357
Views
40
CrossRef citations to date
0
Altmetric
Review Article

DNA damage signaling assessed in individual cells in relation to the cell cycle phase and induction of apoptosis

, , , , &
Pages 199-217 | Received 21 Aug 2012, Accepted 08 Oct 2012, Published online: 09 Nov 2012

References

  • Bakkenist CJ, Kastan MB. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 2003;421:499–506.
  • Bakkenist CJ, Kastan MB. Initiating cellular stress responses. Cell 2004;118:9–17.
  • Bonner WM, Redon CE, Dickey JS, Nakamura AJ, Sedelnikova OA, Solier S, Pommier Y. γH2AX and cancer. Nat Rev Cancer 2008;8:957–966.
  • Helt CE, Cliby WA, Keng PC, Bambara RA, O’Reilly MA. Ataxia telangiectasia mutated (ATM) and ATM and Rad3-related protein exhibit selective target specificities in response to different forms of DNA damage. J Biol Chem 2005;280:1186–1192.
  • Kastan MB. DNA damage responses: Mechanisms and roles in human disease. 2007 G.H.A. Cloves Memorial Award Lecture. Mol Cancer Res 2008;6:517–524.
  • Nakamura AJ, Rao VA, Pommier Y, Bonner WM. The complexity of phosphorylated H2AX foci formation and DNA repair assembly at DNA double-strand breaks. Cell Cycle 2010; 9:389–398.
  • Lord CJ, Ashworth A. The DNA damage response and cancer therapy. Nature 2012;481:287–94.
  • Darzynkiewicz Z, Traganos F, Zhao H, Halicka HD, Skommer J, Wlodkowic D. Analysis of individual molecular events of DNA damage response by flow and image-assisted cytometry. Methods Cell Biol 2011;103:15–148.
  • Murga M, Jaco I, Soria R, Martinez-Pastor B, Cuadrado M, Yang S-M, Blasco MA, Skoultchi AI, Fernandez-Capetillo O. Global chromatin compaction limits the strength of the DNA damage response. J Cell Biol 2007;178:1101–1108.
  • Pandita TK, Richardson C. Chromatin remodeling finds its place in the DNA double-strand breaks. Nucleic Acids Res 2009;37:1363–1377.
  • Rouleau M, Aubin RA, Poirier GG. Poly(ADP-ribosyl)ated chromatin domains: access granted. J. Cell Sci 2004;117:815–825.
  • Ziv Y, Bielopolski D, Galanty Y, Lukas C, Taya Y, Schultz DC, Lukas J, Bekker-Jensen S, Bartek J, Shiloh Y. Chromatin relaxation in response to DNA double-strand breaks is modulated by a novel ATM- and KAP-1 dependent pathway. Nat Cell Biol 2006;8:870–876.
  • Cann KL, Dellaire G. Heterochromatin and the DNA damage response: the need to relax. Biochem Cell Biol 2011;89:45–60.
  • Marko JF. Linking topology to large DNA molecules. Physica A 2010;389:2997–3001.
  • Gerlitz G, Bustin M. Nucleosome binding proteins potentiate ATM activation and DNA damage response by modifying chromatin. Cell Cycle 2009;8: 1641–1644.
  • Kim YC, Gerlitz G, Furusawa T, Catez F, Nussenzweig A, Oh KS, Kraemer KH, Shiloh Y, Bustin M. Activation of ATM depends on chromatin interactions occurring before induction of DNA damage. Nat Cell Biol 2009;11:92–96.
  • Sinha M, Peterson CL. Chromatin dynamics during repair of chromosomal DNA double-strand breaks. Epigenomics 2009;1:371–385.
  • Shiloh Y, Shema E, Moyal L, Oren M. RNF20-RNF40: A ubiquitin-driven link between gene expression and the DNA damage response. FEBS Lett 2011;585:2795–802.
  • Zhang Q, Wang Y. High mobility group proteins and their post-transcriptional modifications. Biochim Biophys Acta 2008;1794:1159–1166.
  • Lim J, Catez F, Birger Y, West K, Prymakowska-Bosak M, Postnikov MV, Bustin M. Chromosomal protein HMGN1 modulates histone H3 phosphorylation. Mol Cell 2004;15:573–584.
  • Misteli T, Soutoglou E. The emerging role of nuclear architecture in DNA repair and genome maintenance. Mol Cell Biol 2009;10:243–54.
  • Juan G, Traganos F, James WM, Ray JM, Roberge M, Sauve DM, Darzynkiewicz Z. Histone H3 phosphorylation and expression of cyclins A and B1 measured in individual cells during their progression through G2 and mitosis. Cytometry 1998;32:71–77.
  • Huang X, Kurose A, Tanaka T, Traganos F, Dai W, Darzynkiewicz Z. Sequential phosphorylation of Ser-10 on histone H3 and Ser-139 on histone H2AX and ATM activation during premature chromosome condensation: Relationship to cell-cycle and apoptosis. Cytometry A 2006;69A:222–229.
  • Ikura T, Tashiro S, Kakino A, Shima H, Jacob N, Amunugama R, Yoder K, Izumi S, Kuraoka I, Tanaka K, Kimura H, Ikura M, Nishikubo S, Ito T, Muto A, Miyagawa K, Takeda S, Fishel R, Igarashi K, Kamiya K. DNA damage dependent acetylation and ubiquitination of H2AX enhances chromatin dynamics. Mol Cell Biol 2007;27:7028–7040.
  • Kruhlak MJ, Celeste A, Nussenzweig A. Spatio-temporal dynamics of chromatin containing DNA breaks. Cell Cycle 2006;5:1910–1912.
  • Rubi CP, Milner J. p53 is a chromatin accessibility factor for nucleotide excision repair of DNA damage. EMBO J 2003;22:975–986.
  • Wang J, Chin MY, Li G. The novel tumor suppressor p33ING2 enhances nucleotide excision repair via inducement of histone H4 acetylation and chromatin relaxation. Cancer Res 2006;66:1906–1911.
