3,265
Views
2
CrossRef citations to date
0
Altmetric
Reviews

Stimulation strategies and electrode design in computational models of the electrically stimulated cochlea: An overview of existing literature

, &
Pages 107-134 | Received 21 Dec 2015, Accepted 08 Mar 2016, Published online: 02 May 2016

References

  • Aschendorff A, Kromeier J, Klenzner T, Laszig R. 2007. Quality control after insertion of the nucleus contour and contour advance electrode in adults. Ear Hear. 28:75S–79S.
  • Aschendorff A, Kubalek R, Turowski B, Zanella F, Hochmuth A, Schumacher M, Klenzner T, Laszig R. 2005. Quality control after cochlear implant surgery by means of rotational tomography. Otol Neurotol. 26:34–37.
  • Badenhorst W, Malherbe TK, Hanekom T, Hanekom JJ. 2015. Development of a voltage dependent current noise algorithm for conductance based stochastic modelling of auditory nerve fibre populations in compound models. Conference on Implantable Auditory Prostheses; 2015; Pacific Grove, CA.
  • Black RC, Clark GM. 1980. Differential electrical excitation of the auditory nerve. J Acoust Soc Am 67:868–874.
  • Black RC, Clark GM, Tong YC, Patrick JF. 1983. Current distributions in cochlear stimulation. Ann NY Acad Sci. 405:137–145.
  • Bonham BH, Litvak LM. 2008. Current focusing and steering: modeling, physiology, and psychophysics. Hear Res. 242:141–153.
  • Briaire JJ, Frijns JHM. 2000. Field patterns in a 3D tapered spiral model of the electrically stimulated cochlea. Hear Res. 148:18–30.
  • Briaire JJ, Frijns JHM. 2005. Unraveling the electrically evoked compound action potential. Hear Res. 205:143–156.
  • Briaire JJ, Frijns JHM. 2006. The consequences of neural degeneration regarding optimal cochlear implant position in scala tympani: a model approach. Hear Res. 214:17–27.
  • Bruce IC, Irlicht LS, White MW, O’Leary SJ, Dynes S, Javel E, Clark GM. 1999b. A stochastic model of the electrically stimulated auditory nerve: pulse-train response. IEEE Trans Biomed Eng. 46:630–637.
  • Bruce IC, White MW, Irlicht LS, O’Leary SJ, Dynes S, Javel E, Clark GM. 1999a. A stochastic model of the electrically stimulated auditory nerve: single-pulse response. IEEE Trans Biomed Eng. 46:617–629.
  • Carlyon RP, Macherey O, Frijns JHM, Axon PR, Kalkman RK, Boyle P, Baguley DM, Briggs J, Deeks JM, Briaire JJ, et al. 2010. Pitch comparisons between electrical stimulation of a cochlear implant and acoustic stimuli presented to a normal-hearing contralateral ear. J Assoc Res Otolaryngol. 11:625–640.
  • Choi CTM, Hsu CH. 2009. Conditions for generating virtual channels in cochlear prosthesis systems. Ann Biomed Eng. 37:614–624.
  • Choi CTM, Lai WD, Chen YB. 2004. Optimization of cochlear implant electrode array using genetic algorithms and computational neuroscience models. IEEE Trans Magn. 40:639–642.
  • Choi CTM, Lai WD, Chen YB. 2005. Comparison of the electrical stimulation performance of four cochlear implant electrodes. IEEE Trans Magn. 41:1920–1923.
  • Choi CTM, Lai WD, Lee SS. 2006. A novel approach to compute the impedance matrix of a cochlear implant system incorporating an electrode-tissue interface based on finite element method. IEEE Trans Magn. 42:1375–1378.
  • Choi CTM, Wang SP. 2014. Modeling ECAP in cochlear implants using the FEM and equivalent circuits. IEEE Trans Magn. 50:7001004.
