685
Views
70
CrossRef citations to date
0
Altmetric
Review Article

The strengths and weaknesses of Gordonia: A review of an emerging genus with increasing biotechnological potential

Pages 300-316 | Received 28 Oct 2011, Accepted 16 Feb 2012, Published online: 03 May 2012

References

  • Ahmad S, Roy PK, Khan AW, Basu SK, Johri BN. (1991). Microbial transformation of sterols to C19 steroids by Rhodococcus equi. World J Microbiol Biotechnol, 7, 557–561.
  • Alves L, Salgueiro R, Rodrigues C, Mesquita E, Matos J, Gírio FM. (2005). Desulfurization of dibenzothiophene, benzothiophene, and other thiophene analogs by a newly isolated bacterium, Gordonia alkanivorans strain 1B. Appl Biochem Biotechnol, 120, 199–208.
  • Alves L, Marques S, Matos J, Tenreiro R, Gírio FM. (2008a). Dibenzothiophene desulfurization by Gordonia alkanivorans strain 1B using recycled paper sludge hydrolyzate. Chemosphere, 70, 967–973.
  • Alves L, Matos J, Tenreiro R, Gírio FM. (2008b). Evidence for the role of zinc on the performance of dibenzothiophene desulfurization by Gordonia alkanivorans strain 1B. J Ind Microbiol Biotechnol, 35, 69–73.
  • Andeer PF, Stahl DA, Bruce NC, Strand SE. (2009). Lateral transfer of genes for hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) degradation. Appl Environ Microbiol, 75, 3258–3262.
  • Arenskötter M, Baumeister D, Berekaa MM, Pötter G, Kroppenstedt RM, Linos A, Steinbüchel A. (2001). Taxonomic characterization of two rubber degrading bacteria belonging to the species Gordonia polyisoprenivorans and analysis of hyper variable regions of 16S rDNA sequences. FEMS Microbiol Lett, 205, 277–282.
  • Arenskötter M, Baumeister D, Kalscheuer R, Steinbüchel A. (2003). Identification and application of plasmids suitable for transfer of foreign DNA to members of the genus Gordonia. Appl Environ Microbiol, 69, 4971–4974.
  • Arenskötter M, Bröker D, Steinbüchel A. (2004). Biology of the metabolically diverse genus Gordonia. Appl Environ Microbiol, 70, 3195–3204.
  • Arenskötter M, Linos A, Schumann P, Kroppenstedt RM, Steinbüchel A. (2005). Gordonia nitida Yoon et al. 2000 is a later synonym of Gordonia alkanivorans Kummer et al. 1999. Int J Syst Evol Microbiol, 55, 695–697.
  • Bakker XR, Spauwen PH, Dolmans WM. (2004). Mycetoma of the hand caused by Gordona terrae: a case report. J Hand Surg (British & European Volume), 29, 188–190.
  • Banh Q, Arenskötter M, Steinbüchel A. (2005). Establishment of Tn5096-based transposon mutagenesis in Gordonia polyisoprenivorans. Appl Environ Microbiol, 71, 5077–5084.
  • Bendinger B, Rainey FA, Kroppenstedt RM, Moormann M, Klatte S. (1995). Gordona hydrophobica sp. nov., isolated from biofilters for waste gas treatment. Int J Syst Bacteriol, 45, 544–548.
  • Blanc V, Dalle M, Markarian A, Debunne MV, Duplay E, Rodriguez-Nava V, Boiron P. (2007). Gordonia terrae: a difficult-to-diagnose emerging pathogen? J Clin Microbiol, 45, 1076–1077.
  • Blaschke AJ, Bender J, Byington CL, Korgenski K, Daly J, Petti CA, Pavia AT, Ampofo K. (2007). Gordonia species: emerging pathogens in pediatric patients that are identified by 16S ribosomal RNA gene sequencing. Clin Infect Dis, 45, 483–486.
  • Brandão PF, Maldonado LA, Ward AC, Bull AT, Goodfellow M. (2001). Gordonia namibiensis sp. nov., a novel nitrile metabolising actinomycete recovered from an African sand. Syst Appl Microbiol, 24, 510–515.
  • Bröker D, Arenskötter M, Legatzki A, Nies DH, Steinbüchel A. (2004). Characterization of the 101-kilobase-pair megaplasmid pKB1, isolated from the rubber-degrading bacterium Gordonia westfalica Kb1. J Bacteriol, 186, 212–225.
  • Bröker D, Arenskötter M, Steinbüchel A. (2008). Transfer of megaplasmid pKB1 from the rubber-degrading bacterium Gordonia westfalica strain Kb1 to related bacteria and its modification. Appl Microbiol Biotechnol, 77, 1317–1327.
  • Brust JC, Whittier S, Scully BE, McGregor CC, Yin MT. (2009). Five cases of bacteraemia due to Gordonia species. J Med Microbiol, 58, 1376–1378.
  • Buchman AL, McNeil MM, Brown JM, Lasker BA, Ament ME. (1992). Central venous catheter sepsis caused by unusual Gordona (Rhodococcus) species: identification with a digoxigenin-labeled rDNA probe. Clin Infect Dis, 15, 694–697.