  • Abraham RT, Tibbetts RS. Guiding ATM to broken DNA. Science 2005;308:510–511.
  • Downs JA, Cote J. Dynamics of chromatin during the repair of DNA double-strand breaks. Cell Cycle 2005;4:1373–1376.
  • Kitagawa R, Kastan MB. The ATM-dependent DNA damage signaling pathway. Cold Spring Harb. Symp Quant Biol 2005;70:99–109.
  • Paull TT, Lee JH. The Mre11/Rad50/Nbs1 complex and its role as a DNA-double strand break sensor for ATM. Cell Cycle 2005;4:737–740.
  • Cuadrado M, Martinez-Pastor B, Fernandez-Capetillo O. ATR activation in response to ionizing radiation: still ATM territory. Cell Div 2006;1:7 http://www.celldiv.com/content/1/1/7
  • Hill R, Lee PWK. The DNA-dependent protein kinase (DNA-PK). More than just a case of making ends meet? Cell Cycle 2010;9:3460–3469.
  • Lovejoy CA, Cortez D. Common mechanisms of PIKK regulation. DNA Repair 2009;8:1004–1008.
  • Li L, Zou L. Sensing signaling and responding to DNA damage: organization of checkpoint pathways in mammalian cells. J Cell Biochem 2005;94:298–306.
  • Shiloh Y. ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer 2003;22: 5834–5868.
  • Sun Y, Jiang X, Chen S, Fernandes N, Price BD. A role for the Tip60 histone acetyltransferase in the acetylation and activation of ATM. Proc Natl Acad Sci USA 2005;102:3182–13187.
  • Lee JH, Paull TT. ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science 2005;308:551–554.
  • Lee JH, Gospodarzi AA, Jeggo PA, Paull TT. 53BP1 promotes ATP activity through direct interactions with the MRN complex. EMBO J 2010;29:574–585.
  • Guo Z, Deshpande R, Paull TT. ATM activation in the presence of oxidative stress. Cell Cycle 2010;9:4805–4811.
  • Guo Z, Kozlov S, Lavin MF, Person MD, Paull TT. ATM activation by oxidative stress. Science 2010;330:517–521.
  • Ditch S, Paull TT. The ATM protein kinase and cellular redox signaling: beyond the DNA damage response. Trends Biochem Sci 2012;37:15–22.
  • Kitagawa R, Bakkenist CJ, McKinnon PJ, Kastan MB. Phosphorylation of SMC1 is a critical downstream event in the ATM-ANBS1-BRCA1 pathway. Genes Dev 2004;18:1423–1438.
  • Yuan SS, Lee SE, Chen G, Song M, Tomlinson GE, Lee FY. BRCA2 is required for ionizing radiation-induced assembly of Rad51 complex in vivo. Cancer Res 1999;59:3547–3551.
  • Stucki M, Jackson SP. MDC1/NFBD1: a key regulator of the DNA damage response in higher eukaryotes. DNA Repair (Amst.) 2005;3:953–957.
  • Kurose A, Tanaka T, Huang X, Traganos F, Dai W, Darzynkiewicz Z. Effects of hydroxyurea and aphidicolin on phosphorylation of ATM on Ser 1981 and histone H2AX on Ser 139 in relation to cell cycle phase and induction of apoptosis. Cytometry A 2006;69A:212–221.
  • Kurose A, Tanaka T, Huang X, Traganos F, Darzynkiewicz Z. Synchronization in the cell cycle by inhibitors of DNA replication induces histone H2AX phosphorylation, an indication of DNA damage. Cell Prolif 2006;39:231–240.
  • Ward M, Minn K, Chen J. UV-induced ataxia-telangiectasia-mutated and Rad3-related (ATR) activation requires replication stress. J Biol Chem 2004;279:9677–9680.
  • Smith GC, Jackson SP. The DNA-dependent protein kinase. Genes Dev 1999;13:916–934.
  • Smith GR. How homologous recombination is initiated: unexpected evidence for single-strand nicks from v(d) site-specific recombination. Cell 2004;17:146–148.
  • Samper E, Goytisolo EA, Slijepcevic P, van Buul PP, Blasco MA. Mammalinan Ku86 protein prevents telomeric fusions independently of the length of TTAGGG repeats and the G-strand overhang. EMBO Rep 2000;1:244–252
  • Chan SD, Luedke G, Valer M, Buhlmann C, Preckel T. Cytometric analysis of protein expression and apoptosis in human primary cells with a novel microfluidic chip-based system. Cytometry A 2003;55A:119–125.
  • Wakeman TP, Kim WJ, Callens S, Chu A, Brown KD, Xu B. The ATM-SMC1 pathway is essential for activation of chromium [VI]-induced S-phase checkpoint. Mutat Res 2004;554:241–251.
  • Ahn JY, Li X, Davis HL, Canman CE. Phosphorylation of threonine 68 promotes oligomerization and autophosphorylation of Chk2 protein kinase via the forkhead-associated domain. J Biol Chem 2002;277:19389–19395.
  • Ahn J, Urist M, Prives C. The Chk2 protein kinase. DNA Repair 2004;3:1039–1047.
  • Matsuoka S, Rotman G, Ogawa A, Shiloh K, Tamai SJ, Elledge SJ. Ataxia telangiectasia-mutated phosphorylates Chk2 in vivo and in vitro. Proc Natl Acad Sci USA 2000;97:10289–10394.
  • Zhou BB, Elledge SJ. The DNA response: putting checkpoints in perspective. Nature 2000;408:433–439.
  • Li J, Stern DF. DNA damage regulates Chk2 association with chromatin. J Biol Chem 2005;280:37948–37956.
  • Stevens C, Smith L, La Thangue NB. Chk2 activates E2F-1 in response to DNA damage. Nat Cell Biol 2003:5:4465–4479.
  • Lin J, Reichner C, Wu X, Levine AJ. Analysis of wild-type and mutant p21WAF-1 gene activities. Mol Cell Biol 1996;16:1786–1793.
