. J Physiol. 292:149–166.
  • Cohen LT. 2009. Practical model description of peripheral neural excitation in cochlear implant recipients: 5. Refractory recovery and facilitation. Hearing Res. 248(1–2):1–14.
  • Colombo J, Parkins CW. 1987. A model of electrical excitation of the mammalian auditory-nerve neuron. Hearing Res. 31(3):287–311.
  • Colquhoun C, Hawkes AG. 1995. The principles of the stochastic interpretation of ion-channel mechanisms. In: Single-channel recording. New York: Springer. p. 397–482.
  • Crank J, Nicolson P. 1996. A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type. Adv Comput Math 6(1):207–226.
  • Dekker DMT, Briaire JJ, Frijns JHM. 2014. The impact of internodal segmentation in biophysical nerve fiber models. J Comput Neurosci. 37(2):307–15.
  • Finley C, Wilson B, White M. 1990. Models of neural responsiveness to electrical stimulation. In: Miller J, Spelmen F, editors. Cochlear implants: models of the electrically stimulated ear. New York: Springer. p. 55–93.
  • FitzHugh R. 1962. Computation of impulse initiation and saltatory conduction in a myelinated nerve fiber. Biophys J. 2:11–21.
  • Fox RF, Lu YN. 1994. Emergent collective behavior in large numbers of globally coupled independently stochastic ion channels. Phys Rev. E 49:3421–3431.
  • Frankenhaeuser B, Huxley AF. 1964. The action potential in the myelinated nerve fibre of Xenopus laevis as computed on the basis of voltage clamp data. J Physiol. 171:302–315.
  • Frijns JH, de Snoo SL, Schoonhoven R. 1995. Potential distributions and neural excitation patterns in a rotationally symmetric model of the electrically stimulated cochlea. Hearing Res. 87(1–2):170–186.
  • Frijns JH, de Snoo SL, Ten Kate JH. 1996. Spatial selectivity in a rotationally symmetric model of the electrically stimulated cochlea. Hearing Res. 95(1–2):33–48.
  • Frijns JH, Mooij J, ten Kate JH. 1994. A quantitative approach to modeling mammalian myelinated nerve fibers for electrical prosthesis design. IEEE Trans Bio-med Eng. 41(6):556–66.
  • Frijns JH, ten Kate JH. 1994. A model of myelinated nerve fibres for electrical prosthesis design. Med Bio Eng Comp. 32:391–8.
  • Furman AC, Kujawa SG, Liberman MC. 2013. Noise-induced cochlear neuropathy is selective for fibers with low spontaneous rates. J Neurophysiol. 110:577–86.
  • Galvin JJ, Fu QJ. 2009. Influence of stimulation rate and loudness growth on modulation detection and intensity discrimination in cochlear implant users. Hearing Res. 250(1–2):46–54.
  • Gillespie DT. 1977. Exact Stochastic Simulation of couple chemical reactions. J Phys Chem. 81:2340–2361.
  • Gleich O, Wilson S. 1993. The diameters of guinea pig auditory nerve fibres: distribution and correlation with spontaneous rate. Hearing Res. 71:69–79.
  • Goldman L, Albus JS. 1968. Computation of impulse conduction in myelinated fibers; theoretical basis of the velocity-diameter relation. Biophys J. 8:596–607.
  • Goldwyn J, Imennov N, Famulare M, Shea-Brown E. 2011. Stochastic differential equation models for ion channel noise in Hodgkin–Huxley neurons. Physl Rev E - Stat, Nonlinear Soft Matter Phys. 83:1–16.
  • Goldwyn JH, Rubinstein JT, Shea-Brown E. 2012. A point process framework for modeling electrical stimulation of the auditory nerve. J Neurophysiol 108(5):1430–1452.
  • Goldwyn JH, Shea-Brown E, Rubinstein JT. 2011. Encoding and decoding amplitude-modulated cochlear implant stimuli—a point process analysis. J Comp Neurosci. 28(3):405–424.
  • Groff JR, DeRemigio H, Smith GD. 2009. Markov chain models of ion channels and calcium release sites. In: Liang C and Lord GJ, editors. Stochastic methods in neuroscience. New York: Oxford University Press. p. 29–64.
