884
Views
56
CrossRef citations to date
0
Altmetric
Review Article

Recent developments in production and biotechnological applications of cold-active microbial proteases

&
Pages 330-338 | Received 16 Jan 2012, Accepted 19 Mar 2012, Published online: 01 Aug 2012

References

  • Aghajari N, Van Petegem F, Villeret V, Chessa JP, Gerday C, Haser R, Van Beeumen J. (2003). Crystal structures of a psychrophilic metalloprotease reveal new insights into catalysis by cold-adapted proteases. Proteins, 50, 636–647.
  • Alam SI, Dube S, Reddy GSN, Bhattacharya BK, Shivaji S, Singh L. (2005). Purification and characterization of extracellular protease produced by Clostridium sp. from Schirmacher oasis, Antarctica. Enz Micro Technol, 36, 824–31.
  • Arnórsdóttir J, Kristjánsson MM, Ficner R. (2005). Crystal structure of a subtilisin-like serine proteinase from a psychrotrophic Vibrio species reveals structural aspects of cold adaptation. FEBS J, 272, 832–845.
  • Baross JA, Morita RY. (1978). Microbial life at low temperature: ecological aspects. In: Kushner DJ. (ed.). Microbial Life in Extreme Environments.London: Acad. Press, 9–71.
  • Berger F, Morellet N, Menu F, Potier P. (1996). Cold shock and cold acclimation proteins in the psychrotrophic bacterium Arthrobacter globiformis SI55. J Bacteriol, 178, 2999–3007.
  • Burg BV. (2003). Extremophiles as a source for novel enzymes. Curr Opin Microbiol, 6, 213–218.
  • Cavicchioli R, Siddiqui KS, Andrews D, Sowers KR. (2002). Low-temperature extremophiles and their applications. Curr Opin Biotechnol, 13, 253–261.
  • Chen X, Zhang Y, Gao P, Luan X. (2003). Two different proteases produced by a deep-sea psychrotrophic bacterial strain, Pseudoaltermonas sp. SM9913. Marine Biol, 143, 989–993
  • Chen XL, Sun CY, Zhang YZ, Gao PJ. (2002). Effects of different buffers on the thermostability and autolysis of a cold-adapted protease MCP-01. J Protein Chem, 21, 523–527.
  • Chintalapati S, Kiran MD, Shivaji S. (2004). Role of membrane lipid fatty acids in cold adaptation. Cell Mol Biol (Noisy-le-grand), 50, 631–642.
  • D’Amico S, Claverie P, Collins T, Georlette D, Gratia E, Hoyoux A, Meuwis MA, Feller G, Gerday C. (2002). Molecular basis of cold adaptation. Philos Trans R Soc Lond, B, Biol Sci, 357, 917–925.
  • D’Amico S, Gerday C, Feller G. (2001). Structural determinants of cold adaptation and stability in a large protein. J Biol Chem, 276, 25791–25796.
  • Damare S, Raghukumar C, Muraleedharan U, Raghukumar S. (2006). Deep-sea fungi as a source of alkaline and cold-tolerant proteases. Enz Microb Technol, 39, 172–181.
  • Deming JW. (2002). Psychrophiles and polar regions. Curr Opin Microbiol, 5, 301–309.
  • Demirjian DC, Morís-Varas F, Cassidy CS. (2001). Enzymes from extremophiles. Curr Opin Chem Biol, 5, 144–151.
  • Eichler J. (2001). Biotechnological uses of archaeal extremozymes. Biotechnol Adv, 19, 261–278.
  • Feller G, Gerday C. (2003). Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol, 1, 200–208.
  • Feller G, Narinx E, Arpigny JL, Aittaleb M, Baise E, Genicot S, Gerday C. (1996). Enzymes from psychrophilic organisms. FEMS Microbiol Rev, 18, 189–202.
  • Feller G, Payan F, Theys F, Qian M, Haser R, Gerday C. (1994). Stability and structural analysis of alpha-amylase from the Antarctic psychrophile Alteromonas haloplanctis A23. Eur J Biochem, 222, 441–447.
  • Feller G. (2003). Molecular adaptations to cold in psychrophilic enzymes. Cell Mol Life Sci, 60, 648–662.