  • Lee JS, Collins KM, Brown AL, Lee CH, Chung JH. hCds1-mediated phosphorylation of BRCA1 regulates the DNA damage response. Nature 2000;404:201–204.
  • Yang S, Kuo C, Bisi JE, Kim MK. PML-dependent apoptosis after DNA damage is regulated by the checkpoint kinase hCdsa/Chk2. Nat Cell Biol 2002;4:865–870.
  • Tan Y, Raychaudhuri P, Costa RH. Chk2 mediates stabilization of the FoxM1 transcription factor to stimulate expression of DNA repair genes. Mol Cell Biol 2007;27:1007–1016.
  • Boutros R, Dozier C, Ducommun B. The when and wheres of CDC25 phosphatases. Curr Opin Cell Biol 2006;18:185–19.
  • Boutros R, Lobjois V, Ducommun B. CDC25 phosphatases in cancer cells: key players? Good targets? Nat Rev Cancer 2007;7:495–507.
  • Rudolph J. Cdc25 phosphatases: Structure, specificity and mechanism. Biochemistry 2007;46:3595–3604.
  • Thatcher TH, Gorovsky MA. Phylogenetic analysis of the core histones H2A, H2B, H3 and H4. Nucleic Acids Res 1994;22:174–183.
  • Bassing CH, Suh H, Ferguson DO, Chua KF, Manis J, Eckersdorff M, Gleason M, Bronson R, Lee C, Alt FW. (Histone H2AX: A dosage-dependent suppressor of oncogenic translocations in tumors. Cell 2003;114:359–370.
  • Lukas J, Lukas C, Bartek J. More than just a focus: The chromatin response to DNA damage and its role in genome integrity maintenance. Nat Cell Biol 2011;13:1161–1169.
  • Celeste A, Difilippantonio S, Fernandez-Capetillo O, Pilch DR, Sedelnikova O, Eckhaus M, Ried T, Bonner WM, Nussenzweig A. H2AX haploinsufficiency modifies genomic stability and tumor susceptibility. Cell 2003;114:371–383
  • Rogakou EP, Boon C, Redon C, Bonner WM. Megabase chromatin domains involved in DNA double-strand breaks in vivo. J Cell Biol 1999;146:905–16.
  • Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 1998;273:5858–5868.
  • Sedelnikova OA, Rogakou EP, Panuytin IG, Bonner WM. Quantitive detection of 125IUdr-induced DNA double-strand breaks with γ-H2AX antibody. Radiat Res 2002;158:486–492.
  • Anderson L, Henderson C, Adachi Y. Phosphorylation and rapid relocalization of 53BP1 to nuclear foci upon DNA damage. Mol Cell Biol 2001:21:1719–1729.
  • Burma S, Chen BP, Murphy M, Kurimasa A, Chen DJ. ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J Biol Chem 2001;276:42462–42467.
  • Furuta T, Takemura H, Liao Z-Y, Aune GJ, Redon C, Sedelnikova OA, Pilch DR, Rogakou EP, Celeste A, Chen HT, Nussenzweig A, Aladjem MI, Bonner WM, Pommier Y. Phosphorylation of histone H2AX and activation of Mre11, Rad50, and Nbs1 in response to replication-dependent DNA double-strand breaks induced by mammalian topoisomerase I cleavage complexes. J Biol Chem 2003;278:20303–20312.
  • Park EJ, Chan DW, Park JH, Oettinger MA, Kwon J. DNA-PK is activated by nucleosomes and phosphorylated H2AX within the nucleosomes in an acetylation-dependent manner. Nucleic Acids Res 2003;31:6819–6827.
  • Modesti M, Kanaar R. DNA repair: spot(light)s on chromatin. Curr Biol 2001;11:R229–R232.
  • Huang X, Traganos F, Darzynkiewicz Z. DNA damage induced by DNA topoisomerase I- and topoisomerase II- inhibitors detected by histone H2AX phosphorylation in relation to the cell cycle phase and apoptosis. Cell Cycle 2003;2:614–619.
  • Huang X, Okafuji M, Traganos F, Luther E, Holden E, Darzynkiewicz Z. Assessment of histone H2AX phosphorylation induced by DNA topoisomerase I and II inhibitors topotecan and mitoxantrone and by DNA crosslinking agent cisplatin. Cytometry A 2004;58A:99–110.
  • Cleaver JE. γH2AX: biomarker of damage or functional participant in DNA repair “all that glitters is not gold”. Photochem Photobiol 2011;87:1230–1239.
  • Vilenchik MM, Knudson AG. Endogenous DNA double-strand breaks: Production, fidelity of repair, and induction of cancer. Proc Natl Acad Sci USA 2003;100:12871–12876.
  • Beckman KB, Ames BN. Oxidative decay of DNA. J Biol Chem 1997;272:13300–13305.
  • Pastwa E, Blasiak J. Nonhomologous DNA end joining. Acta Biochim Pol 2003;50:891–908.
  • Gorbunova V, Seluanov A. Making ends meet in old age: DSB repair and aging. Mech Ageing Dev 2005;126:621–628.
  • Pham NA, Robinson BH, Hedley DW. Simultaneous detection of mitochondrial respiratory chain activity and reactive oxygen in digitonin-permeabilized cells using flow cytometry. Cytometry 2000;41:245–251.
  • Cheng TJ, Kao HP, Chan CC, Chang WP. Effects of ozone on DNA single-strand breaks and 8-oxoguanine formation in A549 cells. Environ Res 2003;93:298–284.
  • Olive PL, Durand RE, Banath JP, Johnston PJ. Analysis of DNA damage in individual cells. Methods Cell Biol 2001;64:235–249.
  • Huang X, Tanaka T, Kurose A, Traganos F, Darzynkiewicz Z. Constitutive histone H2AX phosphorylation on Ser-139 in cells untreated by genotoxic agents is cell-cycle phase specific and attenuated by scavenging reactive oxygen species. Int J Oncol 2006 29:495–501.
