103
Views
2
CrossRef citations to date
0
Altmetric
EFFECTS OF EMF EXPOSURE

Effects of two different waveforms of ELF MF on bioelectrical activity of antennal lobe neurons of Morimus funereus (Insecta, Coleoptera)

, , &
Pages 435-442 | Received 03 Jul 2014, Accepted 16 Dec 2014, Published online: 10 Feb 2015

References

  • Akdag MZ, Bilgin MH, Dasdag S, Tumer C. 2007. Alteration of nitric oxide production in rats exposed to a prolonged, extremely low-frequency magnetic field. Electromagn Biol Med 26:99–106.
  • Aldinucci C, Carretta A, Maiorca SM, Leoncini S, Signorini C, Ciccoli L, Pessina GP. 2009. Effects of 50 Hz electromagnetic fields on rat cortical synaptosomes. Toxicol Ind Health 25:249–252.
  • Akdag MZ, Dasdag S, Ulukaya E, Uzunlar AK, Kurt MA, Taşkın A. 2010. Effects of extremely low-frequency magnetic field on caspase activities and oxidative stress values in rat brain. Biol Trace Elem Res 138:238–249.
  • Anderson LE, Kaune WT. 1989. Electric and magnetic fields at extremely low frequencies. In: Suess MJ, Benwell-Morison M, editors. Nonionizing radiation protection. 2nd ed. Copenhagen: World Health Organization. pp. 175–244.
  • Annunziato L, Pannaccione A, Cataldi M, Secondo A, Castaldo P, Di Renzo G, Taglialatela M. 2002. Modulation of ion channels by reactive oxygen and nitrogen species: A pathophysiological role in brain aging? Neurobiol Aging 23:819–834.
  • Aon MA, Cortassa S, O’Rourke B. 2008. Mitochondrial oscillations in physiology and pathophysiology. Adv Exp Med Biol 641:98–117.
  • Augustine GJ. 2001. How does calcium trigger neurotransmitter release? Curr Opin Neurobiol 11:320–326.
  • Banovački Z, Matavulj M. 2013. Exposure to extremely low frequency (50 Hz) electromagnetic field changes the survival rate and morphometric characteristics of neurosecretory neurons of the earthworm Eisenia foetida (Oligochaeta) under illumination stress. Arch Biol Sci 65:395–403.
  • Bell GB, Marino AA, Chesson AL. 1994. Frequency-specific blocking in the human brain caused by electromagnetic fields. Neuroreport 5:510–512.
  • Blackman CF. 1994. Effect of electrical and magnetic fields on the nervous system. In: Isaacson RL, Jensen KF, editors. The vulnerable brain and environmental risk. Vol. 3. Toxins in air and water. New York: Plenum Press. pp. 341–355.
  • Calvo AC, Azanza MJ. 1999a. Electrophysiologic responses of snail brain neurons under applied 50-Hz alternating magnetic fields. Electromagn Biol Med 18:305–312.
  • Calvo AC, Azanza MJ. 1999b. Synaptic neurone activity under applied 50 Hz alternating magnetic fields. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 124:99–107.
  • Chu LY, Lee JH, Nam YS, Lee YJ, Park WH, Lee BC, Kim D, Chung YH, Jeong JH. 2011. Extremely low frequency magnetic field induces oxidative stress in mouse cerebellum. Gen Physiol Biophys 30: 415–421.
  • Coskun Ö, Naziroglu M, Cömlekçi S, Özkorucuklu S, Elmas O. 2011. Effects of 50 Hertz-1 mT magnetic field on action potential in isolated rat sciatic nerve. Toxicol Ind Health 27:127–132.
  • Cuccurazzu B, Leone L, Podda MV, Piacentini R, Riccardi E, Ripoli C, Azzena GB, Grassi C. 2011. Exposure to extremely low-frequency (50 Hz) electromagnetic fields enhances adult hippocampal neurogenesis in C57BL/6 mice. Exp Neurol 226:173–182.
  • Cui Y, Ge Z, Rizak JD, Zhai C, Zhou Z, Gong S, Che Y. 2012. Deficits in water maze performance and oxidative stress in the hippocampus and striatum induced by extremely low frequency magnetic field exposure. PLoS ONE 7:e32196.
  • Dimitrijević D, Savić T, Anđelković M, Prolić Z, Janać B. 2014. Extremely low frequency magnetic field (50 Hz, 0.5 mT) modifies fitness components and locomotor activity of Drosophila subobscura. Int J Radiat Biol 90:337–343.