  • Carr EL, Eales KL, Seviour RJ. (2006). Substrate uptake by Gordonia amarae in activated sludge foams by FISH-MAR. Water Sci Technol, 54, 39–45.
  • Chang JH, Kim YJ, Lee BH, Cho KS, Ryu HW, Chang YK, Chang HN. (2001). Production of a desulfurization biocatalyst by two-stage fermentation and its application for the treatment of model and diesel oils. Biotechnol Prog, 17, 876–880.
  • Chatterjee S, Dutta TK. (2003). Metabolism of butyl benzyl phthalate by Gordonia sp. strain MTCC 4818. Biochem Biophys Res Commun, 309, 36–43.
  • Chatterjee S, Mallick S, Dutta TK. (2005). Pathways in the degradation of hydrolyzed alcohols of butyl benzyl phthalate in metabolically diverse Gordonia sp. strain MTCC 4818. J Mol Microbiol Biotechnol, 9, 110–120.
  • Chatterjee S, Dutta TK. (2008). Metabolic cooperation of Gordonia sp. strain MTCC 4818 and Arthrobacter sp. strain WY in the utilization of butyl benzyl phthalate: effect of a novel co-culture in the degradation of a mixture of phthalates. Microbiology (Reading, Engl), 154, 3338–3346.
  • Choi OK, Choi KS, Ryu HW, Chang YK. (2003). Enhancement of phase separation by the addition of de-emulsifiers to three-phase (diesel oil/biocatalyst/aqueous phase) emulsion in diesel biodesulfurization. Biotechnol Lett, 25, 73–77.
  • Cook AM, Hütter R. (1984). Deethylsimazine: bacterial dechlorination, deamination, and complete degradation. J Agric Food Chem, 32, 581–585.
  • Cook AM, Hütter R. (1986). Ring dechlorination of deethylsimazine by hydrolases from Rhodococcus corallinus. FEMS Microbiol Lett, 34, 335–338.
  • De los Reyes MF, de los Reyes FL, Hernandez M, Raskin L. (1998a). Quantification of Gordona amarae strains in foaming activated sludge and anaerobic digester systems with oligonucleotide hybridization probes. Appl Environ Microbiol, 64, 2503–2512.
  • De los Reyes MF, de los Reyes FL, Hernandez M, Raskin L. (1998b). Identification and quantification of Gordona amarae strains in activated sludge systems using comparative rRNA sequence analysis and phylogenetic hybridization probes. Water Sci Technol, 37, 521–525.
  • De Miguel T, Sieiro C, Poza M, Villa TG. (2000). Isolation and taxonomic study of a new canthaxanthin-containing bacterium, Gordonia jacobaea MV-1 sp. nov. Int Microbiol, 3, 107–111.
  • De Miguel T, Sieiro C, Poza M, Villa TG. (2001). Analysis of canthaxanthin and related pigments from Gordonia jacobaea mutants. J Agric Food Chem, 49, 1200–1202.
  • Dogan I, Pagilla KR, Webster DA, Stark BC. (2006). Expression of Vitreoscilla hemoglobin in Gordonia amarae enhances biosurfactant production. J Ind Microbiol Biotechnol, 33, 693–700.
  • Drancourt M, Pelletier J, Cherif AA, Raoult D. (1997). Gordona terrae central nervous system infection in an immunocompetent patient. J Clin Microbiol, 35, 379–382.
  • Drancourt M, McNeil MM, Brown JM, Lasker BA, Maurin M, Choux M, Raoult D. (1994). Brain abscess due to Gordona terrae in an immunocompromised child: case report and review of infections caused by G. terrae. Clin Infect Dis, 19, 258–262.
  • Drzyzga O, Navarro Llorens JM, Fernández de las Heras L, García Fernández E, Perera J. (2009). Gordonia cholesterolivorans sp. nov., a cholesterol-degrading actinomycete isolated from sewage sludge. Int J Syst Evol Microbiol, 59, 1011–1015.
  • Drzyzga O, Fernández de las Heras L, Morales V, Navarro Llorens JM, Perera J. (2011). Cholesterol degradation by Gordonia cholesterolivorans. Appl Environ Microbiol, 77, 4802–4810.
  • Euzéby JP. (Accessed 25 October 2011). List of prokaryotic names with standing in nomenclature - Genus Gordonia. [Online]. See under http://www.bacterio.cict.fr/g/gordonia.html
  • Fernández de las Heras L, García Fernández E, Navarro Llorens JM, Perera J, Drzyzga O. (2009). Morphological, physiological and molecular characterization of a newly isolated steroid-degrading actinomycete, identified as Rhodococcus ruber strain Chol-4. Curr Microbiol, 59, 548–553.
  • Fiechter A. (1992). Biosurfactants: moving towards industrial application. Trends Biotechnol, 10, 208–217.
  • Franzetti A, Bestetti G, Caredda P, La Colla P, Tamburini E. (2008). Surface-active compounds and their role in the access to hydrocarbons in Gordonia strains. FEMS Microbiol Ecol, 63, 238–248.
  • Franzetti A, Caredda P, Ruggeri C, La Colla P, Tamburini E, Papacchini M, Bestetti G. (2009). Potential applications of surface active compounds by Gordonia sp. strain BS29 in soil remediation technologies. Chemosphere, 75, 801–807.