  • Tanaka T, Halicka HD, Huang X, Traganos F, Darzynkiewicz Z. Constitutive histone H2AX phosphorylation and ATM activation, the reporters of DNA damage by endogenous oxidants. Cell Cycle 2006;5:1940–1945.
  • Tanaka T, Kajstura M, Halicka HD, Traganos F, Darzynkiewicz Z. Constitutive histone H2AX phosphorylation and ATM activation are strongly amplified during mitogenic stimulation of lymphocytes. Cell Prolif 2007;40:1–13.
  • Zhao H, Tanaka T, Halicka HD, Traganos F, Zarebski M, Dobrucki J, Darzynkiewicz Z. Cytometric assessment of DNA damage by exogenous and endogenous oxidants reports the aging-related processes. Cytometry A 2007;71A:905–914.
  • Tanaka T, Kurose A, Huang X, Traganos F, Dai W, Darzynkiewicz Z. Extent of constitutive histone H2AX phosphorylation on Ser-139 varies in cells with different TP53 status. Cell Prolif 2006;39:313–323.
  • Wu H, Zhang H, Wang C, Wu Y, Xie J, Jin X, Yang J, Ye J. Genoprotective effect of hyaluronic acid against benzalkonium chloride-induced DNA damage in human corneal epithelial cells. Mol Vis 2011;17:3364–3370.
  • Bulterijs S. Metformin as a geroprotector. Rejuvenation Res 2011;14:469–482.
  • Nair-Shaliliker V, Armstrong BK, Fenech M. Does vitamin D protect against DNA damage? Mutat Res 2012;733:50–57.
  • Zhao H, Tanaka T, Mitlitski V, Heeter J, Balazs EA, Darzynkiewicz Z. Protective effect of hyaluronate on oxidative DNA damage in WI-38 and A549 cells. Int J Oncol 2008;32:1159–1169.
  • Halicka HD, Zhao H, Li J, Traganos F, Zhang S, Lee M, Darzynkiewicz Z Genome protective effect of metformin as revealed by reduced level of constitutive DNA damage signaling. Aging (Albany) 2011;3:1028–1038.
  • Halicka HD, Zhao H, Li J, Traganos DF, Studzinski G, Darzynkiewicz Z. Attenuation of constitutive DNA damage signaling by 1,25-dihydroxyvitamin D3. Aging (Albany) 2012;4;270–278.
  • Massudi H, Grant R, Braidy N, Guest J, Farnsworth B, Gullemin GJ. Age-associated changes in oxidative stress and NAD+ metabolism in human tissue. PLoS One 2012;7:e42357.
  • Oka K, Tanaka T, Enoki T, Yoshimura K, Ohshima M, Kubo M, Murakami T, Gondou T, Minami Y, Takemoto Y, Harada E, Tsushimi T, Li T-S, Traganos F, Darzynkiewicz Z, Hamano K. DNA damage signaling is activated during cancer progression in human colorectal carcinoma. Cancer Biol Ther 2010;9:246–252.
  • Negelkerke A, van Kuijk SJ, Sweep FC, Nagtegaal ID, Hoogerbrugge N, Martens JW, Timmermans MA, van Laarhoven HW, Bussink J, Span PN. Constitutive expression of γ-H2AX has prognostic relevance in triple negative breast cancer. Radiother Oncol 2011;101:39–45.
  • Bartkova J, Hamerlik P, Stockhausen MT, Ehrmann J, Hlobilkova A, Laursen H, Kalita O, Kolar Z, Poulsen HS, Broholm H, Lukas J, Bartek J. Replication stress and oxidative damage contribute to aberrant constitutive activation of DNA damage signaling in human gliomas. Oncogene 2010;29:5095–5102.
  • Walters DK, Tschumper RC, Arendt BK, Huddleston PM, Henderson KJ, Dispenzieri A, Jelinek DF. Evidence for ongoing DNA damage in multiple myeloma cells revealed by constitutive phosphorylation of H2AX. Leukemia 2011;25:1344–1353.
  • Cavalier C, Didier C, Prade N, Mansat-De Mas V, Manenti S, Recher C, Demur C, Ducommun B. Constitutive activation of the DNA damage signaling pathway in acute myeloid leukemia with complex karyotype: potential importance for checkpoint targeting therapy. Cancer Res 2009;69:8652–8661.
  • Halicka HD, Zhao H, Podhorecka M, Traganos F, Darzynkiewicz Z. Cytometric detection of chromatin relaxation, an early reporter of DNA damage response. Cell Cycle 2009;8:2233–2237.
  • Zhao H, Traganos F, Albino AP, Darzynkiewicz Z. Oxidative stress induces cell cycle-dependent Mre11 recruitment, ATM and Chk2 activation and histone H2AX phosphorylation. Cell Cycle 2008;7:1490–1495.
  • Zhao H, Dobrucki J, Rybak P, Traganos F, Halicka HD. Darzynkiewicz Z. Induction of DNA damage signaling by oxidative stress in relation to DNA replication as detected using the “Click Chemistry”. Cytometry A 2011;79A: 897–902.
  • Allen C, Ashley AK, Hromas R, Nickoloff JA. More forks on the road to replication stress recovery. J Mol Cell Biol 2011;3:4–12.
  • Banath JP, MacPhail SH, Olive PL. Radiation sensitivity, H2AX phosphorylation, and kinetics of repair of DNA strand breaks in irradiated cervical cancer cells. Cancer Res 2004;64:7144–7148.
  • MacPhail SH, Banath JP, Yu TY, Chu EH, Lambur H, Olive PL. Expression of phosphorylated histone H2AX in cultured cell lines following exposure to X-rays. Int J Radiat Biol 2003;79:351–358
  • Banath JP, Olive PL. Expression of phosphorylated histone H2AX as a surrogate of cell killing by drugs that create DNA double-strand breaks. Cancer Res 2003;63:4347–4350.
  • MacPhail SH, Banath JP, Yu Y, Chu E, Olive PL. Cell cycle-dependent expression of phosphorylated histone H2AX: reduced expression in unirradiated but not X-irradiated G1-phase cells. Radiat Res 2003;159:759–767.
