830
Views
18
CrossRef citations to date
0
Altmetric
Review Article

Diagnosis and prevention of thalassemia

&
Pages 125-141 | Received 03 Jun 2013, Accepted 16 Sep 2013, Published online: 02 Dec 2013

References

  • Modell B, Darlison M. Global epidemiology of haemoglobin disorders and derived service indicators. Bull World Health Organ 2008;86:480–7
  • Lau YL, Chan LC, Chan YY, et al. Prevalence and genotypes of alpha- and beta-thalassemia carriers in Hong Kong – implications for population screening. N Engl J Med 1997;336:1298–301
  • Fucharoen S, Winichagoon P. Haemoglobinopathies in southeast Asia. Indian J Med Res 2011;134:498–506
  • Chan LC, Ma SK, Chan AY, et al. Should we screen for globin gene mutations in blood samples with mean corpuscular volume (MCV) greater than 80 fL in areas with a high prevalence of thalassaemia? J Clin Pathol 2001;54:317–20
  • Ma ES, Chan AY, Ha SY, et al. Thalassemia screening based on red cell indices in the Chinese. Haematologica 2001;86:1310–1
  • Ryan K, Bain BJ, Worthington D, et al. Significant haemoglobinopathies: guidelines for screening and diagnosis. Br J Haematol 2010;149:35–49
  • Tang W, Luo HY, Albitar M, et al. Human embryonic zeta-globin chain expression in deletional alpha-thalassemias. Blood 1992;80:517–22
  • Lafferty JD, Crowther MA, Waye JS, Chui DH. A reliable screening test to identify adult carriers of the (–SEA) alpha zero-thalassemia deletion. Detection of embryonic zeta-globin chains by enzyme-linked immunosorbent assay. Am J Clin Pathol 2000;114:927–31
  • Lafferty JD, Barth DS, Sheridan BL, et al. A multicenter trial of the effectiveness of zeta-globin enzyme-linked immunosorbent assay and hemoglobin H inclusion body screening for the detection of alpha0-thalassemia trait. Am J Clin Pathol 2008;129:309–15
  • Tayapiwatana C, Kuntaruk S, Tatu T, et al. Simple method for screening of alpha-thalassaemia 1 carriers. Int J Hematol 2009;89:559–67
  • Srivorakun H, Fucharoen G, Changtrakul Y, et al. Thalassemia and hemoglobinopathies in Southeast Asian newborns: diagnostic assessment using capillary electrophoresis system. Clin Biochem 2011;44:406–11
  • Wild BJ, Stephens AD. The use of automated HPLC to detect and quantitate haemoglobins. Clin Lab Haematol 1997;19:171–6
  • Winichagoon P, Svasti S, Munkongdee T, et al. Rapid diagnosis of thalassemias and other hemoglobinopathies by capillary electrophoresis system. Transl Res 2008;152:178–84
  • Trent RJ, Webster B, Bowden DK, et al. Complex phenotypes in the haemoglobinopathies: recommendations on screening and DNA testing. Pathology 2006;38:507–19
  • Clark BE, Thein SL. Molecular diagnosis of haemoglobin disorders. Clin Lab Haematol 2004;26:159–76
  • Improvements in the HbVar database of human hemoglobin variants and thalassemia mutations for population and sequence variation studies [Internet]. 2004. Available from: http://globin.cse.psu.edu/hbvar/menu.html [last accessed 1 May 2013]
  • Chan AY, So CC, Ma ES, Chan LC. A laboratory strategy for genotyping haemoglobin H disease in the Chinese. J Clin Pathol 2007;60:931–4
  • Wang W, Kham SK, Yeo GH, et al. Multiplex minisequencing screen for common Southeast Asian and Indian beta-thalassemia mutations. Clin Chem 2003;49:209–18
  • Yip SP, Pun SF, Leung KH, Lee SY. Rapid, simultaneous genotyping of five common Southeast Asian beta-thalassemia mutations by multiplex minisequencing and denaturing HPLC. Clin Chem 2003;49:1656–9
  • Liao HK, Su YN, Kao HY, et al. Parallel minisequencing followed by multiplex matrix-assisted laser desorption/ionization mass spectrometry assay for beta-thalassemia mutations. J Hum Genet 2005;50:139–50
  • So CC, So AC, Chan AY, et al. Detection and characterisation of beta-globin gene cluster deletions in Chinese using multiplex ligation-dependent probe amplification. J Clin Pathol 2009;62:1107–11