  • Friedrich MM. (2006) Characterization of hexane-degrading microorganisms from waste gas biofilters. Dissertation, University of Osnabrück, Germany under: http://repositorium.uni-osnabrueck.de/handle/urn:nbn:de:gbv:700–2008022213.
  • Fujii T, Narikawa T, Takeda K, Kato J. (2004). Biotransformation of various alkanes using the Escherichia coli expressing an alkane hydroxylase system from Gordonia sp. TF6. Biosci Biotechnol Biochem, 68, 2171–2177.
  • Fusconi R, Godinho MJ. (2002). Screening for exopolysaccharide-producing bacteria from sub-tropical polluted groundwater. Braz J Biol, 62, 363–369.
  • Fusconi R, Leal Godinho MJ, Cruz Hernández IL, Segnini Bossolan NR. (2006). Gordonia polyisoprenivorans from groundwater contaminated with landfill leachate in a subtropical area: characterization of the isolate and exopolysaccharide production. Braz J Microbiol, 37, 168–174.
  • Ge F, Li W, Chen G, Liu Y, Zhang G, Yong B, Wang Q, Wang N, Huang Z, Li W, Wang J, Wu C, Xie Q, Liu G. (2011). Draft genome sequence of Gordonia neofelifaecis NRRL B-59395, a cholesterol-degrading actinomycete. J Bacteriol, 193, 5045–5046.
  • Gilbert SC, Morton J, Buchanan S, Oldfield C, McRoberts A. (1998). Isolation of a unique benzothiophene-desulphurizing bacterium, Gordona sp. strain 213E (NCIMB 40816), and characterization of the desulphurization pathway. Microbiology (Reading, Engl), 144 (Pt 9), 2545–2553.
  • Gil-Sande E, Brun-Otero M, Campo-Cerecedo F, Esteban E, Aguilar L, García-de-Lomas J. (2006). Etiological misidentification by routine biochemical tests of bacteremia caused by Gordonia terrae infection in the course of an episode of acute cholecystitis. J Clin Microbiol, 44, 2645–2647.
  • Goodfellow M, Maldonado LA. (In: 2006). The families Dietziaceae, Gordoniaceae, Nocardiaceae and Tsukamurellaceae. Dworkin F, Falkow S, Schleifer KH, Stackebrandt E (eds). The Prokaryotes 3rd edn, vol. 3, Archea and Bacteria: Firmicutes, Actinomycetes. New York, Berlin, Heidelberg: Springer.
  • Gorontzy T, Drzyzga O, Kahl MW, Bruns-Nagel D, Breitung J, von Loew E, Blotevogel KH. (1994). Microbial degradation of explosives and related compounds. Crit Rev Microbiol, 20, 265–284.
  • Grisold AJ, Roll P, Hoenigl M, Feierl G, Vicenzi-Moser R, Marth E. (2007). Isolation of Gordonia terrae from a patient with catheter-related bacteraemia. J Med Microbiol, 56, 1687–1688.
  • Gupta M, Prasad D, Khara HS, Alcid D. (2010). A rubber-degrading organism growing from a human body. J Int Infect Dis, 14, e75–e76.
  • Hart DH, Peel MM, Andrew JH, Burdon JG. (1988). Lung infection caused by Rhodococcus. Aust NZ J Med, 18, 790–791.
  • Hernandez G, Francois A, Piveteau P, Fayolle F, Monot F. (2007). Methods for treating bacterial effluents containing at least a Gordonia terrae CIP I-2194 ether. US Patent number 7,166,457 B1.
  • Hernandez-Perez G, Fayolle F, Vandecasteele JP. (2001). Biodegradation of ethyl t-butyl ether (ETBE), methyl t-butyl ether (MTBE) and t-amyl methyl ether (TAME) by Gordonia terrae. Appl Microbiol Biotechnol, 55, 117–121.
  • Hong SH, Ryu H, Kim J, Cho KS. (2011). Rhizoremediation of diesel-contaminated soil using the plant growth-promoting rhizobacterium Gordonia sp. S2RP-17. Biodegradation, 22, 593–601.
  • Hung WL, Wade WG, Boden R, Kelly DP, Wood AP. (2011). Facultative methylotrophs from the human oral cavity and methylotrophy in strains of Gordonia, Leifsonia, and Microbacterium. Arch Microbiol, 193, 407–417.
  • Iida S, Taniguchi H, Kageyama A, Yazawa K, Chibana H, Murata S, Nomura F, Kroppenstedt RM, Mikami Y. (2005). Gordonia otitidis sp. nov., isolated from a patient with external otitis. Int J Syst Evol Microbiol, 55, 1871–1876.
  • Indest KJ, Jung CM, Chen HP, Hancock D, Florizone C, Eltis LD, Crocker FH. (2010). Functional characterization of pGKT2, a 182-kilobase plasmid containing the xplAB genes, which are involved in the degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine by Gordonia sp. strain KTR9. Appl Environ Microbiol, 76, 6329–6337.
