1,713
Views
112
CrossRef citations to date
0
Altmetric
Review Article

The bacterial protein Hfq: much more than a mere RNA-binding factor

&
Pages 276-299 | Received 08 Nov 2011, Accepted 03 Feb 2012, Published online: 21 Mar 2012

References

  • Adamson DN, Lim HN. (2011). Essential requirements for robust signaling in Hfq dependent small RNA networks. PLoS Comput Biol, 7, e1002138.
  • Afonyushkin T, Vecerek B, Moll I, Bläsi U, Kaberdin VR. (2005). Both RNase E and RNase III control the stability of sodB mRNA upon translational inhibition by the small regulatory RNA RyhB. Nucleic Acids Res, 33, 1678–1689.
  • Aiba H. (2007). Mechanism of RNA silencing by Hfq-binding small RNAs. Curr Opin Microbiol, 10, 134–139.
  • Ali Azam T, Iwata A, Nishimura A, Ueda S, Ishihama A. (1999). Growth phase-dependent variation in protein composition of the Escherichia coli nucleoid. J Bacteriol, 181, 6361–6370.
  • Allam US, Krishna MG, Lahiri A, Joy O, Chakravortty D. (2011). Salmonella enterica serovar Typhimurium lacking hfq gene confers protective immunity against murine typhoid. PLoS ONE, 6, e16667.
  • Arluison V, Derreumaux P, Allemand F, Folichon M, Hajnsdorf E, Régnier P. (2002). Structural Modelling of the Sm-like Protein Hfq from Escherichia coli. J Mol Biol, 320, 705–712.
  • Arluison V, Folichon M, Marco S, Derreumaux P, Pellegrini O, Seguin J, Hajnsdorf E, Regnier P. (2004). The C-terminal domain of Escherichia coli Hfq increases the stability of the hexamer. Eur J Biochem, 271, 1258–1265.
  • Arluison V, Hohng S, Roy R, Pellegrini O, Régnier P, Ha T. (2007a). Spectroscopic observation of RNA chaperone activities of Hfq in post-transcriptional regulation by a small non-coding RNA. Nucleic Acids Res, 35, 999–1006.
  • Arluison V, Mutyam SK, Mura C, Marco S, Sukhodolets MV. (2007b). Sm-like protein Hfq: location of the ATP-binding site and the effect of ATP on Hfq– RNA complexes. Protein Sci, 16, 1830–1841.
  • Arnvig KB, Young DB. (2009). Identification of small RNAs in Mycobacterium tuberculosis. Mol Microbiol, 73, 397–408.
  • Arthur DC, Edwards RA, Tsutakawa S, Tainer JA, Frost LS, Glover JN. (2011). Mapping interactions between the RNA chaperone FinO and its RNA targets. Nucleic Acids Res, 39, 4450–4463.
  • Attia AS, Sedillo JL, Wang W, Liu W, Brautigam CA, Winkler W, Hansen EJ. (2008). Moraxella catarrhalis expresses an unusual Hfq protein. Infect Immun, 76, 2520–2530.
  • Ayala-del-Río HL, Chain PS, Grzymski JJ, Ponder MA, Ivanova N, Bergholz PW, Di Bartolo G, Hauser L, Land M, Bakermans C, Rodrigues D, Klappenbach J, Zarka D, Larimer F, Richardson P, Murray A, Thomashow M, Tiedje JM. (2010). The genome sequence of Psychrobacter arcticus 273-4, a psychroactive Siberian permafrost bacterium, reveals mechanisms for adaptation to low-temperature growth. Appl Environ Microbiol, 76, 2304–2312.
  • Azam TA, Ishihama A. (1999). Twelve species of the nucleoid-associated protein from Escherichia coli. Sequence recognition specificity and DNA binding affinity. J Biol Chem, 274, 33105–33113.
  • Baba S, Someya T, Kawai G, Nakamura K, Kumasaka T. (2010). Expression, crystallization and preliminary crystallographic analysis of RNA-binding protein Hfq (YmaH) from Bacillus subtilis in complex with an RNA aptamer. Acta Crystallogr Sect F Struct Biol Cryst Commun, 66, 563–566.
  • Babitzke P, Baker CS, Romeo T. (2009). Regulation of translation initiation by RNA binding proteins. Annu Rev Microbiol, 63, 27–44.
  • Bai G, Golubov A, Smith EA, McDonough KA. (2010). The importance of the small RNA chaperone Hfq for growth of epidemic Yersinia pestis, but not Yersinia pseudotuberculosis, with implications for plague biology. J Bacteriol, 192, 4239–4245.
  • Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA. (2001). Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci USA, 98, 10037–10041.
  • Balbontín R, Fiorini F, Figueroa-Bossi N, Casadesús J, Bossi L. (2010). Recognition of heptameric seed sequence underlies multi-target regulation by RybB small RNA in Salmonella enterica. Mol Microbiol, 78, 380–394.
  • Barra-Bily L, Fontenelle C, Jan G, Flechard M, Trautwetter A, Pandey SP, Walker GC, Blanco C. (2010a). Proteomic alterations explain phenotypic changes in Sinorhizobium meliloti lacking the RNA chaperone Hfq. J Bacteriol, 192, 1719–1729.
  • Barra-Bily L, Pandey SP, Trautwetter A, Blanco C, Walker GC. (2010b). The Sinorhizobium meliloti RNA chaperone Hfq mediates symbiosis of S. meliloti and alfalfa. J Bacteriol, 192, 1710–1718.
  • Beich-Frandsen M, Vecerek B, Konarev PV, Sjöblom B, Kloiber K, Hämmerle H, Rajkowitsch L, Miles AJ, Kontaxis G, Wallace BA, Svergun DI, Konrat R, Bläsi U, Djinovic-Carugo K. (2011a). Structural insights into the dynamics and function of the C-terminus of the E. coli RNA chaperone Hfq. Nucleic Acids Res, 39, 4900–4915.
  • Beich-Frandsen M, Vecerek B, Sjöblom B, Bläsi U, Djinovic-Carugo K. (2011b). Structural analysis of full-length Hfq from Escherichia coli. Acta Crystallogr Sect F Struct Biol Cryst Commun, 67, 536–540.