  • Olive PL, Banath JP. Phosphorylation of histone H2AX as a measure of radiosensitivity. Int J Radiat Oncol Biol Phys 2004;58:331–335.
  • Olive PL, Banath JP, Sinnott LT. Phosphorylated histone H2AX in spheroids, tumors, and tissues of mice exposed to etoposide and 3-amino-1,2,4-benzotriazine-1,3-dioxide. Cancer Res 2004;64:5363–5369.
  • Olive PL, Banath JP. Kinetics of HAX phosphorylation after exposure to cisplatin. Cytometry B Clin Cytom 2009;76:79–90.
  • Fu S, Yang Y, Tirtha D, Yen Y, Zhou BS, Zhou MM, Ohimeyer M, Ko EC, Cagan R, Rosenstein BS, Chen SH, Kao J. γ-H2AX kinetics as a novel approach to high content screening for small molecule radiosensitizers. PloS One 2012;7(6):e38465.
  • Ivashkevich A, Redon CE, Nakamura AJ, Martin RF, Martin OA. Use of the γH2AX assay to monitor DNA damage and repair in translational cancer research. Cancer Lett 2011 Dec 21 (Epub).
  • Bourton EC, Plowman PN, Smith D, Arlett CF, Parris CN. Prolonged expression of the γ-H2AX DNA rep[air biomarker correlates with excess acute and chronic toxicity from radiotherapy treatment. Int J Cancer 2011;129:2928–2934.
  • Horn S, Barnard S, Rothkamm K. Gamma-H2AX-based dose estimation for whole and partial body radiation exposure. PloS One 2011;6(9):e225113.
  • Mah LJ, El-Osta A, Karagiannis TC. gammaH2AX: a sensitive molecular marker of DNA damage and repair. Leukemia 2010; 24:679–686.
  • Sinha RP, Häder D-P. UV-induced DNA damage and repair: A review. Photochem Photobiol Sci 2002;1:225–236.
  • Marti TM, Hefner E, Feeney L, Natale V, Cleaver JE. H2AX phosphorylation within the G1 phase after UV irradiation depends on nucleotide excision repair and not DNA double-strand breaks. Proc Natl Acad Sci USA 2006;103:9891–9896.
  • Hanasoge S, Ljungman M. H2AX phosphorylation after UV irradiation is triggered by DNA repair intermediates and is mediated by the ATR kinase. Carcinogenesis 2007;28:2298–2304.
  • Stokes MP, Rush J, MavNeill J, Ren JM, Sprott K, Nardone J, Yang V, Beausoleil SA, Gygi SP, Livingstone M, Zhang H, Polakiewicz RD, Comb MJ. Profiling of UV-induced ATM/ATR signaling pathways. Proc Natl Acad Sci USA 2007;104:19855–19860.
  • Halicka HD, Huang X, Traganos F. King MA, Dai W, Darzynkiewicz Z. Histone H2AX phosphorylation after cell irradiation with UV-B: Relationship to cell cycle phase and induction of apoptosis. Cell Cycle 2005;4:339–345.
  • Zhao H, Traganos F, Darzynkiewicz Z. Kinetics of the UV-induced DNA damage response in relation to cell cycle phase. Correlation with DNA replication. Cytometry A 2010;77A:285–293.
  • Elvers I, Johansson F, Groth P, Erixon K, Helleday T. UV stalled replication forks restard by repriming in human fibroblasts. Nucleic Acids Res 2011;39;1049–1057.
  • Elvers I, Hagenkort A, Johansson D, Djureinovic T, Lagerqvist N, Stoimenov I, Erixon K, Helleday T. CHK1 activity is required for continuous replication fork elongation but not stabilization of post-replicative gaps after UV radiation. Nucleic Acids Res 2012;40:8440–8448.
  • Yajima H, Lee KJ, Zhang S, Kobayashi J, Chen BP. DNA double-strand break formation upon UV-induced replication stress activates ATM and DNA-PKcs kinases. J Mol Biol 2009;385:800–810.
  • D’Arpa P, Beardmore C, Liu LF. Involvement of nucleic acid synthesis in cell killing mechanisms of topoisomerase poisons. Cancer Res 1990;50:6916–6924.
  • Hsiang YH, Lihou MG, Liu LF. Arrest of replication forks by drug stabilized topoisomeraseI-DNA cleavable complexes as a mechanism of cell killing by camptothecin. Cancer Res 1989;49:5077–5082.
  • Pommier Y, Leo E, Zhang H, Marchand C. DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem Biol 2010;28:421–433.
  • Tanaka T, Halicka HD, Traganos F, Seiter K, Darzynkiewicz Z. Induction of ATM activation, histone H2AX phosphorylation and apoptosis by etoposide: Relation to the cell cycle phase. Cell Cycle 2007;6:371–376.
  • Huang X, Kurose A, Tanaka T, Traganos F, Dai W, Darzynkiewicz Z. Activation of ATM and histone H2AX phosphorylation induced by mitoxantrone but not by topotecan is prevented by the antioxidant N-acetyl-L-cysteine. Cancer Biol Ther 2006;5:959–964.
  • Kurose A, Tanaka T, Huang X, Halicka HD, Traganos F, Dai W, Darzynkiewicz Z. Assessment of ATM phosphorylation on Ser-1981 induced by DNA topoisomerase I and II inhibitors in relation to Ser-139-histone H2AX phosphorylation, cell cycle phase and apoptosis. Cytometry A 2005;68A:1–9.
  • Smart DJ, Halicka HD, Schmuck G, Traganos F, Darzynkiewicz Z, Williams GM. Assessment of DNA double-strand breaks and γH2AX induced by the topoisomerase II poisons etoposide and mitoxantrone. Mutat Res. 2008;641:43–47.
  • Tanaka T, Kurose A, Huang X, Dai W, Darzynkiewicz Z. ATM kinase activation and histone H2AX phosphorylation as indicators of DNA damage by DNA topoisomerase I inhibitor topotecan and during apoptosis. Cell Prolif 2006;39:49–60.