  • Ivanova N, Sikorski J, Jando M, Lapidus A, Nolan M, Lucas S, Del Rio TG, Tice H, Copeland A, Cheng JF, Chen F, Bruce D, Goodwin L, Pitluck S, Mavromatis K, Ovchinnikova G, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CD, Chain P, Saunders E, Han C, Detter JC, Brettin T, Rohde M, Göker M, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Klenk HP, Kyrpides NC. (2010). Complete genome sequence of Gordonia bronchialis type strain (3410). Stand Genomic Sci, 2, 19–28.
  • Iwahori K, Tokutomi T, Miyata N, Fujita M. (2001). Formation of stable foam by the cells and culture supernatant of Gordonia (Nocardia) amarae. J Biosci Bioeng, 92, 77–79.
  • Jannat-Khah DP, Halsey ES, Lasker BA, Steigerwalt AG, Hinrikson HP, Brown JM. (2009). Gordonia araii infection associated with an orthopedic device and review of the literature on medical device-associated Gordonia infections. J Clin Microbiol, 47, 499–502.
  • Johnson JA, Onderdonk AB, Cosimi LA, Yawetz S, Lasker BA, Bolcen SJ, Brown JM, Marty FM. (2011). Gordonia bronchialis bacteremia and pleural infection: case report and review of the literature. J Clin Microbiol, 49, 1662–1666.
  • Kämpfer P, Young CC, Chu JN, Frischmann A, Busse HJ, Arun AB, Shen FT, Rekha PD. (2011). Gordonia humi sp. nov., isolated from soil. Int J Syst Evol Microbiol, 61, 65–70.
  • Kageyama A, Iida S, Yazawa K, Kudo T, Suzuki S, Koga T, Saito H, Inagawa H, Wada A, Kroppenstedt RM, Mikami Y. (2006). Gordonia araii sp. nov. and Gordonia effusa sp. nov., isolated from patients in Japan. Int J Syst Evol Microbiol, 56, 1817–1821.
  • Kang Y, Takeda K, Yazawa K, Mikami Y. (2009). Phylogenetic studies of Gordonia species based on gyrB and secA1 gene analyses. Mycopathologia, 167, 95–105.
  • Kempf VA, Schmalzing M, Yassin AF, Schaal KP, Baumeister D, Arenskötter M, Steinbüchel A, Autenrieth IB. (2004). Gordonia polyisoprenivorans septicemia in a bone marrow transplant patient. Eur J Clin Microbiol Infect Dis, 23, 226–228.
  • Kertesz MA, Wietek C. (2001). Desulfurization and desulfonation: applications of sulfur-controlled gene expression in bacteria. Appl Microbiol Biotechnol, 57, 460–466.
  • Kilbane JJ 2nd, Robbins J. (2007). Characterization of the dszABC genes of Gordonia amicalis F.5.25.8 and identification of conserved protein and DNA sequences. Appl Microbiol Biotechnol, 75, 843–851.
  • Kim SB, Brown R, Oldfield C, Gilbert SC, Goodfellow M. (1999). Gordonia desulfuricans sp. nov., a benzothiophene-desulphurizing actinomycete. Int J Syst Bacteriol, 49 Pt 4, 1845–1851.
  • Kim SB, Brown R, Oldfield C, Gilbert SC, Iliarionov S, Goodfellow M. (2000). Gordonia amicalis sp. nov., a novel dibenzothiophene-desulphurizing actinomycete. Int J Syst Evol Microbiol, 50 Pt 6, 2031–2036.
  • Kim KK, Lee KC, Klenk HP, Oh HM, Lee JS. (2009). Gordonia kroppenstedtii sp. nov., a phenol-degrading actinomycete isolated from a polluted stream. Int J Syst Evol Microbiol, 59, 1992–1996.
  • Klatte S, Rainey FA, Kroppenstedt RM. (1994). Transfer of Rhodococcus aichiensis Tsukamura 1982 and Nocardia amarae Lechevalier and Lechevalier 1974 to the genus Gordona as Gordona aichiensis comb. nov. and Gordona amarae comb nov. Int J Syst Bacteriol, 44, 769–773.
  • Klatte S, Kroppenstedt RM, Schumann P, Altendorf K, Rainey FA. (1996). Gordona hirsuta sp. nov. Int J Syst Bacteriol, 46, 876–880.
  • Koma D, Sakashita Y, Kubota K, Fujii Y, Hasumi F, Chung SY, Kubo M. (2003). Degradation of car engine base oil by Rhodococcus sp. NDKK48 and Gordonia sp. NDKY76A. Biosci Biotechnol Biochem, 67, 1590–1593.
  • Kondo T, Yamamoto D, Yokota A, Suzuki A, Nagasawa H, Sakuda S. (2000). Gordonan, an acidic polysaccharide with cell aggregation-inducing activity in insect BM-N4 cells, produced by Gordonia sp. Biosci Biotechnol Biochem, 64, 2388–2394.
  • Kotani T, Yurimoto H, Kato N, Sakai Y. (2007). Novel acetone metabolism in a propane-utilizing bacterium, Gordonia sp. strain TY-5. J Bacteriol, 189, 886–893.