  • Engels S, Schneider N, Lefeldt N, Hein CM, Zapka M, Michalik A, Elbers D, Kittel A, Hore PJ, Mouritsen H. 2014. Anthropogenic electromagnetic noise disrupts magnetic compass orientation in a migratory bird. Nature 509:353–356.
  • Fogle KJ, Parson KG, Dahm NA, Holmes TC. 2011. CRYPTOCHROME is a blue-light sensor that regulates neuronal firing rate. Science 331:1409–1413.
  • Foley L, Gegear R, Reppert S. 2011. Human cryptochrome exhibits lightdependent magnetosensitivity. Nat Commun 2:356.
  • Gegear R, Foley L, Casselman A, Reppert S. 2010. Animal cryptochromes mediate magnetoreception by an unconventional photochemical mechanism. Nature 463:804–807.
  • Gerstner W, van Hemmen JL. 1992. Universality in neural networks: The importance of the ‘mean firing rate’. Biol Cybern 67:195–205.
  • Grassi C, D’Ascenzo M, Torsello A, Martinotti G, Wolf F, Cittadini A, Azzena GB. 2004. Effects of 50 Hz electromagnetic fields on voltage-gated Ca2+ channels and their role in modulation of neuroendocrine cell proliferation and death. Cell Calcium 35:307–315.
  • Hoang N, Schleicher E, Kacprzak S, Bouly JP, Picot M, Wu W, Berndt A, Wolf E, Bittl R, Ahmad M. 2008. Human and Drosophila cryptochromes are light activated by flavin photoreduction in living cells. PLoS Biology 6:e160.
  • Ilijin L, Vlahović M, Mrdaković M, Mirčić D, Prolić Z, Lazarević J, Perić-Mataruga V. 2011a. The effects of acute exposure to magnetic fields on morphometric characteristics of bombyxin-producing neurosecretory neurons in gypsy moth caterpillars. Int J Radiat Biol 87:461–471.
  • Ilijin L, Vlahović M, Mrdaković M, Mirčić D, Todorović D, Lazarević J, Perić-Mataruga V. 2011b. The response of dorsomedial A1′ and dorsolateral L2′ neurosecretory neurons of Lymantria dispar l. caterpillars to the acute effects of magnetic fields. Arch Biol Sci 63:167–176.
  • Janać B, Tovilović G, Tomić M, Prolić Z, Radenović L. 2009. Effect of continuous exposure to alternating magnetic field (50 Hz, 0.5 mT) on serotonin and dopamine receptors activity in rat brain. Gen Physiol Biophys 28:41–46.
  • Kafaee M, Tehranipour M, Haghpeima A. 2010. Effects of exposure to extremely low-frequency magnetic field of 2 μT intensity on spatial memory and learning in mice. Ann Gen Psychiatry 9:S129.
  • Kalauzi A, Ćulić M, Martać LJ, Grbić G, Šaponjić J, Jovanović A, Janković B, Spasić S. 2003. New view on cerebellar cortical background activity in rat: Simulation. Neurosci Res Comm 32:211–217.
  • Kalauzi A, Spasić S. 2004. Estimation of neuronal population activity changes in rat cerebellum using one electrode. Comp Biochem Physiol A Physiol 138:61–68.
  • Kourie JI. 1998. Interaction of reactive oxygen species with ion transport mechanisms. Am J Physiol 275:C1–24.
  • Karabakhtsian R, Broude N, Shalts N, Kochlatyi S, Goodman R, Henderson AS. 1994. Calcium is necessary in the cell response to EM fields. FEBS Lett 349:1–6.
  • Lai H, Carino MA, Horita A, Guy AW. 1993. Effects of a 60 Hz magnetic field on central cholinergic systems of the rat. Bioelectromagnetics 14:5–15.
  • Lisi A, Ledda M, Rosola E, Pozzi D, D’Emilia E, Giuliani L, Foletti A, Modesti A, Morris SJ, Grimaldi S. 2006. Extremely low frequency electromagnetic field exposure promotes differentiation of pituitary corticotrope-derived AtT20 D16V cells. Bioelectromagnetics 27:641–651.
  • Liu T, Wang S, He L, Ye K. 2008. Chronic exposure to low-intensity magnetic field improves acquisition and maintenance of memory. Neuroreport 19:549–552.
