55
Views
31
CrossRef citations to date
0
Altmetric
Original Article

The Production of Catechols from Benzene and Toluene by Pseudomonas Putida in Glucose Fed-Batch Culture

, , &
Pages 81-100 | Received 15 Mar 1991, Accepted 02 Aug 1991, Published online: 11 Jul 2009

References

  • Axcell B. C., Geary P. J. Purification and some properties of a soluble benzene oxidising system from a strain of Pseudomonas. Biochem. J. 1975; 146: 173–183
  • Beechey R. B., Ribbons D. W. Oxygen electrode measurements. Methods in Microbiology, J. R. Norris, D. W. Ribbons. Academic Press, London 1972; Vol. 6B: 25–53
  • Boyd D. R., Austin R., McMordie R. A. S., Porter H. P., Dalton H., Jenkins R. O., Howarth O. W. Metabolism of bicyclic aza-arenes by Pseudomonas putida to yield vicinal cis-dihydrodiols and phenols. J. Chem. Soc. Chem. Commun. 1987; 1722–1724
  • Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Analytical Biochemistry 1976; 72: 248–254
  • Chaney A. L., Marbach E. P. Modified reagents for the determination of urea and ammonia. Clin. Chem. 1962; 8: 130–132
  • Chapman P. J. Degradation mechanisms. Microbial degradation of pollutants in marine environments, A. W. Bourquin, P. H. Pritchard, 1979; 50–51, US Env. Prot. Agency EPA-600/9-79-012
  • Chappel J. B. The oxidation of citrate, isocitrate and cis-aconitate by isolated mitochondria. Biochem. J. 1964; 90: 225–237
  • Dagley S. Catabolism of aromatic compounds by microorganisms. Adv. Microbial. Physiol. 1971; 6: 1–46
  • Ensley B. D., Ratzkin B. J., Osslund T. D., Simon M. J., Wackett L. P., Gibson D. T. Expression of naphthalene oxidation genes in Escherichia coli results in the biosynthesis of indigo. Science 1983; 222: 167–169
  • Feist C. F., Hegeman G. D. Phenol and benzoate metabolism by Pseudomonas putida: regulation of tangential pathways. J. Bact. 1969; 100: 869–877
  • Galpin J. R., Tielens L. G. M., Veldink G. A., Vliegenthart J. F. G., Boldingh J. On the interaction of some catechol derivatives with the iron atom of soybean lipoxygenase. FEBS Letts 1976; 69: 179–182
  • Gibson D. T., Gschwendt B., Yeh W. K., Kobal V. M. Initial reactions in the oxidation of ethylbenzene by Pseudomonas putida. Biochemistry 1973; 12: 1520–1528
  • Hegeman G. D. Synthesis of the enzymes of the mandelate pathway by Pseudomonas putida. I. Synthesis of enzymes by the wild type. II. Isolation and properties of blocked mutants. J. Bact. 1966; 91: 1140–1154; 1155–1160
  • Ichihara A., Adachi K., Hosokawa K., Takeda Y. The enzymatic hydroxylation of aromatic carboxylic acids; substrate specificities of anthranilate and benzoate oxidases. J. Biol. Chem. 1962; 237: 2296–2302
  • Jenkins R. O., Dalton H. The use of indole as a spectrophotometric assay substrate for toluene dioxygenase. FEMS Microbiol. Lett. 1985; 30: 227–231
  • Jenkins R. O., Stephens G. M., Dalton H. Production of toluene cis-glycol by Pseudomonas putida in glucose fed-batch culture. Biotech. Bioeng. 1987; 29: 873–883
  • Kemal C., Louis-Flamberg P., Krupinski-Olsen R., Shorter A. L. Reductive inactivation of soybean lipoxygenase 1 by catechols: a possible mechanism for regulation of lipoxygenase activity. Biochemistry 1987; 26: 7064–7072
  • Khan A. W., Chin A., Baird S. Use of charcoal to minimise end product inhibition in enzymatic hydrolysis of cellulose. Biotech. Lett. 1985; 7: 447–450
  • Kirk K. L., Creveling C. R. The chemistry and biology of ring-fluorinated biogenic amines. Med. Res. Rev. 1984; 4: 189–220
  • Ladd D. L., Weinstock J. Improved synthesis of fluoroveratroles and fluorophenethylamines via organolithium reagents. J. Org. Chem. 1981; 46: 203–206
  • Ladd D. L., Gaitanopolous D. E., Weinstock J. A new synthesis of 3-fluoroveratrole and 2-fluoro-3,4-dimethoxybenzaldehyde. Synth. Commun. 1985; 15: 61–69
  • La Rue T. A., Blakley E. R. Spectrophotometric determination of catechols with 4-aminoantipyrine. Anal. Chim. Act. 1964; 31: 400–403
  • Leyden Webb J. Quinones Ch. 5. Enzymes and metabolic inhibitors, J. Leyden Webb. Academic Press, New York 1966; Vol. III: 421–594
  • Reiner A. M. Metabolism of aromatic compounds in bacteria. Purification and properties of the catechol-forming enzyme, 3,5-cyclohexadiene-1,2-diol-1-carboxylic acid (NAD) oxidoreductase (decarboxylating). J. Biol. Chem. 1972; 247: 4960–4965
  • Sands D. C., McIntyre J. L., Walters G. S. Use of activated charcoal for the removal of patulin from cider. Appl. Env. Micro. 1976; 32: 388–391
  • Shields M. S., Montgomery S. O., Chapman P. J., Cuskey S. M., Pritchard P. H. Novel pathway of toluene catabolism in the trichloroethylene-degrading bacterium G4. Appl. Env. Micro. 1989; 55: 1624–1629
  • Shirai K. Catechol production from benzene through reaction with resting and immobilised cells of a mutant strain of Pseudomonas—culture conditions optimisation. Agric. Biol. Chem. 1987; 51: 121–128
  • Taylor S. C. In “Enzymes in Organic Synthesis”. Ciba Foundation Symposium 1985; 111: 71–75
  • Tsuji M., Kuwahara M. Accumulation of catechol from benzoic acid by a mutant induced from Corynebacterium glutamicum. J. Ferment. Technol. 1976; 54: 782–788
  • Van Dijken J. P., Harder W. Growth yields of microorganisms on methanol and methane. A theoretical study. Biotech. Bioeng. 1975; 17: 15–30
  • Vishniac W., Santer M. The thiobacilli. Bacteriol. Rev. 1957; 21: 195–213
  • Wackett L. P., Kwart L. D., Gibson D. T. Benzylic monooxygenation catalysed by toluene dioxygenase from Pseudomonas putida. Biochemistry 1988; 27: 1360–1367
  • Worsey M. J., Williams P. A. Metabolism of toluene and xylenes by Pseudomonas putida (arvilla) mt-2: evidence for a new function of the TOL plasmid. J. Bact. 1975; 124: 7–13
  • Yeh W. K., Gibson D. T., Liu T.-N. Toluene dioxygenase: a multicomponent enzyme system. Biochem. Biophys. Res. Commun. 1977; 78: 401–410

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.