  • Fields PA. (2001). Review: Protein function at thermal extremes: balancing stability and flexibility. Comp Biochem Physiol, Part A Mol Integr Physiol, 129, 417–431.
  • Fox JW, Shannon JD, Bjarnason JB. (1991). Proteinases and their inhibitors in biotechnology, enzymes in biomass conversion. ACS Symp Ser, 460, 62–79.
  • Friedmann EI. (1994). Permafrost as microbial habitat. In: Gilichinsky D. (ed). Viable Micro-organisms in Permafrost. Pushchino: Russian Academy of Sciences, 21–26.
  • Georlette D, Bentahir M, Claverie P, Collins T, D’Amico S, Delille D, Feller G, Gratia E, Hoyoux A, Lonhienne T, Meuwis MA, Zecchinon L, Gerday C. (2001). Cold-adapted enzymes. In: De Cuyper M, Bulte JWM. (eds). Physics and Chemistry Basis of Biotechnology. Dordrecht: Kluwer, 177–96.
  • Georlette D, Blaise V, Collins T, D’Amico S, Gratia E, Hoyoux A, Marx JC, Sonan G, Feller G, Gerday C. (2004). Some like it cold: biocatalysis at low temperatures. FEMS Microbiol Rev, 28, 25–42.
  • Gerday C, Aittaleb M, Bentahir M, Chessa JP, Claverie P, Collins T, D’Amico S, Dumont J, Garsoux G, Georlette D, Hoyoux A, Lonhienne T, Meuwis MA, Feller G. (2000). Cold-adapted enzymes: from fundamentals to biotechnology. Trends Biotechnol, 18, 103–107.
  • Godfrey T, West S. (1996). Introduction to industrial enzymology. In: Godfrey T, West S (eds). Industrial Enzymology, 2nd edn. London: Macmillan Press, 1–8.
  • Guoying X, Shuoshuo C, Xuezheng L. (2011). Cloning and heterologous expression of pro-2127, a gene encoding cold-active protease from Pseudoalteromonas sp. QI-1. Adv Polar Sci, 22, 124–130.
  • Gupta R, Beg QK, Lorenz P. (2002). Bacterial alkaline proteases: molecular approaches and industrial applications. Appl Microbiol Biotechnol, 59, 15–32.
  • Hamamoto T, Russell NJ. (1998). Psychrophiles. In: Horikoshi K, Grant WD (eds) Extremophiles. New York: Wiley.
  • Hebraud M, Dubois E, Potier P, Labadie J. (1994). Effect of growth temperatures on the protein levels in a psychrotrophic bacterium, Pseudomonas fragi. J Bacteriol, 176, 4017–4024.
  • Hebraud M, Potier P. (2000). In: Inouye M, Yamanaka K (eds) Cold Shock, Response and Adaptation. UK: Horizon Scientific, 41–60.
  • Herbert RA. (1986). The ecology and physiology of psychrophilic microorganisms. In: Herbert RA, Codd GA (eds) Microbes in Extreme Environments. London: SGM Publication, Acad Press, 1–23.
  • Ingraham JL, Stokes JL. (1959). Psychrophilic bacteria. Bacteriol Rev, 23, 97–108.
  • Inniss WE, Ingraham JL. (1978). Microbial life at low temperatures: mechanisms and molecular aspects. In: Kushner DJ (ed) Microbial Life in Extreme Environments. London: Acad. Press, 73–104.
  • Kano H, Taguchi S, Momose H. (1997). Cold adaptation of a mesophilic serine protease, subtilisin, by in vitro random mutagenesis. Appl Microbiol Biotechnol, 47, 46–51.
  • Koeller KM, Wong CH. (2001). Enzymes for chemical synthesis. Nature, 409, 232–240.
  • Kuddus M, Ramteke PW. (2008). A cold-active extracellular metalloprotease from Curtobacterium luteum (MTCC 7529): enzyme production and characterization. J Gen Appl Microbiol, 54, 385–392.
  • Kuddus M, Ramteke PW. (2009). Cold-active extracellular alkaline protease from an alkaliphilic Stenotrophomonas maltophilia: production of enzyme and its industrial applications. Can J Microbiol, 55, 1294–1301.