  • Kummer C, Schumann P, Stackebrandt E. (1999). Gordonia alkanivorans sp. nov., isolated from tar-contaminated soil. Int J Syst Bacteriol, 49 Pt 4, 1513–1522.
  • Kuwabara M, Onitsuka T, Nakamura K, Shimada M, Ohtaki S, Mikami Y. (1999). Mediastinitis due to Gordona sputi after CABG. J Cardiovasc Surg (Torino), 40, 675–677.
  • Lai CC, Wang CY, Liu CY, Tan CK, Lin SH, Liao CH, Chou CH, Huang YT, Lin HI, Hsueh PR. (2010). Infections caused by Gordonia species at a medical centre in Taiwan, 1997 to 2008. Clin Microbiol Infect, 16, 1448–1453.
  • Larkin MJ, Kulakov LA, Allen CC. (2005). Biodegradation and Rhodococcus–masters of catabolic versatility. Curr Opin Biotechnol, 16, 282–290.
  • Lechevalier MP, Lechevalier HA. (1974). Nocardia amarae sp. nov., an actinomycete common in foaming activated sludge. Int J Syst Bacteriol, 24, 278–288.
  • Lee JJ, Rhee SK, Lee ST. (2001). Degradation of 3-methylpyridine and 3-ethylpyridine by Gordonia nitida LE31. Appl Environ Microbiol, 67, 4342–4345.
  • Lee IS, Bae HS, Ryu HW, Cho KS, Chang YK. (2005). Biocatalytic desulfurization of diesel oil in an air-lift reactor with immobilized Gordonia nitida CYKS1 cells. Biotechnol Prog, 21, 781–785.
  • Lee M, Kim MK, Kwon MJ, Park BD, Kim MH, Goodfellow M, Lee ST. (2005). Effect of the synthesized mycolic acid on the biodegradation of diesel oil by Gordonia nitida strain LE31. J Biosci Bioeng, 100, 429–436.
  • Le Roes M, Goodwin CM, Meyers PR. (2008). Gordonia lacunae sp. nov., isolated from an estuary. Syst Appl Microbiol, 31, 17–23.
  • Lesens O, Hansmann Y, Riegel P, Heller R, Benaissa-Djellouli M, Martinot M, Petit H, Christmann D. (2000). Bacteremia and endocarditis caused by a Gordonia species in a patient with a central venous catheter. Emerging Infect Dis, 6, 382–385.
  • Li W, Wang MD, Chen H, Chen JM, Shi Y. (2006). Biodesulfurization of dibenzothiophene by growing cells of Gordonia sp. in batch cultures. Biotechnol Lett, 28, 1175–1179.
  • Li GQ, Li SS, Qu SW, Liu QK, Ma T, Zhu L, Liang FL, Liu RL. (2008). Improved biodesulfurization of hydrodesulfurized diesel oil using Rhodococcus erythropolis and Gordonia sp. Biotechnol Lett, 30, 1759–1764.
  • Linos A, Steinbüchel A, Spröer C, Kroppenstedt RM. (1999). Gordonia polyisoprenivorans sp. nov., a rubber-degrading actinomycete isolated from an automobile tyre. Int J Syst Bacteriol, 49 Pt 4, 1785–1791.
  • Linos A, Steinbüchel A. (1998). Microbial degradation of natural and synthetic rubbers by novel bacteria belonging to the genus Gordona. Kautsch Gummi Kunstst, 51, 496–499.
  • Linos A, Berekaa MM, Steinbüchel A, Kim KK, Sproer C, Kroppenstedt RM. (2002). Gordonia westfalica sp. nov., a novel rubber-degrading actinomycete. Int J Syst Evol Microbiol, 52, 1133–1139.
  • Linos A, Berekaa MM, Reichelt R, Keller U, Schmitt J, Flemming HC, Kroppenstedt RM, Steinbüchel A. (2000). Biodegradation of cis-1,4-polyisoprene rubbers by distinct actinomycetes: microbial strategies and detailed surface analysis. Appl Environ Microbiol, 66, 1639–1645.
  • Liu Y, Ge F, Chen G, Li W, Ma P, Zhang G, Zeng L. (2011a). Gordonia neofelifaecis sp. nov., a cholesterol side-chain-cleaving actinomycete isolated from the faeces of Neofelis nebulosa. Int J Syst Evol Microbiol, 61, 165–169.
  • Liu Y, Chen G, Ge F, Li W, Zeng L, Cao W. (2011b). Efficient biotransformation of cholesterol to androsta-1,4-diene-3,17-dione by a newly isolated actinomycete Gordonia neofelifaecis. World J Microbiol Biotechnol, 27, 759–765.
  • Lo Piccolo L, De Pasquale C, Fodale R, Puglia AM, Quatrini P. (2011). Involvement of an alkane hydroxylase system of Gordonia sp. strain SoCg in degradation of solid n-alkanes. Appl Environ Microbiol, 77, 1204–1213.
  • Luo H, Gu Q, Xie J, Hu C, Liu Z, Huang Y. (2007). Gordonia shandongensis sp. nov., isolated from soil in China. Int J Syst Evol Microbiol, 57, 605–608.
  • Malaviya A, Gomes J. (2008). Androstenedione production by biotransformation of phytosterols. Bioresour Technol, 99, 6725–6737.