  • Lyskov EB, Juutilainen JM, Jousmaki V, Partanen J, Medvedev S, Hanninen O. 1993. Effects of 45 Hz magnetic fields on the functional state of the human brain. Bioelectromagnetics 14:87–95.
  • Ma Q, Deng P, Zhu G, Liu C, Zhang L, Zhou Z, Luo X, Li M, Zhong M, Yu Z, Chen C, Zhang Y. 2014. Extremely low-frequency electromagnetic fields affect transcript levels of neuronal differentiation-related genes in embryonic neural stem cells. PLoS ONE 9:e90041.
  • Marchionni I, Paffi A, Pellegrino M, Liberti M, Apollonio F, Abeti R, Fontana F, D’Inzeo G, Mazzanti M. 2006. Comparison between low-level 50 Hz and 900 MHz electromagnetic stimulation on single channel ionic currents and on firing frequency in dorsal root ganglion isolated neurons. Biochim Biophys Acta 1758:597–605.
  • Marley R, Giachello CNG, Scrutton NS, Baines RA, Jones AR. 2014. Cryptochrome-dependent magnetic field effect on seizure response in Drosophila larvae. Sci Rep 4:5799.
  • Mercer AR, Kirchhof BS, Hildebrand JG. 1996. Enhancement by serotonin of the growth in vitro of antennal lobe neurons of the sphinx moth Manduca sexta. J Neurobiol 29:49–64.
  • Mercer AR, Hildebrand JG. 2002. Developmental changes in the electrophysiological properties and response characteristics of Manduca antennal-lobe neurons. J Neurophysiol 87:2650–2663.
  • Metodiewa D, Kośka C. 2000. Reactive oxygen species and reactive nitrogen species: Relevance to cyto(neuro)toxic events and neurologic disorders. An overview. Neurotox Res 1:197–233.
  • Moghadam MK, Firoozabadi SM, Janahmadi M. 2008. 50 Hz alternating extremely low frequency magnetic fields affect excitability, firing and action potential shape through interaction with ionic channels in snail neurons. Environmentalist 28:341–347.
  • Moghadam MK, Firoozabadi M, Janahmadi M. 2011. Effects of weak environmental magnetic fields on the spontaneous bioelectrical activity of snail neurons. J Membr Biol 240:63–71.
  • Mouritsen H, Ritz T. 2005. Magnetoreception and its use in bird navigation. Curr Opin Neurobiol 15:406–414.
  • Nádasdy Z. 1998. Spatio-temporal patterns in the extracellular recording of hippocampal pyramidal cells: From single spikes to spike sequences. PhD thesis, Rutgers University, Newark, NJ, USA.
  • Nenadović V, Mrdaković M, Lazarević J, Mirčić D, Todorović D, Prolić Z. 2005. Temperature and magnetic field effects on the activity of protocerebral neurosecretory neurons and corpora allata in Cermbyx cerdo L. larvae. Arch Biol Sci 57:19–24.
  • Nikolić Lj, Rokić M, Todorović N, Kartelija G, Nedeljković M, Zakrzewska J. 2010. Effect of alternating the magnetic field on phosphate metabolism in the nervous system of Helix pomatia. Biol Res 43:243–250.
  • Omurtag A, Knight BW, Sirovich L. 2000. On the simulation of large populations of neurons. J Comput Neurosci 8:51–63.
  • Orchard I. 1983. Neurosecretion: Morphology and physiology. In: Downer RGH, Laufer H, editors. Endocrinology of insects. New York: Alan R Liss Inc. pp 13–38.
  • Orchard I, Friedel T, Loughton BG. 1981. Release of neurosecretory protein from the corpora cardiaca of Locusta migratoria induced by high potassium saline and compound action potentials. J Insect Physiol 27:297–304.
  • Park KC, Cork A. 1999. Electrophysiological responses of antennal receptor neurons in female Australian sheep blowflies, Lucilia cuprina, to host odours. J Insect Physiol 45:85–91.
  • Partsvania B, Sulaberidze T, Modebadze Z, Shoshiashvili L. 2008. Extremely low-frequency magnetic fields effects on the snail single neurons. Electromagn Biol Med 27:409–417.
  • Pérez Bruzón RN, Azanza MJ, Calvo AC, del Moral A. 2004. Neurone bioelectric activity under magnetic fields of variable frequency in the range of 0.1–80 Hz. J Magn Magn Mater 272–276:2424–2425.