  • Clopton BM, Spelman FA. 1995. Electrode configuration and spread of neural excitation: compartmental models of spiral ganglion cells. Ann Otol Rhinol Laryngol Suppl. 166:115–118.
  • Cohen LT. 2009a. Practical model description of peripheral neural excitation in cochlear implant recipients: 1. Growth of loudness and ECAP amplitude with current. Hear Res. 247:87–99.
  • Cohen LT. 2009b. Practical model description of peripheral neural excitation in cochlear implant recipients: 2. Spread of the effective stimulation field (ESF), from ECAP and FEA. Hear Res. 247:100–111.
  • Cohen LT. 2009c. Practical model description of peripheral neural excitation in cochlear implant recipients: 3. ECAP during bursts and loudness as function of burst duration. Hear Res. 247:112–121.
  • Cohen LT. 2009d. Practical model description of peripheral neural excitation in cochlear implant recipients: 4. Model development at low pulse rates: general model and application to individuals. Hear Res. 248:15–30.
  • Cohen LT. 2009e. Practical model description of peripheral neural excitation in cochlear implant recipients: 5. Refractory recovery and facilitation. Hear Res. 248:1–14.
  • Colombo J, Parkins CW. 1987. A model of electrical excitation of the mammalian auditory-nerve neuron. Hear Res. 31:287–311.
  • Dekker DMT, Briaire JJ, Frijns JHM. 2014. The impact of internodal segmentation in biophysical nerve fiber models. J Comput Neurosci. 37:307–315.
  • Finley CC, Holden TA, Holden LK, Whiting BR, Chole RA, Neely GJ, Hullar TE, Skinner MW. 2008. Role of electrode placement as a contributor to variability in cochlear implant outcomes. Otol Neurotol. 29:920–928.
  • Finley CC, Wilson BS, White MW. 1990. Models of neural responsiveness to electrical stimulation. In: Miller JM, Spelman FA, editors. Cochlear implants: models of the electrically stimulated ear. New York (NY): Springer; p. 55–96.
  • Frankenhaeuser B, Huxley AF. 1964. The action potential in the myelinated nerve fiber of xenopus laevis as computed on the basis of voltage clamp data. J Physiol. 171:302–315.
  • Frijns JHM, Briaire JJ, Grote JJ. 2001. The importance of human cochlear anatomy for the results of modiolus-hugging multichannel cochlear implants. Otol Neurotol. 22, 340–349.
  • Frijns JHM, de Snoo SL, Schoonhoven R. 1995. Potential distributions and neural excitation patterns in a rotationally symmetric model of the electrically stimulated cochlea. Hear Res. 87:170–86.
  • Frijns JHM, de Snoo SL, ten Kate JH. 1996. Spatial selectivity in a rotationally symmetric model of the electrically stimulated cochlea. Hear Res. 95:33–48.
  • Frijns JHM, Dekker DMT, Briaire JJ. 2011. Neural excitation patterns induced by phased-array stimulation in the implanted human cochlea. Acta Otolaryngol. 131:362–370.
  • Frijns JHM, Kalkman RK, Briaire JJ. 2009b. Stimulation of the facial nerve by intracochlear electrodes in otosclerosis: a computer modeling study. Otol Neurotol. 30:1168–1174.
  • Frijns JHM, Kalkman RK, Vanpoucke FJ, Bongers JS, Briaire JJ. 2009a. Simultaneous and non-simultaneous dual electrode stimulation in cochlear implants: evidence for two neural response modalities. Acta Otolaryngol. 129:433–439.
  • Frijns JHM, Van Gendt MJ, Kalkman RK, Briaire JJ. 2015. Modeled neural response patterns from various speech coding strategies. Conference on Implantable Auditory Prostheses; 2015; Pacific Grove, CA.
  • Girzon G. 1987. Investigation of current flow in the inner ear during electrical stimulation of intracochlear electrodes [M.Sc. thesis]. Cambridge (MA): Massachusetts Institute of Technology.