  • Liew M, Pryor R, Palais R, et al. Genotyping of single-nucleotide polymorphisms by high-resolution melting of small amplicons. Clin Chem 2004;50:1156–64
  • Liu YN, Li R, Zhou JY, et al. Screening for mutations in the alpha-globin genes leading to abnormal hemoglobin variants with high resolution melting analysis. Clin Chem Lab Med 2012;50:273–7
  • Shih HC, Er TK, Chang TJ, et al. Rapid identification of HBB gene mutations by high-resolution melting analysis. Clin Biochem 2009;42:1667–76
  • Montgomery JL, Sanford LN, Wittwer CT. High-resolution DNA melting analysis in clinical research and diagnostics. Expert Rev Mol Diagn 2010;10:219–40
  • Cremonesi L, Ferrari M, Giordano PC, et al. An overview of current microarray-based human globin gene mutation detection methods. Hemoglobin 2007;31:289–311
  • Schouten JP, McElgunn CJ, Waaijer R, et al. Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res 2002;30:e57
  • Viprakasit V, Kidd AM, Ayyub H, et al. De novo deletion within the telomeric region flanking the human alpha globin locus as a cause of alpha thalassaemia. Br J Haematol 2003;120:867–75
  • Koenig SC, Becirevic E, Hellberg MS, et al. Sickle cell disease caused by heterozygosity for Hb S and novel LCR deletion: Report of two patients. Am J Hematol 2009;84:603–6
  • Joly P, Lacan P, Garcia C, et al. A novel deletion/insertion caused by a replication error in the beta-globin gene locus control region. Hemoglobin 2011;35:316–22
  • Coelho A, Picanco I, Seuanes F, et al. Novel large deletions in the human alpha-globin gene cluster: Clarifying the HS-40 long-range regulatory role in the native chromosome environment. Blood Cells Mol Dis 2010;45:147–53
  • Nezhat N, Akbari MT. Detection of deletions/duplications in alpha-globin gene cluster by multiplex ligation-dependent probe amplification. Genet Test Mol Biomarkers 2012;16:684–8
  • Gibbons RJ, Wada T. ATRX mutations and X-linked alpha thalassaemia mental retardation syndrome. In: Epstein CJ, Erickson RP, Wynshaw-Boris A, editors. Inborn errors of development. Oxford: Oxford University Press, 2004:747--57
  • Gibbons RJ, Pellagatti A, Garrick D, et al. Identification of acquired somatic mutations in the gene encoding chromatin-remodeling factor ATRX in the alpha-thalassemia myelodysplasia syndrome (ATMDS). Nat Genet 2003;34:446–9
  • Yu C, Niakan KK, Matsushita M, et al. X-linked thrombocytopenia with thalassemia from a mutation in the amino finger of GATA-1 affecting DNA binding rather than FOG-1 interaction. Blood 2002;100:2040–5
  • Viprakasit V, Gibbons RJ, Broughton BC, et al. Mutations in the general transcription factor TFIIH result in beta-thalassaemia in individuals with trichothiodystrophy. Hum Mol Genet 2001;10:2797–802
  • Lorey F, Cunningham G, Vichinsky EP, et al. Universal newborn screening for Hb H disease in California. Genet Test 2001;5:93–100
  • Kemper AR, Knapp AA, Metterville DR, et al. Weighing the evidence for newborn screening for Hemoglobin H disease. J Pediatr 2011;158:780–3
  • Bouva MJ, Sollaino C, Perseu L, et al. Relationship between neonatal screening results by HPLC and the number of alpha-thalassaemia gene mutations; consequences for the cut-off value. J Med Screen 2011;18:182–6
  • Mitchell JJ, Capua A, Clow C, Scriver CR. Twenty-year outcome analysis of genetic screening programs for Tay-Sachs and beta-thalassemia disease carriers in high schools. Am J Hum Genet 1996;59:793–8
  • Lena-Russo D, Badens C, Aubinaud M, et al. Outcome of a school screening programme for carriers of haemoglobin disease. J Med Screen 2002;9:67–9
  • Zeinalian M, Nobari RF, Moafi A, et al. Two decades of pre-marital screening for beta-thalassemia in central Iran. J Community Genet 2013;4:517--22