  • Maldonado LA, Stainsby FM, Ward AC, Goodfellow M. (2003). Gordonia sinesedis sp. nov., a novel soil isolate. Antonie Van Leeuwenhoek, 83, 75–80.
  • Marrengane Z, Kumar SK, Pillay L, Bux F. (2011). Rapid quantification and analysis of genetic diversity among Gordonia populations in foaming activated sludge plants. J Basic Microbiol, 51, 415–423.
  • Martin T, Hogan DJ, Murphy F, Natyshak I, Ewan EP. (1991). Rhodococcus infection of the skin with lymphadenitis in a nonimmunocompromised girl. J Am Acad Dermatol, 24, 328–332.
  • Matsui T, Onaka T, Maruhashi K, Kurane R. (2001). Benzo[b]thiophene desulfurization by Gordonia rubropertinctus strain T08. Appl Microbiol Biotechnol, 57, 212–215.
  • Matsui T, Maruhashi K. (2004). Isolation of carotenoid-deficient mutant from alkylated dibenzothiophene desulfurizing nocardioform bacteria, Gordonia sp. TM414. Curr Microbiol, 48, 130–134.
  • Mikolasch A, Hammer E, Schauer F. (2003). Synthesis of imidazol-2-yl amino acids by using cells from alkane-oxidizing bacteria. Appl Environ Microbiol, 69, 1670–1679.
  • Mohebali G, Ball A, Kaytash A, Rasekh B. (2007). Stabilization of water/gas oil emulsions by desulfurizing cells of Gordonia alkanivorans RIPI90A. Microbiology (Reading, Engl), 153, 1573–1581.
  • Mohebali G, Ball AS, Kaytash A, Rasekh B. (2008). Dimethyl sulfoxide (DMSO) as the sulfur source for the production of desulfurizing resting cells of Gordonia alkanivorans RIPI90A. Microbiology (Reading, Engl), 154, 878–885.
  • Moormann M, Zähringer U, Moll H, Kaufmann R, Schmid R, Altendorf K. (1997). A new glycosylated lipopeptide incorporated into the cell wall of a smooth variant of Gordona hydrophobica. J Biol Chem, 272, 10729–10738.
  • Nazina TN, Sokolova DSh, Grigor’ian AA, Xue YF, Beliaev SS, Ivanov MV. (2003). Production of oil-processing compounds by microorganisms from the Daqing oil field, China. Mikrobiologiia, 72, 206–211.
  • Nishioka T, Iwata M, Imaoka T, Mutoh M, Egashira Y, Nishiyama T, Shin T, Fujii T. (2006). A mono-2-ethylhexyl phthalate hydrolase from a Gordonia sp. that is able to dissimilate di-2-ethylhexyl phthalate. Appl Environ Microbiol, 72, 2394–2399.
  • Pagilla KR, Sood A, Kim H. (2002). Gordonia (Nocardia) amarae foaming due to biosurfactant production. Water Sci Technol, 46, 519–524.
  • Park S, Kang SJ, Kim W, Yoon JH. (2009). Gordonia hankookensis sp. nov., isolated from soil. Int J Syst Evol Microbiol, 59, 3172–3175.
  • Petrovski S, Seviour RJ, Tillett D. (2011a). Characterization of the genome of the polyvalent lytic bacteriophage GTE2, which has potential for biocontrol of Gordonia-, Rhodococcus-, and Nocardia-stabilized foams in activated sludge plants. Appl Environ Microbiol, 77, 3923–3929.
  • Petrovski S, Seviour RJ, Tillett D. (2011b). Prevention of Gordonia and Nocardia stabilized foam formation by using bacteriophage GTE7. Appl Environ Microbiol, 77, 7864–7867.
  • Pham AS, Dé I, Rolston KV, Tarrand JJ, Han XY. (2003). Catheter-related bacteremia caused by the nocardioform actinomycete Gordonia terrae. Clin Infect Dis, 36, 524–527.
  • Poonwan N, Mekha N, Yazawa K, Thunyaharn S, Yamanaka A, Mikami Y. (2005). Characterization of clinical isolates of pathogenic Nocardia strains and related actinomycetes in Thailand from 1996 to 2003. Mycopathologia, 159, 361–368.
  • Renvoise A, Harle JR, Raoult D, Roux V. (2009). Gordonia sputi bacteremia. Emerging Infect Dis, 15, 1535–1537.
  • Rhee SK, Chang JH, Chang YK, Chang HN. (1998). Desulfurization of dibenzothiophene and diesel oils by a newly isolated Gordona strain, CYKS1. Appl Environ Microbiol, 64, 2327–2331.
  • Richet HM, Craven PC, Brown JM, Lasker BA, Cox CD, McNeil MM, Tice AD, Jarvis WR, Tablan OC. (1991). A cluster of Rhodococcus (Gordona) Bronchialis sternal-wound infections after coronary-artery bypass surgery. N Engl J Med, 324, 104–109.
  • Riegel P, Ruimy Rde, Briel D, Eichler F, Bergerat JP, Christen R, Monteil H. (1996). Bacteremia due to Gordona sputi in an immunocompromised patient. J Clin Microbiol, 34, 2045–2047.