  • Beisel CL, Storz G. (2010). Base pairing small RNAs and their roles in global regulatory networks. FEMS Microbiol Rev, 34, 866–882.
  • Berger M, Farcas A, Geertz M, Zhelyazkova P, Brix K, Travers A, Muskhelishvili G. (2010). Coordination of genomic structure and transcription by the main bacterial nucleoid-associated protein HU. EMBO Rep, 11, 59–64.
  • Berghoff BA, Glaeser J, Sharma CM, Zobawa M, Lottspeich F, Vogel J, Klug G. (2011). Contribution of Hfq to photooxidative stress resistance and global regulation in Rhodobacter sphaeroides. Mol Microbiol, 80, 1479–1495.
  • Bøggild A, Overgaard M, Valentin-Hansen P, Brodersen DE. (2009). Cyanobacteria contain a structural homologue of the Hfq protein with altered RNA-binding properties. FEBS J, 276, 3904–3915.
  • Bohn C, Rigoulay C, Bouloc P. (2007). No detectable effect of RNA-binding protein Hfq absence in Staphylococcus aureus. BMC Microbiol, 7, 10.
  • Brennan RG, Link TM. (2007). Hfq structure, function and ligand binding. Curr Opin Microbiol, 10, 125–133.
  • Butland G, Peregrín-Alvarez JM, Li J, Yang W, Yang X, Canadien V, Starostine A, Richards D, Beattie B, Krogan N, Davey M, Parkinson J, Greenblatt J, Emili A. (2005). Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature, 433, 531–537.
  • Butler TZ, Gundlach JH, Troll MA. (2006). Determination of RNA orientation during translocation through a biological nanopore. Biophys J, 90, 190–199.
  • Caron MP, Lafontaine DA, Massé E. (2010). Small RNA-mediated regulation at the level of transcript stability. RNA Biol, 7, 140–144.
  • Carpousis AJ. (2007). The RNA degradosome of Escherichia coli: an mRNA-degrading machine assembled on RNase E. Annu Rev Microbiol, 61, 71–87.
  • Chambers JR, Bender KS. (2011). The RNA chaperone Hfq is important for growth and stress tolerance in Francisella novicida. PLoS ONE, 6, e19797.
  • Chaulk SG, Smith Frieday MN, Arthur DC, Culham DE, Edwards RA, Soo P, Frost LS, Keates RA, Glover JN, Wood JM. (2011). ProQ is an RNA chaperone that controls ProP levels in Escherichia coli. Biochemistry, 50, 3095–3106.
  • Chiang MK, Lu MC, Liu LC, Lin CT, Lai YC. (2011). Impact of Hfq on global gene expression and virulence in Klebsiella pneumoniae. PLoS ONE, 6, e22248.
  • Christiansen JK, Larsen MH, Ingmer H, Søgaard-Andersen L, Kallipolitis BH. (2004). The RNA-binding protein Hfq of Listeria monocytogenes: role in stress tolerance and virulence. J Bacteriol, 186, 3355–3362.
  • Christiansen JK, Nielsen JS, Ebersbach T, Valentin-Hansen P, Søgaard-Andersen L, Kallipolitis BH. (2006). Identification of small Hfq-binding RNAs in Listeria monocytogenes. RNA, 12, 1383–1396.
  • Coenye T, Drevinek P, Mahenthiralingam E, Shah SA, Gill RT, Vandamme P, Ussery DW. (2007). Identification of putative noncoding RNA genes in the Burkholderia cenocepacia J2315 genome. FEMS Microbiol Lett, 276, 83–92.
  • Cohen-Or I, Shenhar Y, Biran D, Ron EZ. (2010). CspC regulates rpoS transcript levels and complements hfq deletions. Res Microbiol, 161, 694–700.
  • Czech B, Hannon GJ. (2011). Small RNA sorting: matchmaking for Argonautes. Nat Rev Genet, 12, 19–31.
  • Davis BM, Waldor MK. (2007). RNase E-dependent processing stabilizes MicX, a Vibrio cholerae sRNA. Mol Microbiol, 65, 373–385.
  • de Haseth PL, Uhlenbeck OC. (1980a). Interaction of Escherichia coli host factor protein with oligoriboadenylates. Biochemistry, 19, 6138–6146.
  • de Haseth PL, Uhlenbeck OC. (1980b). Interaction of Escherichia coli host factor protein with Q beta ribonucleic acid. Biochemistry, 19, 6146–6151.
  • DiChiara JM, Contreras-Martinez LM, Livny J, Smith D, McDonough KA, Belfort M. (2010). Multiple small RNAs identified in Mycobacterium bovis BCG are also expressed in Mycobacterium tuberculosis and Mycobacterium smegmatis. Nucleic Acids Res, 38, 4067–4078.
  • Dienst D, Dühring U, Mollenkopf HJ, Vogel J, Golecki J, Hess WR, Wilde A. (2008). The cyanobacterial homologue of the RNA chaperone Hfq is essential for motility of Synechocystis sp. PCC 6803. Microbiology (Reading, Engl), 154, 3134–3143.
  • Diestra E, Cayrol B, Arluison V, Risco C. (2009). Cellular electron microscopy imaging reveals the localization of the Hfq protein close to the bacterial membrane. PLoS ONE, 4, e8301.
  • Dietrich M, Munke R, Gottschald M, Ziska E, Boettcher JP, Mollenkopf H, Friedrich A. (2009). The effect of hfq on global gene expression and virulence in Neisseria gonorrhoeae. FEBS J, 276, 5507–5520.
  • Ding Y, Davis BM, Waldor MK. (2004). Hfq is essential for Vibrio cholerae virulence and downregulates sigma expression. Mol Microbiol, 53, 345–354.
  • Drepper T, Raabe K, Giaourakis D, Gendrullis M, Masepohl B, Klipp W. (2002). The Hfq-like protein NrfA of the phototrophic purple bacterium Rhodobacter capsulatus controls nitrogen fixation via regulation of nifA and anfA expression. FEMS Microbiol Lett, 215, 221–227.
