199
Views
2
CrossRef citations to date
0
Altmetric
Review Article

The versatile landscape of haematopoiesis: Are leukaemia stem cells as versatile?

, &
Pages 232-240 | Received 17 Sep 2012, Accepted 18 Oct 2012, Published online: 15 Nov 2012

References

  • Challen GA, Boles NC, Chambers SM, Goodell MA. Distinct hematopoietic stem cell subtypes are differentially regulated by TGF-β1. Cell Stem Cell 2010;6:265–278.
  • Beerman I, Bhattacharya D, Zandi S, Sigvardsson M, Weissman IL, Bryder D, Rossi DJ. Functionally distinct hematopoietic stem cells modulate hematopoietic lineage potential during aging by a mechanism of clonal expansion. Proc Natl Acad Sci USA 2010;107:5465–5470.
  • Morita Y, Ema H, Nakauchi H. Heterogeneity and hierarchy within the most primitive hematopoietic stem cell compartment. J Exp Med 2010;207:1173–1182.
  • Spangrude GJ, Heimfeld S, Weissman IL. Purification and characterization of mouse hematopoietic stem cells. Science 1988;241:87–93.
  • Okada S, Nakauchi H, Nagayoshi K, Nishikawa S, Miura Y, Suda T. In vivo and in vitro stem cell function of c-kit- and Sca-1-positive murine hematopoietic cells. Blood 1992;80:3044–3050.
  • Brown G, Hughes PJ, Ceredig R, Michell R. Versatility and nuances of the architecture of haematopoiesis - Implications for the nature of leukaemia. Leuk Res 2012;36:14–22
  • Nakayama S, Takahashi H, Kanno Y, O’Shea JJ. Helper T cell diversity and plasticity. Curr Opin Immunol 2012;24:297–302.
  • Ziegler-Heitbrock L, Ancuta P, Crowe S, Dalod M, Grau V, Hart DN, Leenen PJ, Liu YJ, MacPherson G, Randolph GJ, Schmitz J, Shortman K, Sozzani S, Strobl H, Zembala M, Austyn JM, Lutz MB. Nomenclature of monocytes and dendritic cells in blood. Blood 2010;116:e74–e80.
  • Deppe U, Scierenberg E, Cole T, Krieg C, Schmitt D, Yoder B, Von Ehrenstein G. Cell lineages of the nematode Caenorhaditis elegans. Proc Natl Acad Sci USA 1978;75:376–380.
  • Cheng H, Leblond CP. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. V. Unitarian theory of the origin of the four epithelia cell types. Am J Anat 1974;141:537–562.
  • Weissman IL, Anderson DJ, Gage F. Stem and progenitor cells: origins, phenotypes, lineage commitments, and transdifferentiations. Annu Rev Cell Dev Biol 2001;17:387–403.
  • Holtzer H. Stem cell concepts: comments and replies. Differentiation 1979;14:33–34.
  • Shankland M. Differentiation of the O and P cell lines in the embryo of the leech. Dev Biol 1987:123:97–107.
  • Ishikawa F, Niiro H, Lino T, Yoshida S, Saito N, Onohara S et al. The developmental programme of human dendritic cells is operated independently of conventional myeloid and lymphoid pathways. Blood 2007;110:3591–3660.
  • Braunstein M, Rajkumar P, Claus CL, Vaccarelli G, Moore AJ, Wang D, Anderson MK. HEBAlt enhances the T-cell potential of myeloid-biased precursors. Int Immunol 2010;22:963–972
  • Benne C, Lelievre JD, Balbo M, Henry A, Sakano S, Levy Y. Notch increases T/NK potential of human hematopoietic progenitors and inhibits B cell differentiation at the pro-B stage. Stem Cells 2009;27:1676–1685
  • Fogg DK, Sibon C, Miled C, Jung S, Aucouturier P, Littman DR, Cumano A, Geissmann F. A clonogenic bone marrow progenitor specific for macrophages and dendritic cells. Science 2006;311:83–87.
  • Porritt HE, Rumfelt LL, Tabrizifard S, Schmitt TM, Zúñiga-Pflücker JC, Petrie HT. Heterogeneity among DN1 prothymocytes reveals multiple progenitors with different capacities to generate T cell and non-T cell lineages. Immunity 2004;20:735–745.