  • Samavat A, Modell B. Iranian national thalassaemia screening programme. Br Med J 2004;329:1134–7
  • Karimi M, Rasekhi AR. Efficiency of premarital screening of beta-thalassemia trait using MCH rather than MCV in the population of Fars Province, Iran. Haematologia (Budap) 2002;32:129–33
  • Kwan WY, So CH, Chan WP, et al. Re-emergence of late presentations of fetal haemoglobin Bart's disease in Hong Kong. Hong Kong Med J 2011;17:434–40
  • Wiwanitkit V, Suwansaksri J, Paritpokee N. Combined one-tube osmotic fragility (OF) test and dichlorophenol-indolphenol (DCIP) test screening for hemoglobin disorders, an experience in 213 Thai pregnant women. Clin Lab 2002;48:525–8
  • Rogers M, Phelan L, Bain B. Screening criteria for beta thalassaemia trait in pregnant women. J Clin Pathol 1995;48:1054–6
  • Wattanasirichaigoon D, Promsonthi P, Chuansumrit A, et al. Maternal uniparental disomy of chromosome 16 resulting in hemoglobin Bart's hydrops fetalis. Clin Genet 2008;74:284–7
  • Kwan Ma ES, Yin Chan AY, et al. Screening for (–SEA) alpha-globin gene deletion in beta-thalassemia carriers and prevention of hydrops fetalis. Haematologica 2000;85:991–3
  • Ma ES, Chan AY, Au WY, et al. Diagnosis of concurrent hemoglobin H disease and heterozygous beta-thalassemia. Haematologica 2001;86:432–3
  • Tatu T, Kiewkarnkha T, Khuntarak S, et al. Screening for co-existence of alpha-thalassemia in beta-thalassemia and in HbE heterozygotes via an enzyme-linked immunosorbent assay for Hb Bart's and embryonic zeta-globin chain. Int J Hematol 2012;95:386–93
  • So CC, Chan AY, Luo HY, et al. Hb A2 Hong Kong – a novel delta-globin variant in a Chinese family masks the diagnosis of beta-thalassemia trait. Hemoglobin 2011;35:162–5
  • Madan N, Sikka M, Sharma S, Rusia U. Phenotypic expression of hemoglobin A2 in beta-thalassemia trait with iron deficiency. Ann Hematol 1998;77:93–6
  • Verhovsek M, So CC, O'Shea T, et al. Is HbA2 level a reliable diagnostic measurement for beta-thalassemia trait in people with iron deficiency? Am J Hematol 2012;87:114–6
  • McFarlane A, Warkentin TE, Cartin W. A novel sickling hemoglobinopathy. N Engl J Med 2011;365:1548–9
  • So CC, Chan AY, Tsang ST, et al. A novel beta-delta globin gene fusion, anti-Lepore Hong Kong, leads to overexpression of delta globin chain and a mild thalassaemia intermedia phenotype when co-inherited with beta(0)-thalassaemia. Br J Haematol 2007;136:158–62
  • Pornprasert S, Sukunthamala K, Leechanachai P, Sanguansermsri T. Increased Hb A2 values in an HIV-1-infected patient receiving antiretroviral drugs: a pitfall for thalassemia antenatal diagnosis. Hemoglobin 2009;33:158–61
  • Au WY, Lee V, Lau CW, et al. A synopsis of current care of thalassaemia major patients in Hong Kong. Hong Kong Med J 2011;17:261–6
  • Telfer P. Update on survival in thalassemia major. Hemoglobin 2009;33:S76–80
  • Zhou X, Ha SY, Chan GC, et al. Successful mismatched sibling cord blood transplant in Hb Bart's disease. Bone Marrow Transplant 2001;28:105–7
  • Yi JS, Moertel CL, Baker KS. Homozygous alpha-thalassemia treated with intrauterine transfusions and unrelated donor hematopoietic cell transplantation. J Pediatr 2009;154:766–8
  • Cavazzana-Calvo M, Payen E, Negre O, et al. Transfusion independence and HMGA2 activation after gene therapy of human beta-thalassaemia. Nature 2010;467:318–22
  • Nuinoon M, Makarasara W, Mushiroda T, et al. A genome-wide association identified the common genetic variants influence disease severity in beta0-thalassemia/hemoglobin E. Hum Genet 2010;127:303–14
  • Galanello R, Sanna S, Perseu L, et al. Amelioration of Sardinian beta0 thalassemia by genetic modifiers. Blood 2009;114:3935–7