  • Dutta D, Bandyopadhyay K, Datta AB, Sardesai AA, Parrack P. (2009). Properties of HflX, an enigmatic protein from Escherichia coli. J Bacteriol, 191, 2307–2314.
  • Fantappiè L, Metruccio MM, Seib KL, Oriente F, Cartocci E, Ferlicca F, Giuliani MM, Scarlato V, Delany I. (2009). The RNA chaperone Hfq is involved in stress response and virulence in Neisseria meningitidis and is a pleiotropic regulator of protein expression. Infect Immun, 77, 1842–1853.
  • Felsenstein J. (1985). onfidence limits on phylogenies: An approach using the bootstrap. Evolution, 39, 783–791.
  • Fender A, Elf J, Hampel K, Zimmermann B, Wagner EG. (2010). RNAs actively cycle on the Sm-like protein Hfq. Genes Dev, 24, 2621–2626.
  • Folichon M, Allemand F, Régnier P, Hajnsdorf E. (2005). Stimulation of poly(A) synthesis by Escherichia coli poly(A)polymerase I is correlated with Hfq binding to poly(A) tails. FEBS J, 272, 454–463.
  • Franze de Fernandez MT, Eoyang L, August JT. (1968). Factor fraction required for the synthesis of bacteriophage Qbeta-RNA. Nature, 219, 588–590.
  • Franze de Fernandez MT, Hayward WS, August JT. (1972). Bacterial proteins required for replication of phage Q ribonucleic acid. Pruification and properties of host factor I, a ribonucleic acid-binding protein. J Biol Chem, 247, 824–831.
  • Fröhlich KS, Vogel J. (2009). Activation of gene expression by small RNA. Curr Opin Microbiol, 12, 674–682.
  • Geinguenaud F, Calandrini V, Teixeira J, Mayer C, Liquier J, Lavelle C, Arluison V. (2011). Conformational transition of DNA bound to Hfq probed by infrared spectroscopy. Phys Chem Chem Phys, 13, 1222–1229.
  • Geissmann T, Chevalier C, Cros MJ, Boisset S, Fechter P, Noirot C, Schrenzel J, François P, Vandenesch F, Gaspin C, Romby P. (2009). A search for small noncoding RNAs in Staphylococcus aureus reveals a conserved sequence motif for regulation. Nucleic Acids Res, 37, 7239–7257.
  • Geissmann TA, Touati D. (2004). Hfq, a new chaperoning role: binding to messenger RNA determines access for small RNA regulator. EMBO J, 23, 396–405.
  • Geng J, Song Y, Yang L, Feng Y, Qiu Y, Li G, Guo J, Bi Y, Qu Y, Wang W, Wang X, Guo Z, Yang R, Han Y. (2009). Involvement of the post-transcriptional regulator Hfq in Yersinia pestis virulence. PLoS ONE, 4, e6213.
  • Georg J, Hess WR. (2011). cis-antisense RNA, another level of gene regulation in bacteria. Microbiol Mol Biol Rev, 75, 286–300.
  • Guillier M, Gottesman S. (2008). The 5′ end of two redundant sRNAs is involved in the regulation of multiple targets, including their own regulator. Nucleic Acids Res, 36, 6781–6794.
  • Guisbert E, Rhodius VA, Ahuja N, Witkin E, Gross CA. (2007). Hfq modulates the sigmaE-mediated envelope stress response and the sigma32-mediated cytoplasmic stress response in Escherichia coli. J Bacteriol, 189, 1963–1973.
  • Hansen AM, Kaper JB. (2009). Hfq affects the expression of the LEE pathogenicity island in enterohaemorrhagic Escherichia coli. Mol Microbiol, 73, 446–465.
  • Hao Y, Zhang ZJ, Erickson DW, Huang M, Huang Y, Li J, Hwa T, Shi H. (2011). Quantifying the sequence-function relation in gene silencing by bacterial small RNAs. Proc Natl Acad Sci U S A, 108, 12473–12478.
  • Holmqvist E, Reimegård J, Sterk M, Grantcharova N, Römling U, Wagner EG. (2010). Two antisense RNAs target the transcriptional regulator CsgD to inhibit curli synthesis. EMBO J, 29, 1840–1850.
  • Hopkins JF, Panja S, Woodson SA. (2011). Rapid binding and release of Hfq from ternary complexes during RNA annealing. Nucleic Acids Res, 39, 5193–5202.
  • Huang HY, Chang HY, Chou CH, Tseng CP, Ho SY, Yang CD, Ju YW, Huang HD. (2009). sRNAMap: genomic maps for small non-coding RNAs, their regulators and their targets in microbial genomes. Nucleic Acids Res, 37, D150–D154.
  • Hussein R, Lim HN. (2011). Disruption of small RNA signaling caused by competition for Hfq. Proc Natl Acad Sci USA, 108, 1110–1115.
  • Hwang W, Arluison V, Hohng S. (2011). Dynamic competition of DsrA and rpoS fragments for the proximal binding site of Hfq as a means for efficient annealing. Nucleic Acids Res, 39, 5131–5139.
  • Ikeda Y, Yagi M, Morita T, Aiba H. (2011). Hfq binding at RhlB-recognition region of RNase E is crucial for the rapid degradation of target mRNAs mediated by sRNAs in Escherichia coli. Mol Microbiol, 79, 419–432.
  • Ishihama A. (1976). Proceedings: Control of RNA polymerase synthesis in Escherichia coli. J Biochem, 79, 33P–34P.
  • Ishihama Y, Schmidt T, Rappsilber J, Mann M, Hartl FU, Kerner MJ, Frishman D. (2008). Protein abundance profiling of the Escherichia coli cytosol. BMC Genomics, 9, 102.
  • Johansen J, Eriksen M, Kallipolitis B, Valentin-Hansen P. (2008). Down-regulation of outer membrane proteins by noncoding RNAs: unraveling the cAMP-CRP- and sigmaE-dependent CyaR-ompX regulatory case. J Mol Biol, 383, 1–9.