  • Olive PL, Banath JP, Sinnott LT. Phosphorylated histone H2AX in spheroids, tumors, and tissues of mice exposed to etoposide and 3-amino-1,2,4-benzotriazine-1,3-dioxide. Cancer Res 2004;64:5363–5369.
  • Smart DJ, Lynch AM. Evaluating the genotoxicity of topoisomerase-targeted antibiotics. Mutagenesis 2012;27:359–365.
  • Zhao H, Traganos F, Darzynkiewicz Z. Phosphorylation of p53 on Ser15 during cell cycle caused by Topo I and Topo II inhibitors in relation to ATM and Chk2 activation. Cell Cycle 2008;7:3048–3055.
  • Zhao H, Traganos F, Darzynkiewicz Z. Kinetics of histone H2AX phosphorylation and Chk2 activation in A549 cells treated with topotecan and mitoxantrone in relation to the cell cycle phase. Cytometry A 2008;73A;480–489.
  • Staker BL, Hjerrild K, Feese MD, Behnke CA, Burgin AB, Stewart L. The mechanism of topoisomerase I poisoning by a camptothecin analog. Proc Natl Acad Sci USA 2002;99:15387–15392.
  • Kapuscinski J, Darzynkiewicz Z. Relationship between the pharmacological activity of antitumor drugs Ametantrone and Mitoxantrone (Novantrone) and their ability to condense nucleic acids. Proc Natl Acad Sci USA 1986;83:6302–6306.
  • Kapuscinski J, Darzynkiewicz Z, Traganos F, Melamed MR. Interactions of a new antitumor agent 1,4-dihydroxy-5-8-bis 2-(hydroxyethyl)amino)ethyl)amino)--9,10-anthracenedione with nucleic acids. Biochem Pharmacol 1981;30:231–240.
  • Wu C-C, Li TK, Fahr L, Lin L-Y, Lin L-Y, Lin T-S, Yu Y-Y, Yen T-J, Chiang C-W, Chan N-L. Structural basis of type II topoisomerase inhibition by the anticancer drug etoposide. Science 2011;333:459–462.
  • Zhao H, Dobrucki J, Rybak P, Traganos F, Darzynkiewicz Z. Relationship of DNA damage signaling induced by DNA topoisomerase inhibitors camptothecin/topotecan, mitoxantrone or etoposide and DNA replication. Cytometry A 1012;81A: 45–51.
  • Leonhardt H, Rahn HP, Weinzierl P, Sporbert A, Cremen T, Zink D, Cardoso MC. Dynamics of DNA replication factories in living cells. J Cell Biol 2000;149:271–279.
  • Halicka HD, Ozkaynak MF, Levendoglu-Tugal O, Sandoval C, Seiter K, Kajstura M, Traganos F, Jaybose S, Darzynkiewicz Z. DNA damage response as a biomarker in treatment of leukemias. Cell Cycle 2009;8:1720–1724.
  • McKenna E, Traganos F, Zhao H, Darzynkiewicz Z. Persistent DNA damage caused by low levels of mitomycin C induces irreversible senescence of A549 cells. Cell Cycle 2012;11:3132–3140.
  • Banuelos CA, Banath JP, Kim JY, Aquino-Parsons C, Olive P. gammaH2AX expression in tumors exposed to cisplatin and fractionated irradiation. Clin Canc Res 2009;15:3344–3353.
  • Banath JP, Klokov D, MacPhail SH, Banuelos CA, Olive PL. Residual gammaH2AX foci as an indication of lethal DNA lesions. BMC Cancer 2010; Jan 5, 10:4.
  • Demidenko ZN, Blagosklonny MV. Growth stimulation leads to cellular senescence when the cell cycle is blocked. Cell Cycle 2008;7:3355–3361.
  • Albino AP, Huang X, Yang J, Gietl D, Jorgensen E, Traganos F, Darzynkiewicz Z. Induction of histone H2AX phosphorylation in A549 human pulmonary epithelial cells by tobacco smoke and in human bronchial epithelial cells by smoke condensate: A new assay to detect the presence of potential carcinogens in tobacco. Cell Cycle 2004;3:1062–1068.
  • Albino AP, Jorgensen E, Rainey P, Gillman G, Clark TJ, Gietl D, Zhao H, Traganos F, Darzynkiewicz Z. γH2AX: A potential DNA damage response biomarker for assessing toxicological risk of tobacco products. Mutation Res 2009;678:43–52.
  • Zhao H, Albino AP, Jorgensen E, Traganos F, Darzynkiewicz Z. DNA damage response induced by tobacco smoke in normal human bronchial epithelial and A549 pulmonary adenocarcinoma cells assessed by laser scanning cytometry. Cytometry A 2009;75A:840–847.
  • Tanaka T, Huang X, Jorgensen E, Gietl E, Traganos F, Darzynkiewicz Z, Albino AP. ATM activation accompanies histone H2AX phosphorylation in A549 cells upon exposure to tobacco smoke. BMC Cell Biol 2007;Epub June 26, 8:26.
  • Toyooka T, Ibuki Y. Cigarette sidestream smoke induces phosphorylated histone H2AX. Mutat Res 2009;676:34–40.
  • Jorgensen ED, Zhao H, Traganos F, Albino AP, Darzynkiewicz Z. DNA damage response induced by exposure of A549 human lung adenocarcinoma cells to smoke from tobacco- and nicotine-free cigarettes. Cell Cycle 2010;9:2170–2176.
  • Garcia-Canton C, Anadon A, Meredith C. γH2AX as a novel endpoint to detect DNA Damage: Applications for the assessment of the in vitro genotoxicity of cigarette smoke. Toxicol In Vitro 2012; Jun 23 Epub.
  • Albino AP, Huang X, Jorgensen E, Gietl D, Traganos F, Darzynkiewicz Z. Induction of DNA double-strand breaks in A549 and normal human pulmonary epithelial cells by cigarette smoke is mediated by free radicals. Int J Oncol 2006;28:1491–1505.