  • Badens C, Joly P, Agouti I, et al. Variants in genetic modifiers of beta-thalassemia can help to predict the major or intermedia type of the disease. Haematologica 2011;96:1712–4
  • Fucharoen S, Viprakasit V. Hb H disease: clinical course and disease modifiers. Hematology Am Soc Hematol Educ Program 2009;26–34
  • Chen FE, Ooi C, Ha SY, et al. Genetic and clinical features of hemoglobin H disease in Chinese patients. N Engl J Med 2000;343:544–50
  • Lal A, Goldrich ML, Haines DA, et al. Heterogeneity of hemoglobin H disease in childhood. N Engl J Med 2011;364:710–18
  • Wajcman H, Traeger-Synodinos J, Papassotiriou I, et al. Unstable and thalassemic alpha chain hemoglobin variants: a cause of Hb H disease and thalassemia intermedia. Hemoglobin 2008;32:327–49
  • Chan V, Chan VW, Tang M, et al. Molecular defects in Hb H hydrops fetalis. Br J Haematol 1997;96:224–8
  • Henderson S, Pitman M, McCarthy J, et al. Molecular prenatal diagnosis of Hb H hydrops fetalis caused by haemoglobin Adana and the implications to antenatal screening for alpha-thalassaemia. Prenat Diagn 2008;28:859–61
  • Brillet T, Baudin-Creuza V, Vasseur C, et al. Alpha-hemoglobin stabilizing protein (AHSP), a kinetic scheme of the action of a human mutant, AHSPV56G. J Biol Chem 2010;285:17986–92
  • Cao A, Kan YW. The prevention of thalassemia. Cold Spring Harb Perspect Med 2013;3:a011775
  • Leung KY, Lee CP, Tang MH, et al. Cost-effectiveness of prenatal screening for thalassaemia in Hong Kong. Prenat Diagn 2004;24:899–907
  • Bianchi DW, Flint AF, Pizzimenti MF, et al. Isolation of fetal DNA from nucleated erythrocytes in maternal blood. Proc Natl Acad Sci USA 1990;87:3279–83
  • Cheung MC, Goldberg JD, Kan YW. Prenatal diagnosis of sickle cell anaemia and thalassaemia by analysis of fetal cells in maternal blood. Nat Genet 1996;14:264–8
  • Lo YM, Corbetta N, Chamberlain PF, et al. Presence of fetal DNA in maternal plasma and serum. Lancet 1997;350:485–7
  • Hahn T, Drese KS, O'Sullivan CK. Microsystem for isolation of fetal DNA from maternal plasma by preparative size separation. Clin Chem 2009;55:2144–52
  • Ding C, Chiu RW, Lau TK, et al. MS analysis of single-nucleotide differences in circulating nucleic acids: Application to noninvasive prenatal diagnosis. Proc Natl Acad Sci USA 2004;101:10762–7
  • Tsang JC, Charoenkwan P, Chow KC, et al. Mass spectrometry-based detection of hemoglobin E mutation by allele-specific base extension reaction. Clin Chem 2007;53:2205–9
  • Chow KC, Chiu RW, Tsui NB, et al. Mass spectrometric detection of an SNP panel as an internal positive control for fetal DNA analysis in maternal plasma. Clin Chem 2007;53:141–2
  • Chan KC, Ding C, Gerovassili A, et al. Hypermethylated RASSF1A in maternal plasma: a universal fetal DNA marker that improves the reliability of noninvasive prenatal diagnosis. Clin Chem 2006;52:2211–18
  • Chan K, Yam I, Leung KY, et al. Detection of paternal alleles in maternal plasma for non-invasive prenatal diagnosis of beta-thalassemia: a feasibility study in southern Chinese. Eur J Obstet Gynecol Reprod Biol 2010;150:28–33
  • Ho SS, Chong SS, Koay ES, et al. Noninvasive prenatal exclusion of haemoglobin Bart's using foetal DNA from maternal plasma. Prenat Diagn 2010;30:65–73
  • Lun FM, Tsui NB, Chan KC, et al. Noninvasive prenatal diagnosis of monogenic diseases by digital size selection and relative mutation dosage on DNA in maternal plasma. Proc Natl Acad Sci USA 2008;105:19920–5
  • Lam KW, Jiang P, Liao GJ, et al. Noninvasive prenatal diagnosis of monogenic diseases by targeted massively parallel sequencing of maternal plasma: application to beta-thalassemia. Clin Chem 2012;58:1467–75
  • Chan V, Ng EH, Yam I, et al. Experience in preimplantation genetic diagnosis for exclusion of homozygous alpha degrees thalassemia. Prenat Diagn 2006;26:1029–36