  • Kadowaki MA, Iulek J, Barbosa JA, Pedrosa Fde O, de Souza EM, Chubatsu LS, Monteiro RA, de Oliveira MA, Steffens MB. (2012). Structural characterization of the RNA chaperone Hfq from the nitrogen-fixing bacterium Herbaspirillum seropedicae SmR1. Biochim Biophys Acta, 1824, 359–365.
  • Kadzhaev K, Zingmark C, Golovliov I, Bolanowski M, Shen H, Conlan W, Sjöstedt A. (2009). Identification of genes contributing to the virulence of Francisella tularensis SCHU S4 in a mouse intradermal infection model. PLoS ONE, 4, e5463.
  • Kajitani M, Ishihama A. (1991). Identification and sequence determination of the host factor gene for bacteriophage Q beta. Nucleic Acids Res, 19, 1063–1066.
  • Kajitani M, Kato A, Wada A, Inokuchi Y, Ishihama A. (1994). Regulation of the Escherichia coli hfq gene encoding the host factor for phage Q beta. J Bacteriol, 176, 531–534.
  • Kaminski PA, Desnoues N, Elmerich C. (1994). The expression of nifA in Azorhizobium caulinodans requires a gene product homologous to Escherichia coli HF-I, an RNA-binding protein involved in the replication of phage Q beta RNA. Proc Natl Acad Sci USA, 91, 4663–4667.
  • Kaminski PA, Elmerich C. (1998). The control of Azorhizobium caulinodans nifA expression by oxygen, ammonia and by the HF-I-like protein, NrfA. Mol Microbiol, 28, 603–613.
  • Kar S, Edgar R, Adhya S. (2005). Nucleoid remodeling by an altered HU protein: reorganization of the transcription program. Proc Natl Acad Sci USA, 102, 16397–16402.
  • Kawamoto H, Koide Y, Morita T, Aiba H. (2006). Base-pairing requirement for RNA silencing by a bacterial small RNA and acceleration of duplex formation by Hfq. Mol Microbiol, 61, 1013–1022.
  • Keates RA, Culham DE, Vernikovska YI, Zuiani AJ, Boggs JM, Wood JM. (2010). Transmembrane helix I and periplasmic loop 1 of Escherichia coli ProP are involved in osmosensing and osmoprotectant transport. Biochemistry, 49, 8847–8856.
  • Kulesus RR, Diaz-Perez K, Slechta ES, Eto DS, Mulvey MA. (2008). Impact of the RNA chaperone Hfq on the fitness and virulence potential of uropathogenic Escherichia coli. Infect Immun, 76, 3019–3026.
  • Lazar P, Lee Y, Kim S, Chandrasekaran M, Lee KW. (2010). Molecular Dynamics Simulation Study for Ionic Strength Dependence of RNA-host factor Interaction in Staphylococcus aureus Hfq. Bull Korean Chem Soc, 31, 1519–1526.
  • Le Derout J, Boni IV, Régnier P, Hajnsdorf E. (2010). Hfq affects mRNA levels independently of degradation. BMC Mol Biol, 11, 17.
  • Lease RA, Woodson SA. (2004). Cycling of the Sm-like protein Hfq on the DsrA small regulatory RNA. J Mol Biol, 344, 1211–1223.
  • Lee T, Feig AL. (2008). The RNA binding protein Hfq interacts specifically with tRNAs. RNA, 14, 514–523.
  • Link TM, Valentin-Hansen P, Brennan RG. (2009). Structure of Escherichia coli Hfq bound to polyriboadenylate RNA. Proc Natl Acad Sci USA, 106, 19292–19297.
  • Liu H, Wang Q, Liu Q, Cao X, Shi C, Zhang Y. (2011). Roles of Hfq in the stress adaptation and virulence in fish pathogen Vibrio alginolyticus and its potential application as a target for live attenuated vaccine. Appl Microbiol Biotechnol, 91, 353–364.
  • Liu JM, Livny J, Lawrence MS, Kimball MD, Waldor MK, Camilli A. (2009). Experimental discovery of sRNAs in Vibrio cholerae by direct cloning, 5S/tRNA depletion and parallel sequencing. Nucleic Acids Res, 37, e46.
  • Liu Y, Wu N, Dong J, Gao Y, Zhang X, Mu C, Shao N, Yang G. (2010). Hfq is a global regulator that controls the pathogenicity of Staphylococcus aureus. PLoS One, 5, pii: e13069.
  • Liveris D, Klotsky RA, Schwartz I. (1991). Growth rate regulation of translation initiation factor IF3 biosynthesis in Escherichia coli. J Bacteriol, 173, 3888–3893.
  • Livny J, Brencic A, Lory S, Waldor MK. (2006). Identification of 17 Pseudomonas aeruginosa sRNAs and prediction of sRNA-encoding genes in 10 diverse pathogens using the bioinformatic tool sRNAPredict2. Nucleic Acids Res, 34, 3484–3493.
  • Lorenz C, Gesell T, Zimmermann B, Schoeberl U, Bilusic I, Rajkowitsch L, Waldsich C, von Haeseler A, Schroeder R. (2010). Genomic SELEX for Hfq-binding RNAs identifies genomic aptamers predominantly in antisense transcripts. Nucleic Acids Res, 38, 3794–3808.
  • Lybecker MC, Abel CA, Feig AL, Samuels DS. (2010). Identification and function of the RNA chaperone Hfq in the Lyme disease spirochete Borrelia burgdorferi. Mol Microbiol, 78, 622–635.
  • Maki K, Morita T, Otaka H, Aiba H. (2010). A minimal base-pairing region of a bacterial small RNA SgrS required for translational repression of ptsG mRNA. Mol Microbiol, 76, 782–792.
  • Man S, Cheng R, Miao C, Gong Q, Gu Y, Lu X, Han F, Yu W. (2011). Artificial trans-encoded small non-coding RNAs specifically silence the selected gene expression in bacteria. Nucleic Acids Res, 39, e50.
  • Massé E, Escorcia FE, Gottesman S. (2003). Coupled degradation of a small regulatory RNA and its mRNA targets in Escherichia coli. Genes Dev, 17, 2374–2383.