  • Maertens RM, White PA, Rickert W. Lavasseur G, Gouglas GR, Bellier PV, McNamee JP, Thuppal V, Walker M, Desjardins S. The genoptoxicity of mainstream and sidestream marijuana and tobacco smoke condensates. Chem Res Toxicol 2009;22:1406–1414.
  • Toduka Y, Toyooka T, Ibuki Y. Flow cytometric evaluation of nanoparticles using side-scattered light and reactive oxygen species-mediated fluorescence- correlation with genotoxicity. Environ Sci Technol 2012;46:7629–7636.
  • Toyooka T, Amano T, Ibuki Y. Titanium dioxide paricles phosphorylate histone H2AX independent of ROS production. Mutat Res 2012;742:84–91.
  • Ahamed M, Karns M, Goodson M, Rowe J, Hussain SM, Schlager JJ, Hong JJ. DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicol Appl Pharmacol 2008;233:404–410.
  • Tsaousi A, Jones E, Case CP. The in vitro genotoxicity of orthopaedic ceramic (Al2O3) and metal CoCr alloy) particles. Mutat Res 2010;697:1–9.
  • Audelbert M, Dolo L, Peru E, Cravedi JP, Zalko D. Use of the γH2AX assay for assessing the genotoxicity of bisphenol A and bisphenol F in human cell lines. Arch Toxicol 2011;85:1463–1473.
  • Audebert M, Tiu A, Jacques C, Hillenweck A, Jamin EL, Zalko D, Cravedi JP. Use of the γH2AX assay for assessing the genotoxicity of polycyclic aromatic hydrocarbons in human cell lines. Toxicol Lett 2010;199:82–192.
  • Toyooka T, Kubota T, Ibuki Y. Nonylphenol polyethoxylates induce phosphorylation of histone H2AX. Mutat Res 2012;741:57–64.
  • Carvalho CM, Menezes PF, Letenski GC, Praes CE, Feferman IH, Lorencini M. In vitro induction of apoptosis, necrosis and genotoxicity by cosmetic preservatives: application of flow cytometry as a complementary analysis by NRU. Int J Cosmet Sci 2012;34:176–182.
  • Liu X, Lee J, Ji K, Takeda S, Choi K. Potentials and mechanisms of genotoxicity of xix pharmaceuticals frequently detected in freshwater environment. Toxicol Lett 2012;211:70–76.
  • Tanaka T, Kurose A, Halicka HD, Huang X, Traganos F, Darzynkiewicz Z. Nitrogen oxide-releasing aspirin induces histone H2AX phosphorylation, ATM activation, and apoptosis preferentially in S-phase cells; involvement of reactive oxygen species. Cell Cycle 2006;5:1669–1674.
  • Buchelnikov AS, Hernandez SAA, Gonzalez FM, Vazquez RR, Davies DB, Evstigneev MP. General analysis of competitive binding in dru-interceptor-DNA systems. Eur Biophys J 2012;41:273–283.
  • Pietrzak M, Halicka HD, Wieczorek Z, Wieczorek J, Darzynkiewicz Z. Attenuation of acridine mutagen ICR 191-DNA interactions and DNA damage by the mutagen interceptor chlorophyllin. Biophys J 2008;135;69–75.
  • Zhao H, Traganos F, Dobrucki J, Wlodkowic D, Darzynkiewicz Z. Induction of DNA damage response by the supravital probes of nucleic acids. Cytometry A 2009;75A:510–519.
  • Watters GP, Smart DJ, Harvey JS, Austin CA. H2AX phosphorylation as a genotoxicity endpoint. Mutat Res 2009; 679:50–58.
  • Smart DJ, Ahmedi KP, Harvey JS, Lynch AM. Genotoxicity screening via the γH2AX by flow assay. Mutat Res 2011;515:25–31.
  • Redon CE, Nakamura AJ, Martin OA, Parekh PR, Weyemi US, Bonner WM. Recent developmets in the use of γ-H2AX as a quantitative DNA double-strand break biomarker. Aging (Albany) 2011;3:168–174.
  • Redon CE, Weyemi U, Parekh PR, Huang D, Burrel AS, Bonner WM. γH2AX and other histone post-translational modifications in the clinic. Biochim Biophys Acta 2012; 1819:743–756.
  • Skommer J, Darzynkiewicz Z, Wlodkowic D. Cell death goes LIVE: Technological advances in real-time tracking of cell death. Cell Cycle 2010; 9:2330–2341.
  • Wlodkowic D, Skommer J, Darzynkiewicz Z. Cytometry in cell necrobiology revisited. Recent advances and new vistas. Cytometry A 2010;77:591–606.
  • George TC, Basiji DA, Hall BE, Lynch DH, Ortyn WE, Perry DJ, Seo MJ, Zimmerman CA, Morrissey PJ. Distinguishing modes of cell death using the ImageStream multispectral imaging flow cytometer. Cytometry A 2004;59:237–45.
  • George TC, Fanning SL, Fitzgerald-Bocarsly P, Medeiros RB, Highfill S, Shimizu Y, Hall BE, Frost K, Basiji D, Ortyn WE, Morrissey PJ, Lynch DH. Quantitative measurement of nuclear translocation events using similarity analysis of multispectral cellular images obtained in flow. J Immunol Methods 2006;311:117–29.
  • Bourton EC, Plowman PN, Zahir SA, Senguloglu GU, Serrai H, Bottley G, Parris CN. Multispectral imaging flow cytometry reveals distinct frequencies of γ-H2AX foci induction in DNA double strand break repair defective human cell lines. Cytometry A 2012;81:130–7.
  • Darzynkiewicz Z. Cycling into future: Mass cytometry for the cell-cycle analysis. Cytometry A 2012;81:546–548.
  • Ornatsky O, Bandura D, Baranov V, Nitz M, Winnik MA, Tanner S. Highly multiparametric analysis by mass cytometry. J Immunol Methods 2010; 361:1–20.
  • Fienberg HG, Simonds EF, Fantl WJ, Nolan GP, Bodenmiller B. A platinum-based covalent viability reagent for single-cell mass cytometry. Cytometry A 2012;81:467–75.