  • Yap C, Tan AS, Wang W, et al. First successful preimplantation genetic diagnosis in Singapore–avoidance of beta-thalassaemia major. Ann Acad Med Singapore 2009;38:720–3
  • Handyside AH, Robinson MD, Simpson RJ, et al. Isothermal whole genome amplification from single and small numbers of cells: a new era for preimplantation genetic diagnosis of inherited disease. Mol Hum Reprod 2004;10:767–72
  • Huisman TH, Kutlar F, Gu LH. Gamma chain abnormalities and gamma-globin gene rearrangements in newborn babies of various populations. Hemoglobin 1991;15:349–79
  • Bento C, Magalhaes Maia T, Carvalhais I, et al. Transient neonatal cyanosis associated with a new Hb F variant: Hb F viseu. J Pediatr Hematol Oncol 2013;35:e77–80
  • Zimmermann-Baer U, Capalo R, Dutly F, et al. Neonatal cyanosis due to a new (G)gamma-globin variant causing low oxygen affinity: Hb F-Sarajevo [(G)gamma102(G4)Asn→Thr, AAC > ACC]. Hemoglobin 2012;36:109–13
  • Garner C, Tatu T, Reittie JE, et al. Genetic influences on F cells and other hematologic variables: a twin heritability study. Blood 2000;95:342–6
  • Anagnou NP, Perez-Stable C, Gelinas R, et al. Sequences located 3' to the breakpoint of the hereditary persistence of fetal hemoglobin-3 deletion exhibit enhancer activity and can modify the developmental expression of the human fetal A gamma-globin gene in transgenic mice. J Biol Chem 1995;270:10256–63
  • Feingold EA, Forget BG. The breakpoint of a large deletion causing hereditary persistence of fetal hemoglobin occurs within an erythroid DNA domain remote from the beta-globin gene cluster. Blood 1989;74:2178–86
  • Kosteas T, Palena A, Anagnou NP. Molecular cloning of the breakpoints of the hereditary persistence of fetal hemoglobin type-6 (HPFH-6) deletion and sequence analysis of the novel juxtaposed region from the 3' end of the beta-globin gene cluster. Hum Genet 1997;100:441–5
  • Sankaran VG, Xu J, Byron R, et al. A functional element necessary for fetal hemoglobin silencing. N Engl J Med 2011;365:807–14
  • Motum PI, Lindeman R, Harvey MP, Trent RJ. Comparative studies of nondeletional HPFH gamma-globin gene promoters. Exp Hematol 1993;21:852–8
  • Chen Z, Luo HY, Basran RK, et al. A T-to-G transversion at nucleotide -567 upstream of HBG2 in a GATA-1 binding motif is associated with elevated hemoglobin F. Mol Cell Biol 2008;28:4386–93
  • Shimizu K, Park KS, Enoki Y. The XmnI site 5' to the G gamma-globin gene polymorphism and its relationship to %Hb F and %G gamma in normal Japanese and Korean adults. Hum Hered 1992;42:253–8
  • So CC, Song YQ, Tsang ST, et al. The HBS1L-MYB intergenic region on chromosome 6q23 is a quantitative trait locus controlling fetal haemoglobin level in carriers of beta-thalassaemia. J Med Genet 2008;45:745–51
  • Labie D, Pagnier J, Lapoumeroulie C, et al. Common haplotype dependency of high G gamma-globin gene expression and high Hb F levels in beta-thalassemia and sickle cell anemia patients. Proc Natl Acad Sci USA 1985;82:2111–14
  • Thein SL, Wainscoat JS, Sampietro M, et al. Association of thalassaemia intermedia with a beta-globin gene haplotype. Br J Haematol 1987;65:367–73
  • Haghi M, Feizi AA, Harteveld CL, et al. Homozygosity for a rare beta 0-thalassemia mutation [frameshift codons 25/26 (+T)] causes beta-thalassemia intermedia in an Iranian family. Hemoglobin 2009;33:75–80
  • Huang CH, Chang YY, Chen CH, Ko TM. Molecular characterization of a beta-globin gene deletion of 1357 bp in a Taiwanese beta-thalassemia carrier. Hemoglobin 2008;32:498–504
  • Dimovski AJ, Efremov DG, Jankovic L, et al. A beta zero-thalassaemia due to a 1605 bp deletion of the 5' beta-globin gene region. Br J Haematol 1993;85:143–7