  • Kuddus M, Ramteke PW. (2011). Production optimization of an extracellular cold-active alkaline protease from Stenotrophomonas maltophilia MTCC 7528 and its application in detergent industry. Afr J Microbiol Res, 5, 809–816.
  • Kulakova L, Galkin A, Kurihara T, Yoshimura T, Esaki N. (1999). Cold-active serine alkaline protease from the psychrotrophic bacterium Shewanella strain Ac10: gene cloning and enzyme purification and characterization. Appl Environ Microbiol, 65, 611–617.
  • Kumar CG, Takagi H. (1999). Microbial alkaline proteases: from a bioindustrial viewpoint. Biotechnol Adv, 17, 561–594.
  • Kumar D, Bhalla TC. (2005). Microbial proteases in peptide synthesis: approaches and applications. Appl Microbiol Biotechnol, 68, 726–736.
  • Li J, Lee T. (1995). Bacterial ice nucleation and its potential application in the food industry. Trends Food Sci Technol, 6 (8), 259–265.
  • Lonhienne T, Gerday C, Feller G. (2000). Psychrophilic enzymes: revisiting the thermodynamic parameters of activation may explain local flexibility. Biochim Biophys Acta, 1543, 1–10.
  • Margesin R, Dieplinger H, Hofmann J, Sarg B, Lindner H. (2005). A cold-active extracellular metalloprotease from Pedobacter cryoconitis–production and properties. Res Microbiol, 156, 499–505.
  • Margesin R, Feller G, Gerday C, Russell N. (2002). Cold-Adapted micro-organisms: adaptation strategies and biotechnological potential. In: Bitton G (ed) The Encyclopedia of Environmental Microbiology, Vol. 2. New York: John Wiley & Sons, 871–885.
  • Margesin R, Schinner F. (1994). Properties of cold adapted microorganisms and their potential role in biotechnology. J Biotechnol, 33, 1–14.
  • Margesin R, Schinner F. (1997). Efficiency of indigenous and inoculated cold-adapted soil microorganisms for biodegradation of diesel oil in alpine soils. Appl Environ Microbiol, 63, 2660–2664.
  • Margesin R, Schinner F. (1998). Low temperature bioremediation of a waste water contaminated with anionic surfactant and fuel oil. Appl Microbiol Biotechnol, 49, 482–486.
  • Margesin R, Schinner F. (1999). Biodegradation of organic pollutants at low temperature. In: Margesin R, Schinner F. (eds.). Biotechnological Application of Cold Adapted OrganismsHeidelberg: Springer Verlag, 271–289.
  • Moran AJ, Hills M, Gunton J, Nano FE. (2001). Heat-labile proteases in molecular biology applications. FEMS Microbiol Lett, 197, 59–63.
  • Morita RY. (1975). Psychrophilic bacteria. Bacteriol Rev, 39, 144–167.
  • Najafi MH, Deobagkar D, Deobagkar D. (2005). Potential application of protease isolated from Pseudomonas aeruginosa PD100. Electronic J Biotech, 8, 197–203.
  • Narinx E, Baise E, Gerday C. (1997). Subtilisin from psychrophilic Antarctic bacteria: characterization and site-directed mutagenesis of residues possibly involved in the adaptation to cold. Protein Eng, 10, 1271–1279.
  • Orange N. (1994). Growth temperature regulates the induction of beta-lactamase in Pseudomonas fluorescens through modulation of the outer membrane permeation of a beta-lactam-inducing antibiotic. Microbiology (Reading, Engl), 140 (Pt 11), 3125–3130.
  • Park I, Cho J. (2011). Productions of an extracellular protease by an Antarctic bacterial isolate (Bacillus sp. JSP1) as a potential feed additive. Rev Colomb Cienc Pecu, 24, 3–10.
  • Pascale D, Giuliani M, De Santi C, Bergamasco N, Amoresano A, Carpentieri A, Parrilli E, Tutino ML. (2010). PhAP protease from Pseudoalteromonas haloplanktis TAC125: gene cloning, recombinant production in E. coli and enzyme characterization. Polar Sci, 4, 285–294.
  • Poldermans B. (1990). Proteolytic enzymes. In: Gerhartz W (ed) Proteolytic Enzymes in Industry: Production and Applications. Weinheim, Germany: VCH Publishers, 108–123.