  • Hodgkin A, Huxley A. 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 117(4):500–544.
  • Imennov NS, Rubinstein JT. 2009. Stochastic population model for electrical stimulation of the auditory nerve. IEEE Trans Biomed Eng. 56(10):2493–2501.
  • Imennov NS, Won JH, Drennan WR, Jameyson E, Rubinstein JT. 2013. Detection of acoustic temporal fine structure by cochlear implant listeners: behavioral results and computational modeling. Hearing Res. 298:60–72.
  • Javel E, Clark G. 1987. Responses of cat auditory nerve fibers to biphasic electrical current pulses. Annals of Otology, Rhinology and Laryngology 96:26–30.
  • Kiang N, Moxon E. 1972. Physiological considerations in artificial stimulation of the inner ear. Annals of Otology, Rhinology and Laryngology 81(5):714–30.
  • Kiang N, Watanabe T, Thomas E, Clark L. 1965. Discharge patterns of single fibers in the cat’s auditory nerve. M.I.T. Research Monograph no. 35.
  • Koch C. 1999. Biophysics of computation: information processing in single neurons. New York: Oxford University Press.
  • Kujawa SG, Liberman MC. 2009. Adding insult to injury: cochlear nerve degeneration after “temporary” noise-induced hearing loss. J Neurosci Off J Soc Neurosci. 29(45):14077–14085.
  • Leake PA, Hradek GT. 1988. Cochlear pathology of long term neomycin induced deafness in cats. Hearing Res. 33:11–33.
  • Liberman MC, Oliver ME. 1984. Morphometry of intracellularly labeled neurons of the auditory nerve: correlations with functional properties. J Comp Neurol. 223:163–176.
  • Lin HW, Furman AC, Kujawa SG, Liberman MC. 2011. Primary neural degeneration in the guinea pig cochlea after reversible noise-induced threshold shift. J Assoc Res Otolaryngology 12(5):605–616.
  • Litvak L, Delgutte B, Eddington D. 2001. Auditory nerve fiber responses to electric stimulation: modulated and unmodulated pulse trains. J Acoust Soc Am. 110:368–379.
  • Litvak L, Delgutte B, Eddington D. 2003. Improved temporal coding of sinusoids in electric stimulation of the auditory nerve using desynchronizing pulse trains. JAcoust Soc Am. 114:2079–2098.
  • Matsuoka AJ, Rubinstein JT, Abbas PJ, Miller CA. 2001. The effects of interpulse interval on stochastic properties of electrical stimulation: models and measurements. IEEE Trans Bio-med Eng. 48(4):416–24.
  • McIntyre CC, Richardson AG, Grill WM. 2002. Modeling the excitability of mammalian nerve fibers: influence of afterpotentials on the recovery cycle. J Neurophysiol. 87(2):995–1006.
  • McNeal DR. 1976. Analysis of a model for excitation of myelinated nerve. IEEE Trans Biomed Eng BME-23(4):329–337.
  • Miller CA, Abbas PJ, Nourski KV, Hu N, Robinson BK. 2003. Electrode configuration influences action potential initiation site and ensemble stochastic response properties. Hearing Res. 175:200–214.
  • Miller CA, Abbas PJ, Robinson BK, Rubinstein JT, Matsuoka AJ. 1999. Electrically evoked single-fiber action potentials from cat: responses to monopolar, monophasic stimulation. Hearing Res. 130:197–218.
  • Miller CA, Abbas PJ, Rubinstein JT. 1999. An empirically based model of the electrically evoked compound action potential. Hearing Res. 135:1–18.
  • Miller CA, Hu N, Zhang F, Robinson BK, Abbas PJ. 2008. Changes across time in the temporal responses of auditory nerve fibers stimulated by electric pulse trains. J Assoc Res Otolaryngology 9(1):122–37.
  • Miller CA, Woo J, Abbas PJ, Hu N, Robinson BK. 2011. Neural masking by sub-threshold electric stimuli: animal and computer model results. J Assoc Res Otolaryngology 12(2):219–32.
  • Mino H, Rubinstein JT, Miller CA, Abbas PJ. 2004. Effects of electrode-to-fiber distance on temporal neural response with electrical stimulation. IEEE Trans Bio-med Eng. 51(1):13–20.