  • McNealy TL, Forsbach-Birk V, Shi C, Marre R. (2005). The Hfq homolog in Legionella pneumophila demonstrates regulation by LetA and RpoS and interacts with the global regulator CsrA. J Bacteriol, 187, 1527–1532.
  • Mehta P, Goyal S, Wingreen NS. (2008). A quantitative comparison of sRNA-based and protein-based gene regulation. Mol Syst Biol, 4, 221.
  • Meibom KL, Forslund AL, Kuoppa K, Alkhuder K, Dubail I, Dupuis M, Forsberg A, Charbit A. (2009). Hfq, a novel pleiotropic regulator of virulence-associated genes in Francisella tularensis. Infect Immun, 77, 1866–1880.
  • Mellin JR, McClure R, Lopez D, Green O, Reinhard B, Genco C. (2010). Role of Hfq in iron-dependent and -independent gene regulation in Neisseria meningitidis. Microbiology (Reading, Engl), 156, 2316–2326.
  • Mikulecky PJ, Kaw MK, Brescia CC, Takach JC, Sledjeski DD, Feig AL. (2004). Escherichia coli Hfq has distinct interaction surfaces for DsrA, rpoS and poly(A) RNAs. Nat Struct Mol Biol, 11, 1206–1214.
  • Mitobe J, Morita-Ishihara T, Ishihama A, Watanabe H. (2009). Involvement of RNA-binding protein Hfq in the osmotic-response regulation of invE gene expression in Shigella sonnei. BMC Microbiol, 9, 110.
  • Mitschke J, Georg J, Scholz I, Sharma CM, Dienst D, Bantscheff J, Voss B, Steglich C, Wilde A, Vogel J, Hess WR. (2011). An experimentally anchored map of transcriptional start sites in the model cyanobacterium Synechocystis sp. PCC6803. Proc Natl Acad Sci USA, 108, 2124–2129.
  • Mohanty BK, Maples VF, Kushner SR. (2004). The Sm-like protein Hfq regulates polyadenylation dependent mRNA decay in Escherichia coli. Mol Microbiol, 54, 905–920.
  • Moll I, Leitsch D, Steinhauser T, Bläsi U. (2003). RNA chaperone activity of the Sm-like Hfq protein. EMBO Rep, 4, 284–289.
  • Møller T, Franch T, Højrup P, Keene DR, Bächinger HP, Brennan RG, Valentin-Hansen P. (2002). Hfq: a bacterial Sm-like protein that mediates RNA-RNA interaction. Mol Cell, 9, 23–30.
  • Moon K, Gottesman S. (2011). Competition among Hfq-binding small RNAs in Escherichia coli. Mol Microbiol, 82, 1545–1562.
  • Morita T, Maki K, Aiba H. (2005). RNase E-based ribonucleoprotein complexes: mechanical basis of mRNA destabilization mediated by bacterial noncoding RNAs. Genes Dev, 19, 2176–2186.
  • Morita T, Mochizuki Y, Aiba H. (2006). Translational repression is sufficient for gene silencing by bacterial small noncoding RNAs in the absence of mRNA destruction. Proc Natl Acad Sci USA, 103, 4858–4863.
  • Moskaleva O, Melnik B, Gabdulkhakov A, Garber M, Nikonov S, Stolboushkina E, Nikulin A. (2010). The structures of mutant forms of Hfq from Pseudomonas aeruginosa reveal the importance of the conserved His57 for the protein hexamer organization. Acta Crystallogr Sect F Struct Biol Cryst Commun, 66, 760–764.
  • Mulley G, White JP, Karunakaran R, Prell J, Bourdes A, Bunnewell S, Hill L, Poole PS. (2011). Mutation of GOGAT prevents pea bacteroid formation and N2 fixation by globally downregulating transport of organic nitrogen sources. Mol Microbiol, 80, 149–167.
  • Naidoo N, Harrop SJ, Sobti M, Haynes PA, Szymczyna BR, Williamson JR, Curmi PM, Mabbutt BC. (2008). Crystal structure of Lsm3 octamer from Saccharomyces cerevisiae: implications for Lsm ring organisation and recruitment. J Mol Biol, 377, 1357–1371.
  • Najima Y, Yahagi N, Takeuchi Y, Matsuzaka T, Sekiya M, Nakagawa Y, Amemiya-Kudo M, Okazaki H, Okazaki S, Tamura Y, Iizuka Y, Ohashi K, Harada K, Gotoda T, Nagai R, Kadowaki T, Ishibashi S, Yamada N, Osuga J, Shimano H. (2005). High mobility group protein-B1 interacts with sterol regulatory element-binding proteins to enhance their DNA binding. J Biol Chem, 280, 27523–27532.
  • Nakano M, Takahashi A, Su Z, Harada N, Mawatari K, Nakaya Y. (2008). Hfq regulates the expression of the thermostable direct hemolysin gene in Vibrio parahaemolyticus. BMC Microbiol, 8, 155.
  • Nei M, Kumar S. (2000). Molecular Evolution and Phylogenetics. New York: Oxford University Press.
  • Nielsen JS, Bøggild A, Andersen CB, Nielsen G, Boysen A, Brodersen DE, Valentin-Hansen P. (2007). An Hfq-like protein in archaea: crystal structure and functional characterization of the Sm protein from Methanococcus jannaschii. RNA, 13, 2213–2223.
  • Nielsen JS, Lei LK, Ebersbach T, Olsen AS, Klitgaard JK, Valentin-Hansen P, Kallipolitis BH. (2010). Defining a role for Hfq in Gram-positive bacteria: evidence for Hfq-dependent antisense regulation in Listeria monocytogenes. Nucleic Acids Res, 38, 907–919.
  • Nikulin A, Stolboushkina E, Perederina A, Vassilieva I, Blaesi U, Moll I, Kachalova G, Yokoyama S, Vassylyev D, Garber M, Nikonov S. (2005). Structure of Pseudomonas aeruginosa Hfq protein. Acta Crystallogr D Biol Crystallogr, 61, 141–146.
  • Ohniwa RL, Ushijima Y, Saito S, Morikawa K. (2011). Proteomic analyses of nucleoid-associated proteins in Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, and Staphylococcus aureus. PLoS ONE, 6, e19172.