  • Romanowska I, Kwapisz E, Mitka M, Bielecki S. (2010). Isolation and preliminary characterization of a respiratory nitrate reductase from hydrocarbon-degrading bacterium Gordonia alkanivorans S7. J Ind Microbiol Biotechnol, 37, 625–629.
  • Saeki H, Sasaki M, Komatsu K, Miura A, Matsuda H. (2009). Oil spill remediation by using the remediation agent JE1058BS that contains a biosurfactant produced by Gordonia sp. strain JE-1058. Bioresour Technol, 100, 572–577.
  • Santos SC, Alviano DS, Alviano CS, Pádula M, Leitão AC, Martins OB, Ribeiro CM, Sassaki MY, Matta CP, Bevilaqua J, Sebastián GV, Seldin L. (2006). Characterization of Gordonia sp. strain F.5.25.8 capable of dibenzothiophene desulfurization and carbazole utilization. Appl Microbiol Biotechnol, 71, 355–362.
  • Schneider K, Graf E, Irran E, Nicholson G, Stainsby FM, Goodfellow M, Borden SA, Keller S, Süssmuth RD, Fiedler HP. (2008). Bendigoles A approximately C, new steroids from Gordonia australis Acta 2299. J Antibiot, 61, 356–364.
  • Shavandi M, Sadeghizadeh M, Zomorodipour A, Khajeh K. (2009). Biodesulfurization of dibenzothiophene by recombinant Gordonia alkanivorans RIPI90A. Bioresour Technol, 100, 475–479.
  • Shavandi M, Sadeghizadeh M, Khajeh K, Mohebali G, Zomorodipour A. (2010). Genomic structure and promoter analysis of the dsz operon for dibenzothiophene biodesulfurization from Gordonia alkanivorans RIPI90A. Appl Microbiol Biotechnol, 87, 1455–1461.
  • Shen FT, Young CC. (2005). Rapid detection and identification of the metabolically diverse genus Gordonia by 16S rRNA-gene-targeted genus-specific primers. FEMS Microbiol Lett, 250, 221–227.
  • Shen FT, Goodfellow M, Jones AL, Chen YP, Arun AB, Lai WA, Rekha PD, Young CC. (2006a). Gordonia soli sp. nov., a novel actinomycete isolated from soil. J Int Syst Evol Microbiol, 56, 2597–2601.
  • Shen FT, Lu HL, Lin JL, Huang WS, Arun AB, Young CC. (2006b). Phylogenetic analysis of members of the metabolically diverse genus Gordonia based on proteins encoding the gyrB gene. Res Microbiol, 157, 367–375.
  • Shen FT, Huang HR, Arun AB, Lu HL, Lin TC, Rekha PD, Young CC. (2007). Detection of filamentous genus Gordonia in foam samples using genus-specific primers combined with PCR–denaturing gradient gel electrophoresis analysis. J Can Microbiol, 53, 768–774.
  • Shen FT, Ho MJ, Huang HR, Arun AB, Rekha PD, Young CC. (2008). Molecular detection and phylogenetic characterization of Gordonia species in heavily oil-contaminated soils. Res Microbiol, 159, 522–529.
  • Shen FT, Lin JL, Huang CCHoYN, Arun AB, Young LS, Young CC. (2009). Molecular detection and phylogenetic analysis of the catechol 1,2-dioxygenase gene from Gordonia spp. Syst Appl Microbiol, 32, 291–300.
  • Shen FT, Young LS, Hsieh MF, Lin SY, Young CC. (2010). Molecular detection and phylogenetic analysis of the alkane 1-monooxygenase gene from Gordonia spp. Syst Appl Microbiol, 33, 53–59.
  • Sng LH, Koh TH, Toney SR, Floyd M, Butler WR, Tan BH. (2004). Bacteremia caused by Gordonia bronchialis in a patient with sequestrated lung. J Clin Microbiol, 42, 2870–2871.
  • Soddell JA, Stainsby FM, Eales KL, Seviour RJ, Goodfellow M. (2006). Gordonia defluvii sp. nov., an actinomycete isolated from activated sludge foam. Int J Syst Evol Microbiol, 56, 2265–2269.
  • Stackebrandt E, Smida J, Collins MD. (1988). Evidence of phylogenetic heterogeneity within the genus Rhodococcus: revival of the genus Gordona (Tsukamura). J GenAppl Microbiol, 34, 341–348.
  • Stackebrandt E, Rainey FA, Ward-Rainey NL. (1997). Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol, 47, 479–491.
  • Stobdan T, Sinha A, Singh RP, Adhikari DK. (2008). Degradation of pyridine and 4-methylpyridine by Gordonia terrea IIPN1. Biodegradation, 19, 481–487.
  • Ta-Chen L, Chang JS, Young CC. (2008). Exopolysaccharides produced by Gordonia alkanivorans enhance bacterial degradation activity for diesel. Biotechnol Lett, 30, 1201–1206.
  • Takaichi S, Maoka T, Akimoto N, Carmona ML, Yamaoka Y. (2008). Carotenoids in a Corynebacterineae, Gordonia terrae AIST-1: carotenoid glucosyl mycoloyl esters. Biosci Biotechnol Biochem, 72, 2615–2622.