  • Lehar SM, Dooley J, Farr AG, Bevan MJ. Notch ligands Delta 1 and Jagged1 transmit distinct signals to T-cell precursors. Blood 2005;105:1440–1447.
  • Balciunaite G, Ceredig R, Rolink AG. The earliest subpopulation of mouse thymocytes contains potent T, significant macrophage, and natural killer cell but no B-lymphocyte potential. Blood 2005;105:1930–1936.
  • Ceredig R, Rolink AG, Brown G. Models of haematopoiesis: seeing the wood for the trees. Nature Rev Immunol 2009;9:293–300.
  • Graf T. Blood lines redrawn. Nature 2008;452:702–703.
  • Adolfsson J, Månsson R, Buza-Vidas N, Hultquist A, Liuba K, Jensen CT, Bryder D, Yang L, Borge OJ, Thoren LA, Anderson K, Sitnicka E, Sasaki Y, Sigvardsson M, Jacobsen SE. Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential a revised road map for adult blood lineage commitment. Cell 2005;121:295–306.
  • Waddington CH. The Strategy of Genes; a Discussion of Some Aspects of Theoretical Biology 1957; London: Allen & Unwin.
  • Goll MG, Bestor TH. Eukaryotic cytosine methytransferases. Annu Rev Biochem 2005;74:481–514.
  • Yang PK, Kuroda MI. Noncoding RNAs and intranuclear positioning in monoallelic gene expression. Cell 2007;128:777–786.
  • Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW, Hawkins RD, Barrera LO, Van Calcar S, Qu C, Ching KA et al. Distinctive and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet 2007;39:311–318.
  • The ENCODE Project Consortium. Identification and analysis of functional elements in 1% of the human genome project by the ENCODE pilot project. Nature 2007;447:799–816.
  • Muller J, Hart CM, Francis NJ, Vargas ML, Sengupta A, Wild B, Miller EL, O’Connor MB, Kingston RE, Simon JA. Histone methytransferase activity of the Drosophila Polycomb group repressor complex. Cell 2002;111:197–208.
  • Schotta G, Ebert A, Krauss V, Fischer A, Hoffmann J, Rea S, Jenuwwein T, Dorn R, Reuter G. Central role of Drosophila SU(VAR)3–9 in histone H3K9 methylation and heterochromatin gene silencing. EMBO J 2002;21:1121–1131.
  • Hawkins RD, Hon GC, Lee LK, Ngo Q, Lister R, Pelizzola M, Edsall LE, Kuan S, Luu Y et al.. Distinct epigenetic landscapes of pluripotent and lineage-committed human cells. Cell Stem Cell 2010;6:479–491.
  • Dodge JE, Kang YK, Beppu H, Lei H, Li E. Histone H3-K9 methytransferase ESET is essential for early development. Mol Cell Biol 2004;24:2478–2486.
  • Faust C, Lawson KA, Schork NJ, Thiel B, Magnuson T. The Polycomb-group gene eed is required for normal morphogenic movements during gastrulation in the mouse embryo. Development 1998;125:4495–4506.
  • O’Carrol D, Erhardt S, Pagani M, Barton SC, Surani MA, Jenuwein T. The polycomb-group gene Ezh2 is required for early mouse development. Mol Cell Biol 2001;21:4330–4336.
  • Pasini D, Bracken AP, Hansen JB, Capillo M, Helin K. The polycomb group protein Suz12 is required for embryonic stem cell differentiation. Mol Cell Biol 2007;27:3769–3779.
  • Peters AH, O’Carrol D, Scherthan H, Mechtler K, Dauer S, Schofer C, Weipoltshammer K, Pagani M, Lachner M, Kohlmaier A et al. Loss of the Suv39h histone methytransferase impairs mammalian heterochromatin and genome stability. Cell 2001;107:323–337.
  • Tachibana M, Sugimoto K, Nozaki M, Ueda J, Ohta T, Ohki M, Fukuda M, Takeda N, Niida H, Kato H et al. G9a histone methytransferase plays a dominant role in euchromatin histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev 2002;16:1779–1791.
  • Groth A, Rocha W, Verreault A, Almouzni G. Chromatin challenges during DNA replication and repair. Cell 2007;128:721–733.
  • Weishaupt H, Sigvardsson M, Atterna J. Epigentic chromatin states uniquely define the developmental plasticity of murine hematopoietic stem cells. Blood 2010;115:247–256.