  • Olejniczak M. (2011). Despite similar binding to the Hfq protein regulatory RNAs widely differ in their competition performance. Biochemistry, 50, 4427–4440.
  • Olsen AS, Møller-Jensen J, Brennan RG, Valentin-Hansen P. (2010). C-terminally truncated derivatives of Escherichia coli Hfq are proficient in riboregulation. J Mol Biol, 404, 173–182.
  • Opdyke JA, Kang JG, Storz G. (2004). GadY, a small-RNA regulator of acid response genes in Escherichia coli. J Bacteriol, 186, 6698–6705.
  • Otaka H, Ishikawa H, Morita T, Aiba H. (2011). PolyU tail of rho-independent terminator of bacterial small RNAs is essential for Hfq action. Proc Natl Acad Sci USA, 108, 13059–13064.
  • Pandey SP, Minesinger BK, Kumar J, Walker GC. (2011). A highly conserved protein of unknown function in Sinorhizobium meliloti affects sRNA regulation similar to Hfq. Nucleic Acids Res, 39, 4691–4708.
  • Papenfort K, Bouvier M, Mika F, Sharma CM, Vogel J. (2010). Evidence for an autonomous 5′ target recognition domain in an Hfq-associated small RNA. Proc Natl Acad Sci USA, 107, 20435–20440.
  • Papenfort K, Pfeiffer V, Mika F, Lucchini S, Hinton JC, Vogel J. (2006). SigmaE-dependent small RNAs of Salmonella respond to membrane stress by accelerating global omp mRNA decay. Mol Microbiol, 62, 1674–1688.
  • Papenfort K, Vogel J. (2010). Regulatory RNA in bacterial pathogens. Cell Host Microbe, 8, 116–127.
  • Pfeiffer V, Papenfort K, Lucchini S, Hinton JC, Vogel J. (2009). Coding sequence targeting by MicC RNA reveals bacterial mRNA silencing downstream of translational initiation. Nat Struct Mol Biol, 16, 840–846.
  • Pontiggia A, Negri A, Beltrame M, Bianchi ME. (1993). Protein HU binds specifically to kinked DNA. Mol Microbiol, 7, 343–350.
  • Postic G, Frapy E, Dupuis M, Dubail I, Livny J, Charbit A, Meibom KL. (2010). Identification of small RNAs in Francisella tularensis. BMC Genomics, 11, 625.
  • Prévost K, Salvail H, Desnoyers G, Jacques JF, Phaneuf E, Massé E. (2007). The small RNA RyhB activates the translation of shiA mRNA encoding a permease of shikimate, a compound involved in siderophore synthesis. Mol Microbiol, 64, 1260–1273.
  • Rabhi M, Espéli O, Schwartz A, Cayrol B, Rahmouni AR, Arluison V, Boudvillain M. (2011). The Sm-like RNA chaperone Hfq mediates transcription antitermination at Rho-dependent terminators. EMBO J, 30, 2805–2816.
  • Raghavan R, Groisman EA, Ochman H. (2011). Genome-wide detection of novel regulatory RNAs in E. coli. Genome Res, 21, 1487–1497.
  • Ramos CG, Sousa SA, Grilo AM, Feliciano JR, Leitão JH. (2011). The second RNA chaperone, Hfq2, is also required for survival under stress and full virulence of Burkholderia cenocepacia J2315. J Bacteriol, 193, 1515–1526.
  • Robertson GT, Roop RM Jr. (1999). The Brucella abortus host factor I (HF-I) protein contributes to stress resistance during stationary phase and is a major determinant of virulence in mice. Mol Microbiol, 34, 690–700.
  • Saitou N, Nei M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol, 4, 406–425.
  • Salim NN, Feig AL. (2010). An upstream Hfq binding site in the fhlA mRNA leader region facilitates the OxyS-fhlA interaction. PLoS ONE, 5, pii: e13028.
  • Santos JM, Freire P, Mesquita FS, Mika F, Hengge R, Arraiano CM. (2006). Poly(A)-polymerase I links transcription with mRNA degradation via sigmaS proteolysis. Mol Microbiol, 60, 177–188.
  • Sauer E, Weichenrieder O. (2011). Structural basis for RNA 3′-end recognition by Hfq. Proc Natl Acad Sci USA, 108, 13065–13070.
  • Sauter C, Basquin J, Suck D. (2003). Sm-like proteins in Eubacteria: the crystal structure of the Hfq protein from Escherichia coli. Nucleic Acids Res, 31, 4091–4098.
  • Schiano CA, Bellows LE, Lathem WW. (2010). The small RNA chaperone Hfq is required for the virulence of Yersinia pseudotuberculosis. Infect Immun, 78, 2034–2044.
  • Schilling D, Gerischer U. (2009). The Acinetobacter baylyi Hfq gene encodes a large protein with an unusual C terminus. J Bacteriol, 191, 5553–5562.
  • Schlüter JP, Reinkensmeier J, Daschkey S, Evguenieva-Hackenberg E, Janssen S, Jänicke S, Becker JD, Giegerich R, Becker A. (2010). A genome-wide survey of sRNAs in the symbiotic nitrogen-fixing α-proteobacterium Sinorhizobium meliloti. BMC Genomics, 11, 245.
  • Schumacher MA, Pearson RF, Møller T, Valentin-Hansen P, Brennan RG. (2002). Structures of the pleiotropic translational regulator Hfq and an Hfq-RNA complex: a bacterial Sm-like protein. EMBO J, 21, 3546–3556.
  • Schuppli D, Miranda G, Tsui HC, Winkler ME, Sogo JM, Weber H. (1997). Altered 3′-terminal RNA structure in phage Qbeta adapted to host factor-less Escherichia coli. Proc Natl Acad Sci USA, 94, 10239–10242.
  • Senear AW, Steitz JA. (1976). Site-specific interaction of Qbeta host factor and ribosomal protein S1 with Qbeta and R17 bacteriophage RNAs. J Biol Chem, 251, 1902–1912.