  • Takeuchi M, Hatano K. (1998). Gordonia rhizosphera sp. nov. isolated from the mangrove rhizosphere. Int J Syst Bacteriol, 48 Pt 3, 907–912.
  • Thompson KT, Crocker FH, Fredrickson HL. (2005). Mineralization of the cyclic nitramine explosive hexahydro-1,3,5-trinitro-1,3,5-triazine by Gordonia and Williamsia spp. Appl Environ Microbiol, 71, 8265–8272.
  • Tsukamura M. (1971). Proposal of a new genus, Gordona, for slightly acid-fast organisms occurring in sputa of patients with pulmonary disease and in soil. J Gen Microbiol, 68, 15–26.
  • van der Geize R, Dijkhuizen L. (2004). Harnessing the catabolic diversity of rhodococci for environmental and biotechnological applications. Curr Opin Microbiol, 7, 255–261.
  • Van Slyke, DC. (2010). Gordonia sihwensis strain and uses thereof. US Patent Application Publication No.: US 2010/0159568 A1.
  • Veiga-Crespo P, Blasco L, Rosa-Dos-Santos F, Poza M, Villa TG. (2005). Influence of culture conditions of Gordonia jacobaea MV-26 on canthaxanthin production. Int Microbiol, 8, 55–58.
  • Veiga-Crespo P, Feijoo-Siota L, de Miguel T, Poza M, Villa TG. (2006). Proposal of a method for the genetic transformation of Gordonia jacobaea. J Appl Microbiol, 100, 608–614.
  • Verma P, Brown JM, Nunez VH, Morey RE, Steigerwalt AG, Pellegrini GJ, Kessler HA. (2006). Native valve endocarditis due to Gordonia polyisoprenivorans: case report and review of literature of bloodstream infections caused by Gordonia species. J Clin Microbiol, 44, 1905–1908.
  • Wang L, Liu Y, Shao Z. (2009). Isolation and identification of a hydrocarbon-degrading bacterium Gordonia sp. S14-10 from the surface water of Atlantic Ocean and analysis on its related characteristics. Wei Sheng Wu Xue Bao, 49, 1634–1642.
  • Wang T, Kong F, Chen S, Xiao M, Sorrell T, Wang X, Wang S, Sintchenko V. (2011). Improved identification of Gordonia, Rhodococcus and Tsukamurella species by 5′-end 16S rRNA gene sequencing. Pathology, 43, 58–63.
  • Watanabe K, Nelson J, Harayama S, Kasai H. (2001). ICB database: the gyrB database for identification and classification of bacteria. Nucleic Acids Res, 29, 344–345.
  • Werno AM, Anderson TP, Chambers ST, Laird HM, Murdoch DR. (2005). Recurrent breast abscess caused by Gordonia bronchialis in an immunocompetent patient. J Clin Microbiol, 43, 3009–3010.
  • Wovcha MG, Biggs CB, Pyke TR. (1981). Process for preparing androsta-1,4-diene-3,17-dione and androst-4-ene-3,17-dione. United States Patent No. 4293645.
  • Wu X, Liang R, Dai Q, Jin D, Wang Y, Chao W. (2010). Complete degradation of di-n-octyl phthalate by biochemical cooperation between Gordonia sp. strain JDC-2 and Arthrobacter sp. strain JDC-32 isolated from activated sludge. J Hazard Mater, 176, 262–268.
  • Xu L, Gao Z, Luo M, Cheng Y, Jin J. (2011). Isolation and identification of a pyrene-degrading bacterial strain from contaminated soil. Acta Microbiol Sinica, 51, 313–319.
  • Xue Y, Sun X, Zhou P, Liu R, Liang F, Ma Y. (2003). Gordonia paraffinivorans sp. nov., a hydrocarbon-degrading actinomycete isolated from an oil-producing well. Int J Syst Evol Microbiol, 53, 1643–1646.
  • Yassin AF, Shen FT, Hupfer H, Arun AB, Lai WA, Rekha PD, Young CC. (2007). Gordonia malaquae sp. nov., isolated from sludge of a wastewater treatment plant. Int J Syst Evol Microbiol, 57, 1065–1068.
  • Yoon JH, Lee JJ, Kang SS, Takeuchi M, Shin YK, Lee ST, Kang KH, Park YH. (2000). Gordonia nitida sp. nov., a bacterium that degrades 3-ethylpyridine and 3-methylpyridine. Int J Syst Evol Microbiol, 50 Pt 3, 1203–1210.
  • Yoshimoto T, Nagai F, Fujimoto J, Kimura K, Mizukoski H, Watanabe K, Makino T, Omura H, Saino H. (2009). Estrogenic substance degradable microorganism and use thereof. US Patent application publication No. US 2009/0029442 A1.
  • Zardawi IM, Jones F, Clark DA, Holland J. (2004). Gordonia terrae-induced suppurative granulomatous mastitis following nipple piercing. Pathology, 36, 275–278.
  • Zheng H, Tkachuk-Saad O, Prescott JF. (1997). Development of a Rhodococcus equi-Escherichia coli plasmid shuttle vector. Plasmid, 38, 180–187.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.