  • Behbehani GK, Bendall SC, Clutter MR, Fantl WJ, Nolan GP. Single-cell mass cytometry adapted to measurements of the cell cycle. Cytometry A 2012;81:552–66.
  • Notingher I, Hench LL. Raman microspectroscopy: a noninvasive tool for studies of individual living cells in vitro. Expert Rev Med Devices 2006;3:215–34.
  • Kneipp J, Kneipp H, Rice WL, Kneipp K. Optical probes for biological applications based on surface-enhanced Raman scattering from indocyanine green on gold nanoparticles. Anal Chem 2005;77:2381–5.
  • Jett JH. Raman spectroscopy comes to flow cytometry. Cytometry A 2008;73:109–10.
  • Wlodkowic D, Faley S, Zagnoni M, Wikswo JP, Cooper JM. Microfluidic single-cell array cytometry for the analysis of tumor apoptosis. Anal Chem 2009;81:5517–23.
  • Wlodkowic D, Khoshmanesh K, Sharpe JC, Darzynkiewicz Z, Cooper JM. Apoptosis goes on a chip: advances in the microfluidic analysis of programmed cell death. Anal Chem 2011;83:6439–46.
  • Wlodkowic D Cooper JM. Tumors on chips: oncology meets microfluidics. Curr Opinion Chem Biol 2010;14:556–67.
  • Wlodkowic D, Skommer J, Faley S, Darzynkiewicz Z, Cooper JM. Dynamic analysis of apoptosis using cyanine SYTO probes: from classical to microfluidic cytometry. Exp Cell Res 2009;315:1706–14.
  • Sohn LL, Saleh OA, Facer GR, Beavis AJ, Allan RS, Notterman DA. Capacitance cytometry: measuring biological cells one by one. Proc Natl Acad Sci USA 2000;97:10687–90.
  • De Vos WH, Van Neste L, Dieriks B, Joss GH, Van Oostveldt P. High content image cytometry in the context of subnuclear organization. Cytometry A 2010;77(1):64–75.
  • Zhang H, Tu E, Hagen ND, Schnabel CA, Paliotti MJ, Hoo WS, Nguyen PM, Kohrumel JR, Butler WF, Chachisvillis M, Marchand PJ. Time-of-flight optophoresis analysis of live whole cells in microfluidic channels. Biomed Microdevices 2004,6:11–21.
  • Tamaki E, Sato K, Tokeshi M, Sato K, Aihara M, Kitamori T. Single-cell analysis by a scanning thermal lens microscope with a microchip: direct monitoring of cytochrome c distribution during apoptosis process. Anal Chem 2002;74:1560–4.
  • Wlodkowic D Cooper JM. Microfluidic cell arrays in tumor analysis: new prospects for integrated cytomics. Expert Rev Mol Diagn 2010;10:521–530.
  • Forment JV, Walker RV, Jackson SP. A high-throughput, flow cytometry-based method to quantify DNA-end resection in mammalian cells. Cytometry A 2012;81:922–928.
  • Jun YW, Sheikholeslami S, Hostetter DR, Tajon C, Craik CS, Alivisatos AP. Continuous imaging of plasmon rulers in live cells reveals early-stage caspase-3 activation at the single-molecule level. Proc Natl Acad Sci USA 2009;106:17735–40.
  • Chowdhury D, Keogh MC, Ishii H, Peterson CL, Buratowski S, Lieberman J. gamma-H2AX dephosphorylation by protein phosphatase 2A facilitates DNA double-strand break repair. Mol Cell 2005;20:801–809.
  • Ichijima Y, Sakasai R, Okita N, Asahina K, Mizutani S, Teraoka H. Phosphorylation of histone H2AX at M phase in human cells without DNA damage response. Biochem Biophys Res Commun 2005;336:807–812.
  • Ichijima Y, Yoshioka K, Yoshioka Y, Shinohe K, Fujimori H, Unno M, Goto H, Inagaki M, Mizutani S, Teraoka H. DNA lesions induced by replication stress trigger mitotic aberration and tetraploidy development. PLoS One 2010 Jan 21;5(1):e8821.
  • Tanaka T, Huang X, Halicka HD, Zhao H, Traganos F, Albino AP, Dai W, Darzynkiewicz Z. Cytometry of ATM activation and histone H2AX phosphorylation to estimate extent of DNA damage induced by exogenous agents. Cytometry A 2007;71A:648–661.
  • Henriksen M, Miller B, Newmark J, Al-Kofahi Y, Holden E. Laser scanning cytometry and its applications: A pioneering technology in the field of quantitative imaging cytometry. Meth Cell Biol 2011;102:161–205.
  • Zuba-Surma E, Ratajczak M. Analytical capabilities of the ImageStream cytometer. Meth Cell Biol 2011;102:207–227.
  • Gonzalez JE, Lee M, Barquinero JF, Valente M, Roch-Lefebre S, Garcia O. Quantitative image analysis of gamma-H2AX foci induced by ionizing radiation applying open source programs. Anal Quant Cytol Histol 2012;34:66–71
  • Lobrich M, Rief N, Kuhne M, Heckman M, Fleckenstein J, Rube C, Uder M. In vivo formation and repair of DNA double-strand breaks after computed tomography examinations. Proc Natl Acad Sci USA 2005;102:8994–8989.
  • Kawane K, Nagata S. Nucleases in programmed cell death. Meth Enzymol 2008;442:271–287.
  • Jackson SP. DNA damage signaling and apoptosis. Biochem Soc Transactions 2001;29:655–661.
  • Juan G, Gruenwald S, Darzynkiewicz Z. Phosphorylation of retinoblastoma susceptibility gene protein assayed in individual lymphocytes during their mitogenic stimulation. Exp Cell Res 1998;239:104–110.
  • Krutzik PO, Crane JM, Clutter MR, Nolan GP. High-content single-cell drug screening with phosphospecific flow cytometry. Nat Chem Biol 2008;4:132–142.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.