  • Sharma CM, Darfeuille F, Plantinga TH, Vogel J. (2007). A small RNA regulates multiple ABC transporter mRNAs by targeting C/A-rich elements inside and upstream of ribosome-binding sites. Genes Dev, 21, 2804–2817.
  • Sharma CM, Hoffmann S, Darfeuille F, Reignier J, Findeiss S, Sittka A, Chabas S, Reiche K, Hackermüller J, Reinhardt R, Stadler PF, Vogel J. (2010). The primary transcriptome of the major human pathogen Helicobacter pylori. Nature, 464, 250–255.
  • Shields MJ, Fischer JJ, Wieden HJ. (2009). Toward understanding the function of the universally conserved GTPase HflX from Escherichia coli: a kinetic approach. Biochemistry, 48, 10793–10802.
  • Shimoni Y, Friedlander G, Hetzroni G, Niv G, Altuvia S, Biham O, Margalit H. (2007). Regulation of gene expression by small non-coding RNAs: a quantitative view. Mol Syst Biol, 3, 138.
  • Sittka A, Pfeiffer V, Tedin K, Vogel J. (2007). The RNA chaperone Hfq is essential for the virulence of Salmonella typhimurium. Mol Microbiol, 63, 193–217.
  • Sittka A, Sharma CM, Rolle K, Vogel J. (2009). Deep sequencing of Salmonella RNA associated with heterologous Hfq proteins in vivo reveals small RNAs as a major target class and identifies RNA processing phenotypes. RNA Biol, 6, 266–275.
  • Sledjeski DD, Whitman C, Zhang A. (2001). Hfq is necessary for regulation by the untranslated RNA DsrA. J Bacteriol, 183, 1997–2005.
  • Sobrero P, Valverde C. (2011). Evidences of autoregulation of hfq expression in Sinorhizobium meliloti strain 2011. Arch Microbiol, 193, 629–639.
  • Someya T, Baba S, Fujimoto M, Kawai G, Kumasaka T, Nakamura K. (2011). Crystal structure of Hfq from Bacillus subtilis in complex with SELEX-derived RNA aptamer: insight into RNA-binding properties of bacterial Hfq. Nucleic Acids Res, 40, 1856–1867.
  • Sonnleitner E, Hagens S, Rosenau F, Wilhelm S, Habel A, Jäger KE, Bläsi U. (2003). Reduced virulence of a hfq mutant of Pseudomonas aeruginosa O1. Microb Pathog, 35, 217–228.
  • Sonnleitner E, Moll I, Bläsi U. (2002). Functional replacement of the Escherichia coli hfq gene by the homologue of Pseudomonas aeruginosa. Microbiology (Reading, Engl), 148, 883–891.
  • Soper T, Mandin P, Majdalani N, Gottesman S, Woodson SA. (2010). Positive regulation by small RNAs and the role of Hfq. Proc Natl Acad Sci USA, 107, 9602–9607.
  • Soper TJ, Doxzen K, Woodson SA. (2011). Major role for mRNA binding and restructuring in sRNA recruitment by Hfq. RNA, 17, 1544–1550.
  • Soper TJ, Woodson SA. (2008). The rpoS mRNA leader recruits Hfq to facilitate annealing with DsrA sRNA. RNA, 14, 1907–1917.
  • Sorger-Domenigg T, Sonnleitner E, Kaberdin VR, Bläsi U. (2007). Distinct and overlapping binding sites of Pseudomonas aeruginosa Hfq and RsmA proteins on the non-coding RNA RsmY. Biochem Biophys Res Commun, 352, 769–773.
  • Sousa SA, Ramos CG, Moreira LM, Leitão JH. (2010). The hfq gene is required for stress resistance and full virulence of Burkholderia cepacia to the nematode Caenorhabditis elegans. Microbiology (Reading, Engl), 156, 896–908.
  • Sukhodolets MV, Garges S. (2003). Interaction of Escherichia coli RNA polymerase with the ribosomal protein S1 and the Sm-like ATPase Hfq. Biochemistry, 42, 8022–8034.
  • Sun X, Wartell RM. (2006). Escherichia coli Hfq binds A18 and DsrA domain II with similar 2:1 Hfq6/RNA stoichiometry using different surface sites. Biochemistry, 45, 4875–4887.
  • Sun X, Zhulin I, Wartell RM. (2002). Predicted structure and phyletic distribution of the RNA-binding protein Hfq. Nucleic Acids Res, 30, 3662–3671.
  • Swiercz JP, Hindra, Bobek J, Bobek J, Haiser HJ, Di Berardo C, Tjaden B, Elliot MA. (2008). Small non-coding RNAs in Streptomyces coelicolor. Nucleic Acids Res, 36, 7240–7251.
  • Takada A, Wachi M, Kaidow A, Takamura M, Nagai K. (1997). DNA binding properties of the hfq gene product of Escherichia coli. Biochem Biophys Res Commun, 236, 576–579.
  • Talukder AA, Hossain MA, Yamada M, Ishihama A. (2006). Nucleoids Dynamic in Escherichia coli: A Growth Phase Dependent Process. Bangladesh J Microbiol, 23, 81–88.
  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. (2011). MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol Biol Evol, 28, 2731–2739.
  • Tantos A, Han KH, Tompa P. (2012). Intrinsic disorder in cell signaling and gene transcription. Mol Cell Endocrinol, 348, 457–465.
  • Tolstorukov MY, Virnik KM, Adhya S, Zhurkin VB. (2005). A-tract clusters may facilitate DNA packaging in bacterial nucleoid. Nucleic Acids Res, 33, 3907–3918.
  • Torres-Quesada O, Oruezabal RI, Peregrina A, Jofré E, Lloret J, Rivilla R, Toro N, Jiménez-Zurdo JI. (2010). The Sinorhizobium meliloti RNA chaperone Hfq influences central carbon metabolism and the symbiotic interaction with alfalfa. BMC Microbiol, 10, 71.
  • Tsui HC, Feng G, Winkler ME. (1996). Transcription of the mutL repair, miaA tRNA modification, hfq pleiotropic regulator, and hflA region protease genes of Escherichia coli K-12 from clustered Esigma32-specific promoters during heat shock. J Bacteriol, 178, 5719–5731.