  • Perić-Mataruga V, Prolić Z, Nenadović V, Mrdaković M, Vlahović M. 2006. Protocerebral mediodorsal A2′ neurosecretory neurons in late pupae of yellow mealworm (Tenebrio molitor) after exposure to a static magnetic field. Electromagn Biol Med 25:127–133.
  • Pozzi D, Grimaldi S, Ledda M, Carlo FD, Modesti A, Scarpa S, Foletti A, Lisi A. 2007. Effect of 50 Hz magnetic field exposure on neuroblastoma morphology. Int J Integr Biol 1:12–17.
  • Prolić Z, Jovanović R, Konjević G, Janać B. 2003. Behavioral differences of the insect Morimus funereus (Coleoptera, Cerambycidae) exposed to an extremely low frequency magnetic field. Electromagn Biol Med 22:63–73.
  • Rauš S, Selaković V, Manojlović-Stojanoski M, Radenović L, Prolić Z, Janać B. 2013. Response of hippocampal neurons and glial cells to alternating magnetic field in gerbils submitted to global cerebral ischemia. Neurotox Res 23:79–91.
  • Ritz T, Adem S, Schulten K. 2000. A model for photoreceptor-based magnetoreception in birds. Biophys J 78:707–718.
  • Roberts DB. 1986. Drosophila: A practical approach. 1st ed. Oxford: IRL Press.
  • Salkoff L, Baker K, Butler A, Covarrubias M, Pak MD, Wei A. 1992. An essential ‘set’ of K+ channels conserved in flies, mice and humans. Trends Neurosci 15:161–166.
  • Santella L. 1998. The role of calcium in the cell cycle: Facts and hypotheses. Biochem Biophys Res Commun 244:317–324.
  • Selaković V, Rauš Balind S, Radenović L, Prolić Z, Janać B. 2013. Age-dependent effects of ELF-MF on oxidative stress in the brain of Mongolian gerbils. Cell Biochem Biophys 66:513–521.
  • Sheeba V, Gu H, Sharma VK, O’Dowd DK, Holmes TC. 2008. Circadian- and light-dependent regulation of resting membrane potential and spontaneous action potential firing of Drosophila circadian pacemaker neurons. J Neurophysiol 99:976–988.
  • Simkó M. 2007. Cell type specific redox status is responsible for diverse electromagnetic field effects. Curr Med Chem 14:1141–1152.
  • Sun H, Che Y, Liu X, Zhou D, Miao Y, Ma Y. 2010. Effects of prenatal exposure to a 50-Hz magnetic field on one-trial passive avoidance learning in 1-day-old chicks. Bioelectromagnetics 31:150–155.
  • Tenforde TS. 1991. Biological interactions of extremely-low frequency electric and magnetic fields. Bioelectroch Bioener 25:1–17.
  • Todorović D, Kalauzi A, Prolić Z, Jović M, Mutavdžić D. 2007. A method for detecting the effect of magnetic field on activity changes of neuronal populations of Morimus funereus (Coleoptera, Cerambycidae). Bioelectromagnetics 28:238–241.
  • Todorović D, Mirčić D, Ilijin L, Mrdaković M, Vlahović M, Prolić Z, Perić-Mataruga V. 2012. Effect of magnetic fields on antioxidative defense and fitness-related traits of Baculum extradentatum (Insecta, Phasmatodea). Bioelectromagnetics 33:265–273.
  • Wang X, Zhao K, Wang D, Adams W, Fu Y, Sun H, Liu X, Yu H, Ma Y. 2013. Effects of exposure to a 50 Hz sinusoidal magnetic field during the early adolescent period on spatial memory in mice. Bioelectromagnetics 34:275–284.
  • Warnke U. 1980. Fundamentals of magnetic field induced physiological effects [Grundlagen zu magnetisch induzierten physiologischen Effekten]. Therapiewoche 30:4609–4616.
  • Yoshii T, Ahmad M, Helfrich-Forster C. 2009. Cryptochrome mediates light-dependent magnetosensitivity of Drosophila's circadian clock. PLoS Biology 7:813–819.
  • Zhang L, Zhou L, Vega-Gonzalez A, Mendoza D, Drucker-Colin R. 1997. Extremely low frequency magnetic fields promote neurite varicosity formation and cell excitability in cultured rat chromaffin cells. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 118: 295–299.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.