  • Goldwyn JH, Bierer SM, Bierer JA. 2010. Modeling the electrode-neuron interface of cochlear implants: effects of neural survival, electrode placement, and the partial tripolar configuration. Hear Res. 268:93–104.
  • Hanekom T. 2001. Three-dimensional spiraling finite element model of the electrically stimulated cochlea. Ear Hear. 22:300–315.
  • Hanekom T. 2005. Modelling encapsulation tissue around cochlear implant electrodes. Med Biol Eng Comput. 43:47–55.
  • Holden LK, Finley CC, Firszt JB, Holden TA, Brenner C, Potts LG, Gotter BD, Vanderhoof SS, Mispagel K, Heydebrand G, Skinner MW. 2013. Factors affecting open-set word recognition in adults with cochlear implants. Ear Hear. 34, 342–60.
  • Imennov NS, Rubinstein JT. 2009. Stochastic population model for electrical stimulation of the auditory nerve. IEEE Trans Biomed Eng. 56:2493–2501.
  • Inguva C, Wong P, Sue A, McEwan A, Carter P. 2015. Frequency-dependent simulation of volume conduction in a linear model of the implanted cochlea. Conference proceedings: 7th International IEEE/EMBS Conference on Neural Engineering; 2015; Montpellier. 426–429.
  • Jolly CN, Spelman FA, Clopton BM. 1996. Quadrupolar stimulation for Cochlear prostheses: modeling and experimental data. IEEE Trans Biomed Eng. 43:857–865.
  • Kalkman RK, Briaire JJ, Dekker DMT, Frijns JHM. 2014. Place pitch versus electrode location in a realistic computational model of the implanted human cochlea. Hear Res. 315:10–24.
  • Kalkman RK, Briaire JJ, Frijns JHM. 2015. Current focussing in cochlear implants: an analysis of neural recruitment in a computational model. Hear Res. 322:89–98.
  • Kral A, Hartmann R, Mortazavi D, Klinke R. 1998. Spatial resolution of cochlear implants: the electrical field and excitation of auditory afferents. Hear Res. 121:11–28.
  • Kujawa SG, Liberman MC. 2009. Adding insult to injury: cochlear nerve degeneration after “temporary” noise-induced hearing loss. J Neurosci. 29:14077–14085.
  • Lai WD, Choi CTM. 2007. Incorporating the electrode-tissue interface to cochlear implant models. IEEE Trans Magn. 43:1721–1724.
  • Lin HW, Furman AC, Kujawa SG, Liberman MC. 2011. Primary neural degeneration in the Guinea pig cochlea after reversible noise-induced threshold shift. J Assoc Res Otolaryngol. 12:605–616.
  • Litvak LM, Spahr AJ, Emadi G. 2007. Loudness growth observed under partially tripolar stimulation: model and data from cochlear implant listeners. J Acoust Soc Am. 122:967–81.
  • Macherey O, Carlyon RP, van WA, Deeks JM, Wouters J. 2008. Higher sensitivity of human auditory nerve fibers to positive electrical currents. J Assoc Res Otolaryngol. 9:241–251.
  • Macherey O, van WA, Carlyon, RP, Dhooge I, Wouters J. 2010. Forward-masking patterns produced by symmetric and asymmetric pulse shapes in electric hearing. J Acoust Soc Am. 127:326–338.
  • Malherbe TK, Hanekom T, Hanekom JJ. 2013. Can subject-specific single-fibre electrically evoked auditory brainstem response data be predicted from a model? Med Eng Phys. 35:926–936.
  • Malherbe TK, Hanekom T, Hanekom JJ. 2015a. The effect of the resistive properties of bone on neural excitation and electric fields in cochlear implant models. Hear Res. 327:126–135.
  • Malherbe TK, Hanekom T, Hanekom JJ. 2015b. Constructing a three-dimensional electrical model of a living cochlear implant user’s cochlea. Int J Numer Method Biomed Eng. [Epub ahead of print].