  • Wu W, Cheng Y, Keller CA, Ernst J, Kumar SA, Mishra T, Morrissey C et al. Dynamics of the epigenetics landscape during erythroid differentiation after GATA1 restoration. Genome Res 2011;21:1659–1671.
  • Walsh JC, De Koter RP, Lee HJ, Smith ED, Lancki DW, Gurish MF, Friend DS, Stevens RL, Anastasi J, Singh H. Cooperative and antagonistic interplay between PU.1 and GATA-2 in the specification of myeloid cell fates. Immunity 2002;17:665–676.
  • Heinz S, Benner C, Spann N, Bertolini E, Lin YC, Laslo P, Cheng JX, Murre C, Singh H, Glass CK. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell 2010;29:232–242.
  • Petriv OI, Kuchenbauer F, Delaney AD, Lecault V, White A, Kent D, Marmolejo L, Heuser M, Berg T, Copley M, Ruschmann J, Sekulovic S, Benz C, Kuroda E, Ho V, Antignano F, Halim T, Giambra V, Krystal G, Takei CJF, Weng AP, Piret J, Eaves C, Marra MA, Humphries RK, Hansen CL. Comprehensive microRNA expression profiling of the hematopoietic hierarchy. Proc Natl Acad Sci USA 2010;107:15443–15448.
  • Felli N, Cianetti L, Pelosi E, Care A, Liu CG, Calin GA, Rossi S, Peschle C, Marziali G, Giuliani A. Hematopoietic differentiation: a coordinated dynamic process towards attractor stable states. BMC Systems Biology 2010;4:85.
  • Fazi F, Rosa A, Fatica A, et al. A minicircuitry comprised of microRNA-223 and transcription factors NF1-A and C/EBPalpha regulates human granulopoiesis. Cell 2005;123:819–831.
  • Zardo G, Ciolfi A, Vian L, Starnes LM, Billi M, Racanicchi S, Marsesca C, Fazi F, Travaglini L, Noguera N, Mancini M, Nanni M, Cimino G, Lo-Coco F, Grignanai F, Nervi C. Polycombs and microRNA-223 regulate human granulopoiesis by transcriptional control of target gene expression. Blood 2012;119:4034–4046.
  • Tan Y, Zhang B, Wu T et al. Transcriptional inhibition of Hoxd4 expression by miRNA-10a in human breast cancer cells. BMC Mol Biol 2009;10:12.
  • Brown G, Hughes PJ, Ceredig R, Michell RH, Ceredig R. The versatility of haematopoietic stem cells: – implications for leukaemia. Crit Rev Clin Lab Sci 2010;47:171–180.
  • Hohaus S, Petrovick MS, Voso MT, Sun Z, Zhang DE, Tenen DG. PU.1 (Spi-1) and C/EBPα regulate expression of the granulocyte-macrophage colony-stimulating factor receptor α gene. Mol Cell Biol 1995;15:5830–5845.
  • Smith LT, Hohaus S, Gonzalez DA, Dziennis SE, Tenen DG. PU.1 (Spi-1) and C/EBPα regulate the granulocyte colony-stimulating factor receptor promoter in myeloid cells. Blood 1996;88:1234–1247.
  • Zhang DE, Hetherington CJ, Chen HM, Tenen DG. The macrophage transcription factor PU.1 directs tissue-specific expression of the macrophage colony-stimulating factor receptor. Mol Cell Biol 1994;14:373–381.
  • Vanhees K, Coort S, Ruijters EJB, Godschalk RWL, Van Schooten FJ, Van Waalwijk van Doorn-Khosrovani SB. Epigenetics: prenatal exposure to genestein leaves a permanent signature on the hematopoietic lineage. FASEB J 2011;25:797–807.
  • Lane SW, Gilliand DG. Leukaemia stem cells. Semin Cancer Biol 2010;20:71–76.
  • Buzzai M, Licht JD. New molecular concepts and targets in acute myeloid leukaemia. Current Opin Hematol 2008;15:82–87.
  • Krause DS, Van Etten RA. Right on: eradicating leukaemia stem cells. Trends Mol Med 2007;13:470–481.
  • Bonnet D, Dick JE. Human acute myeloid leukaemia is organised as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997;3:730–737.
  • Krivtsov AV, Twomey D, Feng Z, Stubbs MC, Wang Y, Faber J, Levine JE, Wang J, Hahn WC, Gilliland DG, Golub TR, Armstrong SA. Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature 2006;442:257–268.