  • Beris P, Kitundu MN, Baysal E, et al. Black beta-thalassemia homozygotes with specific sequence variations in the 5' hypersensitive site-2 of the locus control region have high levels of fetal hemoglobin. Am J Hematol 1992;41:97–101
  • Papachatzopoulou A, Kaimakis P, Pourfarzad F, et al. Increased gamma-globin gene expression in beta-thalassemia intermedia patients correlates with a mutation in 3'HS1. Am J Hematol 2007;82:1005–9
  • Hamid M, Mahjoubi F, Akbari MT, et al. Molecular analysis of gamma-globin promoters, HS-111 and 3'HS1, in beta-thalassemia intermedia patients associated with high levels of Hb F. Hemoglobin 2009;33:428–38
  • Changsri K, Akkarapathumwong V, Jamsai D, et al. Molecular mechanism of high hemoglobin F production in Southeast Asian-type hereditary persistence of fetal hemoglobin. Int J Hematol 2006;83:229–37
  • Dimovski AJ, Divoky V, Adekile AD, et al. A novel deletion of approximately 27 kb including the beta-globin gene and the locus control region 3'HS-1 regulatory sequence: beta zero-thalassemia or hereditary persistence of fetal hemoglobin? Blood 1994;83:822–7
  • Menzel S, Garner C, Gut I, et al. A QTL influencing F cell production maps to a gene encoding a zinc-finger protein on chromosome 2p15. Nat Genet 2007;39:1197–9
  • Sedgewick AE, Timofeev N, Sebastiani P, et al. BCL11A is a major HbF quantitative trait locus in three different populations with beta-hemoglobinopathies. Blood Cells Mol Dis 2008;41:255–8
  • Uda M, Galanello R, Sanna S, et al. Genome-wide association study shows BCL11A associated with persistent fetal hemoglobin and amelioration of the phenotype of beta-thalassemia. Proc Natl Acad Sci USA 2008;105:1620–5
  • Sankaran VG, Menne TF, Xu J, et al. Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A. Science 2008;322:1839–42
  • Sankaran VG, Xu J, Ragoczy T, et al. Developmental and species-divergent globin switching are driven by BCL11A. Nature 2009;460:1093–7
  • Wahlberg K, Jiang J, Rooks H, et al. The HBS1L-MYB intergenic interval associated with elevated HbF levels shows characteristics of a distal regulatory region in erythroid cells. Blood 2009;114:1254–62
  • Stadhouders R, Thongjuea S, Andrieu-Soler C, et al. Dynamic long-range chromatin interactions control Myb proto-oncogene transcription during erythroid development. EMBO J 2012;31:986–99
  • Jiang J, Best S, Menzel S, et al. cMYB is involved in the regulation of fetal hemoglobin production in adults. Blood 2006;108:1077–83
  • Farrell JJ, Sherva RM, Chen ZY, et al. A 3-bp deletion in the HBS1L-MYB intergenic region on chromosome 6q23 is associated with HbF expression. Blood 2011;117:4935–45
  • Suzuki M, Yamazaki H, Mukai HY, et al. Disruption of the Hbs1l-Myb locus causes hereditary persistence of fetal hemoglobin in a mouse model. Mol Cell Biol 2013;33:1687–95
  • Drissen R, Palstra RJ, Gillemans N, et al. The active spatial organization of the beta-globin locus requires the transcription factor EKLF. Genes Dev 2004;18:2485–90
  • Zhou D, Liu K, Sun CW, et al. KLF1 regulates BCL11A expression and gamma- to beta-globin gene switching. Nat Genet 2010;42:742–4
  • Tallack MR, Perkins AC. Three fingers on the switch: Kruppel-like factor 1 regulation of gamma-globin to beta-globin gene switching. Curr Opin Hematol 2013;20:193–200
  • Borg J, Papadopoulos P, Georgitsi M, et al. Haploinsufficiency for the erythroid transcription factor KLF1 causes hereditary persistence of fetal hemoglobin. Nat Genet 2010;42:801–5
  • Lettre G, Sankaran VG, Bezerra MA, et al. DNA polymorphisms at the BCL11A, HBS1L-MYB, and beta-globin loci associate with fetal hemoglobin levels and pain crises in sickle cell disease. Proc Natl Acad Sci USA 2008;105:11869–74

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.