  • McNeal DR. 1976. Analysis of a model for excitation of myelinated nerve. IEEE Trans Biomed Eng. 23:329–337.
  • Nogueira W, Würfel W, Büchner A. 2014. Development of a model of the electrically stimulated auditory nerve. Biomed Eng-Biomed Tech. 59:S786–S789.
  • O’Leary SJ, Black RC, Clark GM. 1985. Current distributions in the cat cochlea: a modelling and electrophysiological study. Hear Res. 18, 273–281.
  • Pau HW, Grunbaum A, Ehrt K, Dahl R, Just T, van Rienen U. 2014. Would an endosteal CI-electrode make sense? Comparison of the auditory nerve excitability from different stimulation sites using ESRT measurements and mathematical models. Eur Arch Otorhinolaryngol. 271:1375–1381.
  • Rattay F. 1986. Analysis of models for external stimulation of axons. IEEE Trans Biomed Eng. 33:974–947.
  • Rattay F. 1987. Ways to approximate current–distance relations for electrically stimulated fibers. J Theor Biol. 125:339–349.
  • Rattay F, Lutter P, Felix H. 2001a. A model of the electrically excited human cochlear neuron. I. Contribution of neural substructures to the generation and propagation of spikes. Hear Res. 153:43–63.
  • Rattay F, Leao RN, Felix H. 2001b. A model of the electrically excited human cochlear neuron. II. Influence of the three-dimensional cochlear structure on neural excitability. Hear Res. 153:64–79.
  • Reilly JP, Freeman VT, Larkin WD. 1985. Sensory effects of transient electrical-stimulation—evaluation with a neuroelectric model. IEEE Trans Biomed Eng. 32:1001–1011.
  • Rodenhiser KL, Spelman FA. 1995. A method for determining the driving currents for focused stimulation in the cochlea. IEEE Trans Biomed Eng. 42:337–342.
  • Rubinstein JT, Spelman FA, Soma M, Suesserman MF. 1987. Current-density profiles of surface mounted and recessed electrodes for neural prostheses. IEEE Trans Biomed Eng. 34:864–875.
  • Rubinstein JT, Wilson BS, Finley CC, Abbas PJ. 1999. Pseudospontaneous activity: stochastic independence of auditory nerve fibers with electrical stimulation. Hear Res. 127:108–118.
  • Sapozhnikov A. 1990. Computer modelling of the implanted cochlea [B.Sc. thesis]. Parkville, Victoria, Australia: University of Melbourne.
  • Shepherd RK, Hatsushika S, Clark GM. 1993. Electrical stimulation of the auditory nerve: the effect of electrode position on neural excitation. Hear Res. 66:108–120.
  • Skinner MW, Holden TA, Whiting BR, Voie AH, Brunsden B, Neely JG, Saxon EA, Hullar TE, Finley CC. 2007. In vivo estimates of the position of advanced bionics electrode arrays in the human cochlea. Ann Otol Rhinol Laryngol Suppl 197:2–24.
  • Smit JE, Hanekom T, Hanekom JJ. 2009. Estimation of stimulus attenuation in cochlear implants. J Neurosci Methods 180:363–73.
  • Snel-Bongers J, Briaire JJ, Van der Veen EH, Kalkman RK, Frijns JHM. 2013. Threshold levels of dual electrode stimulation in cochlear implants. J Assoc Res Otolaryngol. 14:781–790.
  • Spelman FA, Clopton BM, Pfingst BE. 1982. Tissue impedance and current flow in the implanted ear. Implications for the cochlear prosthesis. Ann Otol Rhinol Laryngol Suppl. 98:3–8.
  • Spelman FA, Pfingst BE, Clopton BM, Jolly CN, Rodenhiser KL. 1995. Effects of electrical current configuration on potential fields in the electrically stimulated cochlea: field models and measurements. Ann Otol Rhinol Laryngol Suppl. 166:131–136.