  • Mino H, Rubinstein JT, White JA. 2002. Comparison of algorithms for the simulation of action potentials with stochastic sodium channels. Ann Biomed Eng. 30(4):578–587.
  • Mo Z-L, Adamson CL, Davis RL. 2002. Dendrotoxin-sensitive K(+) currents contribute to accommodation in murine spiral ganglion neurons. J Physiol. 542:763–778.
  • Moore BCJ. 2003. Coding of sounds in the auditory system and its relevance to signal processing and coding in cochlear implants. Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology 24(2):243–54.
  • Morse RP, Evans EF. 1999. Additive noise can enhance temporal coding in a computational model of analogue cochlear implant stimulation. Hearing Res. 133(1–2):107–119.
  • Motz H, Rattay F. 1986. A study of the application of the Hodgkin–Huxley and the Frankenhaeuser-Huxley model for electrostimulation of the acoustic nerve. Neurosci. 18(3):699–712.
  • Moxon EC. 1971. Neural and mechanical responses to electrical stimulation of the cat’s inner ear. Cambridge, MA: MIT.
  • Negm MH, Bruce IC. 2008. Effects of I h and I KLT on the response of the auditory nerve to electrical stimulation in a stochastic Hodgkin–Huxley Model. IEEE. 2008: 5539–5542.
  • Negm MH, Bruce IC. 2014. The effects of HCN and KLT ion channels on adaptation and refractoriness in a stochastic auditory nerve model. IEEE Trans Biomed Eng BME. 61(11):2749–2759.
  • Parkins CW, Colombo J. 1987. Auditory-nerve single-neuron thresholds to electrical stimulation from scala tympani electrodes. Hearing Res. 31:267–85.
  • Rattay F. 1989. Analysis of models for extracellular fiber stimulation. IEEE Trans Bio-med Eng. 36(7):676–82.
  • Rattay F. 1999. The basic mechanism for the electrical stimulation of the nervous system. Neurosci. 89(2):335–346.
  • Rattay F, Aberham M. 1993. Modeling axon membranes for functional electrical stimulation. IEEE Trans Bio-med Eng. 40(12):1201–9.
  • Rattay F, Lutter P, Felix H. 2001. A model of the electrically excited human cochlear neuron I. Contribution of neural substructures to the generation and propagation of spikes. Hearing Res. 153:43–63.
  • Reid G, Scholz A, Bostock H, Vogel W. 1999. Human axons contain at least five types of voltage-dependent potassium channel. J Physiol. 518(Pt 3):681–96.
  • Reilly JP, Freeman VT, Larkin WD. 1985. Sensory effects of transient electrical stimulation—evaluation with a neuroelectric model. IEEE Trans Biomed Eng BME. 32(12):1001–1011.
  • Richardson AG, McIntyre CC, Grill WM. 2000. Modelling the effects of electric fields on nerve fibres: influence of the myelin sheath. Med Bio Eng Comp. 38(4):438–446.
  • Rinzel J. 1990. Electrical excitability of cells, theory, and experiment: review of the foundation and an update. Bull Math Biol. 52(1):5: 538-55523.
  • Röper J, Schwarz JR. 1989. Heterogeneous distribution of fast and slow potassium channels in myelinated rat nerve fibres. J Physiol. 416:93–110.
  • Rubinstein JT. 1991. Analytical theory for extracellular electrical stimulation of nerve with focal electrodes. Biophysical Journal. 60(September):538–555.
  • Rubinstein JT. 1995. Threshold fluctuations in node of Ranvier in an N sodium channel model of the node of Ranvier. Biophysical Journal. 68(March):779–785.
  • Rubinstein JT. 2004. How cochlear implants encode speech. Curr Opin Otolaryngol Head Neck Surg. 12:444–448.
  • Rubinstein JT, Wilson BS, Finley CC, Abbas PJ. 1999. Pseudospontaneous activity : stochastic independence of auditory nerve fibers with electrical stimulation. Hearing Res. 127:108–118.
  • Rushton WAH. 1951. A theory of the effects of fibre size in medullated nerve. J Physiol. 115:101–122.