  • Somervaille TC, Cleary ML. Identification and characterisation of leukaemia stem cells in murine MLL-AF9 acute myeloid leukaemia. Cancer Cell 2006;10:257–268.
  • Scaffidi P, Misteli T. In in vitro generation of human cells with cancer stem cell properties. Nat Cell Biol 2011;13:1051–1061.
  • Greaves MF. Differentiation-linked leukemogenesis in lymphocytes. Science 1986;243:697–704.
  • Greaves MF. Molecular genetics, natural history and the demise of childhood leukaemia. Eur J Cancer 1999;35:173–185.
  • Grimwade D, Enver T. Acute promyelocytic leukaemia: where does it stem from? Leukemia 2004;18:375–384.
  • Cox CV, Blair A. A primitive cell origin for B-cell precursor ALL? Stem Cell Reviews 2005;1:189–196.
  • Edwards RH, Wasik MA, Finan J, Rodriguez R, Moore J, Kamoun M, Rennert H, Bird J, Nowell PC, Salhany KE. Evidence for early hematopoietic progenitor cell involvement in acute promyelocytic leukemia. Am J Clin Pathol 1999;112:819–827.
  • Kowal-Vern A, Mazzella FM, Cotelingham JD, Shrit MA, Rector JT, Schumacher HR. Diagnosis and characterisation of acute erythroleukaemia subsets by determining the percentages of myeloblasts and proerythroblasts in 69 cases. Am J Hematol 2000;65:5–13.
  • Xiao H, Shi J, Luo Y, Tan Y, He J, Xie W, Zhang L, Wang Y, Liu L, Wu K, Yu X, Cai Z, Lin M, Ye X, Huang H. First report of multiple CEBPA mutations contributing to donor origin of leukaemia relapse after allogeneic hematopoietic transplantation. Blood 2011;117:5257–5260.
  • Dakic A, Wu L, Nutt SL. Is PU.1 a dosage-sensitive regulator of haematopoietic lineage commitment and leukaemogenesis? Trends in Immunol 2007;28:108–114.
  • Yeh JR, Munson KM, Chao YL, Peterson QP, Macrae CA, Peterson RT. AML1-ETO reprogrammes hematopoietic cell fate by downregulating scl expression. Development 2008;135:401–410.
  • Bonadies N, Foster SD, Chan WI, Spensberger D, Dawson MA, Spooncer E, Whetton AD, Bannister AJ, Huntly BJ, Gottens B. Genome-wide analysis of transcriptional reprogramming in mouse models of myeloid leukaemia. PLoS One 2011;6:e16330.
  • O’Neil J, Look AT. Mechanisms of transcriptional factor deregulation in lymphoid cell transformation. Oncogene 2007;26:6838–6849.
  • Gronbaek K, Muller-Tidow C, Perini G, Lehmann S, Bach Treppendahl M, Mills K, Plass C, Schlegelberger B. A critical appraisal of tools available for monitoring epigenetic changes in clinical samples for patients with myeloid malignancies. Haematologica 2012;97:1380–1388.
  • Saied MH, Marzec J, Khalid S, Smith P, Down TA, Rakyan VK, Molloy G, Raghavan M, Debernardi S, Young BD. Genome wide analysis of acute myeloid leukemia reveals leukemia specific methylome and subtype specific hypomethylation of repeats. PLoS One 2012;7:e33213.
  • Young R. Control of the embryonic stem cell state. Cell 2011;144:940–954.
  • Yamanaka S, Blau HM. Nuclear reprogramming to a pluripotent state by three approaches. Nature 2010;465:704–712.
  • Gaussmann A, Wenger T, Eberle I, Bursen A, Bracharz S, Herr I, Dingermann T, Marschalek R. Combined effects of the two reciprocal t(4;11) fusion proteins MLL.AF4 and AF4.MLL confer resitence to apoptosis, cell cycling capacity and growth transformation. Oncogene 2007;26:3352–3363.
  • Eberle I, Pless B, Braun M, Dingermann T, Marschalek R. Transcriptional properties of human NANOG1 and NANOG2 in acute leukaemia cells. Nucleic Acids Res 2010;38:5384–5349.
  • Rahl PB, Lin CY, Selia AC, Flynn RA, McCuine S, Burge CB, Sharp PA, Young RA. C-Myc regulates transcriptional pause release. Cell 2010;141:432–445.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.