  • Stakhovskaya O, Sridhar D, Bonham BH, Leake PA. 2007. Frequency map for the human cochlear spiral ganglion: implications for cochlear implants. J Assoc Res Otolaryngol. 8:220–233.
  • Strelioff D. 1973. A computer simulation of the generation and distribution of cochlear potentials. J Acoust Soc Am. 54:620–629.
  • Sue A, Tran P, SP Wang, Li Q, Carter P. 2013. Time-domain finite element models of electrochemistry in intracochlear electrodes. Conference proceedings: 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 2013; Osaka, Japan. 1554–1557.
  • Sue A, Wong P, Tran P, Li Q, Carter P. 2015. Modeling the effects of electrode recessing on electrochemical safety in cochlear implant electrodes. Conference proceedings: 7th International IEEE/EMBS Conference on Neural Engineering; 2015; France: Montpellier; 490–493.
  • Suesserman MF. 1992. Noninvasive microelectrode measurement technique for performing quantitative, in vivo measurements of inner ear tissue impedances [Ph.D. thesis]. Seattle (WA): University of Washington.
  • Suesserman MF, Spelman FA. 1993. Lumped-parameter model for in vivo cochlear stimulation. IEEE Trans Biomed Eng. 40:237–245.
  • Tognola G, Pesatori A, Norgia M, Parazzini M, Di Rienzo L, Ravazzani P, Burdo S, Grandori F, Svelto C. 2007. Numerical modeling and experimental measurements of the electric potential generated by cochlear implants in physiological tissues. IEEE Trans Instrum Meas. 56,:87–93.
  • Tran P, Sue A, Wong P, Li Q, Carter P. 2015. Development of heather for cochlear implant stimulation using a new modeling workflow. IEEE Trans Biomed Eng. 62:728–35.
  • Van Compernolle D. 1985. Speech processing strategies for a multichannel cochlear prosthesis [PhD thesis]. Stanford (CA): Stanford University.
  • Van den Honert C, Kelsall DC. 2007. Focused intracochlear electric stimulation with phased array channels. J Acoust Soc Am. 121:3703–3716.
  • Van der Marel KS, Briaire JJ, Wolterbeek R, Verbist BM, Frijns JHM. 2016. Development of insertion models predicting cochlear implant electrode position. Ear Hear. (in press).
  • Vanpoucke FJ, Zarowski AJ, Peeters SA. 2004. Identification of the impedance model of an implanted cochlear prosthesis from intracochlear potential measurements. IEEE Trans Biomed Eng. 51:2174–2183.
  • Wan G, Corfas G. 2015. No longer falling on deaf ears: mechanisms of degeneration and regeneration of cochlear ribbon synapses. Hear Res. 329:1–10.
  • Wanna GB, Noble JH, Carlson ML, Gifford RH, Dietrich MS, Haynes DS, Dawant BM, Labadie RF. 2014. Impact of electrode design and surgical approach on scalar location and cochlear implant outcomes. Laryngoscope. 124(Suppl 6):S1–S7.
  • Westen AA, Dekker DMT, Briaire JJ, Frijns JHM. 2011. Stimulus level effects on neural excitation and eCAP amplitude. Hear Res. 280:166–76.
  • Whiten DM. 2007. Electro-anatomical models of the cochlear implant [PhD thesis]. Cambridge (MA): Massachusetts Institute of Technology.
  • Wilson BS, Finley CC, Lawson DT, Wolford RD, Eddington DK, Rabinowitz WM. 1991. Better speech recognition with cochlear implants. Nature. 352:236–238.
  • Wong P, George S, Tran P, Sue A, Carter P, Li Q. 2016. Development and validation of a high-fidelity finite-element model of monopolar stimulation in the implanted guinea pig cochlea. IEEE Trans Biomed Eng. 63:188–198.
  • Woo J, Miller CA, Abbas PJ. 2010. The dependence of auditory nerve rate adaptation on electric stimulus parameters, electrode position, and fiber diameter: a computer model study. J Assoc Res Otolaryngol. 11:283–296.