  • Scholz A, Reid G, Vogel W, Bostock H. 1993. Ion channels in human axons. J Neurophysiol. 70:1274–9.
  • Schwarz JR, Eikhof G. 1987. Na currents and action potentials in rat myelinated nerve fibres at 20 and 37 degrees C. Pflugers Archiv : European J Physiol. 409:569–577.
  • Schwarz JR, Reid G, Bostock H. 1995. Action potentials and membrane currents in the human node of Ranvier. Pflugers Archiv European J Physiol. 430:283–292.
  • Shannon RV. 1992. Temporal modulation transfer functions in patients with cochlear implants. J Acoust Soc Am. 91(4 Pt 1):2156–64.
  • Shepherd RK, Javel E. 1997. Electrical stimulation of the auditory nerve. I. Correlation of physiological responses with cochlear status. Hearing Res. 108:112–144.
  • Smit JE, Hanekom T, Hanekom JJ. 2008. Predicting action potential characteristics of human auditory nerve fibres through modification of the Hodgkin–Huxley equations. South Afr J Sci. 104(7–8):284–292.
  • Smit JE, Hanekom T, van Wieringen A, Wouters J, Hanekom JJ. 2010. Threshold predictions of different pulse shapes using a human auditory nerve fibre model containing persistent sodium and slow potassium currents. Hearing Res. 269(1–2):12–22.
  • Snel-Bongers J, Briaire JJ, Van Der Veen EH, Kalkman RK, Frijns JHM. 2013. Threshold levels of dual electrode stimulation in cochlear implants. J Assoc Res Otolaryngol. 14:781–790.
  • Spoendlin H, Schrott A. 1989. Analysis of the human auditory nerve. Hearing Res. 43(1):25–38.
  • Sweeney J, Mortimer J, Durand D. 1987. Modeling of mammalian myelinated nerve for functional neuromuscular stimulation. In IEEE 9th Annual Conference of the Engineering in Medicine and Biology Society. p. 1577–1578.
  • Van den Honert C, Stypulkowski PH. 1984. Physiological properties of the electrically stimulated auditory nerve. II. . Single fiber recordings. Hearing Res. 14:225–243.
  • van den Honert C, Stypulkowski PH. 1987a. Temporal response patterns of single auditory nerve fibers elicited by periodic electrical stimuli. Hearing Res. 29:207–222.
  • van den Honert C, Stypulkowski PH. 1987b. Single fiber mapping of spatial excitation patterns in the electrically stimulated auditory nerve. Hearing Res. 29:195–206.
  • van Rossum MC. 2001. A novel spike distance. Neural Comp. 13(4):751–763.
  • Verveen A, Derksen H. 1965. Fluctuations in membrane potential of axons and the problem of coding. Kybernetic 2(4):152–160.
  • Victor JD, Purpura KP. 1996. Nature and precision of temporal coding in visual cortex: a metric-space analysis. J Neurophysiol. 76(2):1310–1326.
  • Wesselink W, Holsheimer J, Boom H. 1997. A model of the electrical behaviour of myelinated sensory nerve fibres based on human data. Med Bio Eng Comp. 37(2):228–235.
  • White JA, Rubinstein JT, Kay AR. 2000. Channel noise in neurons. Trends Neurosci. 23:131–7.
  • Woo J, Miller CA, Abbas PJ. 2009a. Biophysical model of an auditory nerve fiber with a novel adaptation component. IEEE Trans Biomed Eng. 56(9):2177–2180.
  • Woo J, Miller CA, Abbas PJ 2009b. Simulation of the electrically stimulated cochlear neuron: modeling adaptation to trains of electric pulses. IEEE Trans Bio-med Eng. 56(5):1348–59.
  • Woo J, Miller CA, Abbas PJ. 2010. The dependence of auditory nerve rate adaptation on electric stimulus parameters, electrode position, and fiber diameter: a computer model study. J Assoc Res Otolaryngol. 11:283–296.
  • Zhang F, Miller CA, Robinson BK, Abbas PJ, Hu N. 2007. Changes across time in spike rate and spike amplitude of auditory nerve fibers stimulated by electric pulse trains. J Assoc Res Otolaryngol. 8(3):356–72.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.