  • Tsui HC, Leung HC, Winkler ME. (1994). Characterization of broadly pleiotropic phenotypes caused by an hfq insertion mutation in Escherichia coli K-12. Mol Microbiol, 13, 35–49.
  • Tsui HC, Mukherjee D, Ray VA, Sham LT, Feig AL, Winkler ME. (2010). Identification and characterization of noncoding small RNAs in Streptococcus pneumoniae serotype 2 strain D39. J Bacteriol, 192, 264–279.
  • Tsui HC, Winkler ME. (1994). Transcriptional patterns of the mutL-miaA superoperon of Escherichia coli K-12 suggest a model for posttranscriptional regulation. Biochimie, 76, 1168–1177.
  • Updegrove TB, Correia JJ, Chen Y, Terry C, Wartell RM. (2011). The stoichiometry of the Escherichia coli Hfq protein bound to RNA. RNA, 17, 489–500.
  • Updegrove TB, Correia JJ, Galletto R, Bujalowski W, Wartell RM. (2010). E. coli DNA associated with isolated Hfq interacts with Hfq’s distal surface and C-terminal domain. Biochim Biophys Acta, 1799, 588–596.
  • Updegrove TB, Wartell RM. (2011). The influence of Escherichia coli Hfq mutations on RNA binding and sRNA•mRNA duplex formation in rpoS riboregulation. Biochim Biophys Acta, 1809, 532–540.
  • Valentin-Hansen P, Eriksen M, Udesen C. (2004). The bacterial Sm-like protein Hfq: a key player in RNA transactions. Mol Microbiol, 51, 1525–1533.
  • Valverde C, Livny J, Schlüter JP, Reinkensmeier J, Becker A, Parisi G. (2008). Prediction of Sinorhizobium meliloti sRNA genes and experimental detection in strain 2011. BMC Genomics, 9, 416.
  • Vanderpool CK, Gottesman S. (2004). Involvement of a novel transcriptional activator and small RNA in post-transcriptional regulation of the glucose phosphoenolpyruvate phosphotransferase system. Mol Microbiol, 54, 1076–1089.
  • Vecerek B, Beich-Frandsen M, Resch A, Bläsi U. (2010). Translational activation of rpoS mRNA by the non-coding RNA DsrA and Hfq does not require ribosome binding. Nucleic Acids Res, 38, 1284–1293.
  • Vecerek B, Moll I, Bläsi U. (2005). Translational autocontrol of the Escherichia coli hfq RNA chaperone gene. RNA, 11, 976–984.
  • Vecerek B, Rajkowitsch L, Sonnleitner E, Schroeder R, Bläsi U. (2008). The C-terminal domain of Escherichia coli Hfq is required for regulation. Nucleic Acids Res, 36, 133–143.
  • Verdone L, Galardi S, Page D, Beggs JD. (2004). Lsm proteins promote regeneration of pre-mRNA splicing activity. Curr Biol, 14, 1487–1491.
  • Verrier CS, Roodi N, Yee CJ, Bailey LR, Jensen RA, Bustin M, Parl FF. (1997). High-mobility group (HMG) protein HMG-1 and TATA-binding protein-associated factor TAF(II)30 affect estrogen receptor-mediated transcriptional activation. Mol Endocrinol, 11, 1009–1019.
  • Viegas SC, Arraiano CM. (2008). Regulating the regulators: How ribonucleases dictate the rules in the control of small non-coding RNAs. RNA Biol, 5, 230–243.
  • Viegas SC, Pfeiffer V, Sittka A, Silva IJ, Vogel J, Arraiano CM. (2007). Characterization of the role of ribonucleases in Salmonella small RNA decay. Nucleic Acids Res, 35, 7651–7664.
  • Vogel J, Luisi BF. (2011). Hfq and its constellation of RNA. Nat Rev Microbiol, 9, 578–589.
  • Vytvytska O, Jakobsen JS, Balcunaite G, Andersen JS, Baccarini M, von Gabain A. (1998). Host factor I, Hfq, binds to Escherichia coli ompA mRNA in a growth rate-dependent fashion and regulates its stability. Proc Natl Acad Sci USA, 95, 14118–14123.
  • Wang W, Wang L, Zou Y, Zhang J, Gong Q, Wu J, Shi Y. (2011). Cooperation of Escherichia coli Hfq hexamers in DsrA binding. Genes Dev, 25, 2106–2117.
  • Wilson KS, von Hippel PH. (1995). Transcription termination at intrinsic terminators: the role of the RNA hairpin. Proc Natl Acad Sci USA, 92, 8793–8797.
  • Windbichler N, von Pelchrzim F, Mayer O, Csaszar E, Schroeder R. (2008). Isolation of small RNA-binding proteins from E. coli: evidence for frequent interaction of RNAs with RNA polymerase. RNA Biol, 5, 30–40.
  • Wu XG, Duan HM, Tian T, Yao N, Zhou HY, Zhang LQ. (2010). Effect of the hfq gene on 2,4-diacetylphloroglucinol production and the PcoI/PcoR quorum-sensing system in Pseudomonas fluorescens 2P24. FEMS Microbiol Lett, 309, 16–24.
  • Zaric B, Chami M, Rémigy H, Engel A, Ballmer-Hofer K, Winkler FK, Kambach C. (2005). Reconstitution of two recombinant LSm protein complexes reveals aspects of their architecture, assembly, and function. J Biol Chem, 280, 16066–16075.
  • Zhang A, Wassarman KM, Ortega J, Steven AC, Storz G. (2002). The Sm-like Hfq protein increases OxyS RNA interaction with target mRNAs. Mol Cell, 9, 11–22.
  • Zhang A, Wassarman KM, Rosenow C, Tjaden BC, Storz G, Gottesman S. (2003). Global analysis of small RNA and mRNA targets of Hfq. Mol Microbiol, 50, 1111–1124.
  • Zhang Y, Hong G. (2009). Post-transcriptional regulation of NifA expression by Hfq and RNase E complex in Rhizobium leguminosarum bv. viciae. Acta Biochim Biophys Sin (Shanghai), 41, 719–730.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.