  • Rao MB, Tanksale AM, Ghatge MS, Deshpande VV. (1998). Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol Rev, 62, 597–635.
  • Remaut E, Bliki C, Iturriza-Gomara M, Keymeulen K. (1999). Development of regulatable expression systems for cloned genes in cold-adapted bacteria. In: Margesin R, Schinner F (eds) Biotechnological Applications of Cold Adapted Organisms. Heidelberg: Springer: Verlag, 1–16.
  • Rosales CM, Sowinski SC. (2011). Antarctic bacterial isolates that produce cold-active extracellular proteases at low temperature but are active and stable at high temperature. Polar Res, 30, 7123–7130.
  • Russell NJ. (1989). Function of lipids structural role of membrane functions. In: Ratledge C, Wilkinson SG (eds) Microbial Lipids, Vol 2. London: Academic press, p. 279.
  • Russell NJ. (1990). Cold adaptation of microorganisms. Philos Trans R Soc Lond, B, Biol Sci, 326, 595–608, discussion 608.
  • Russell NJ. (1993). Biochemical differences between psychrophilic and psychro-tolerant microorganisms. In: Guerrero R, Pedros-Alio C (eds) Trends in Microbial Ecology. Madrid: Spanis Society for Microbiology, 29.
  • Russell NJ. (2000). Toward a molecular understanding of cold activity of enzymes from psychrophiles. Extremophiles, 4, 83–90.
  • Sanchez S, Demain AL. (2011) Enzymes and bioconversions of industrial, pharmaceutical, and biotechnological significance. Organic Process Res Develop, 15, 224–230.
  • Secades P, Alvarez B, Guijarro JA. (2003). Purification and properties of a new psychrophilic metalloprotease (Fpp2) in the fish pathogen Flavobacterium psychrophilum. FEMS Microbiol Lett, 226, 273–279.
  • Sheridan PP, Panasik N, Coombs JM, Brenchley JE. (2000). Approaches for deciphering the structural basis of low temperature enzyme activity. Biochim Biophys Acta, 1543, 417–433.
  • Shi JS, Wu QF, Xu ZH, Tao WY. (2005). [Identification of psychrotrophs SYP-A2-3 producing cold-adapted protease from the No. 1 Glacier of China and study on its fermentation conditions]. Wei Sheng Wu Xue Bao, 45, 258–263.
  • Smalås AO, Leiros HK, Os V, Willassen NP. (2000). Cold adapted enzymes. Biotechnol Annu Rev, 6, 1–57.
  • Somero GN. (1995). Proteins and temperature. Annu Rev Physiol, 57, 43–68.
  • Son E, Kim J. (2003). Multicatalytic alkaline serine protease from the psychrotrophic Bacillus amyloliquefaciens S94. J Microbiol, 41, 58–62.
  • Taguchi S, Komada S, Momose H. (2000). The complete amino acid substitutions at position 131 that are positively involved in cold adaptation of subtilisin BPN. Appl Environ Microbiol, 66, 1410–1415.
  • Tamaki H, Hanada S, Kamagata Y, Nakamura K, Nomura N, Nakano K, Matsumura M. (2003). Flavobacterium limicola sp. nov., a psychrophilic, organic-polymer-degrading bacterium isolated from freshwater sediments. Int J Syst Evol Microbiol, 53, 519–526.
  • Tariq AL, Reyaz AL, Prabakaran JJ. (2011). Purification and characterization of 56 kDa cold-active protease from Serratia marcescens. African J Microbiol Res, 5, 5841–5847.
  • Timmis KN, Pieper DH. (1999). Bacteria designed for bioremediation. Trends Biotechnol, 17, 200–204.
  • Tindbaek N, Svendsen A, Oestergaard PR, Draborg H. (2004). Engineering a substrate-specific cold-adapted subtilisin. Protein Eng Des Sel, 17, 149–156.
  • Turkiewicz M, Pazgier M, Kalinowska H, Bielecki S. (2003). A cold-adapted extracellular serine proteinase of the yeast Leucosporidium antarcticum. Extremophiles, 7, 435–442.
  • Tutino ML, Duilio A, Parrilli R, Remaut E, Sannia G, Marino G. (2001). A novel replication element from an Antarctic plasmid as a tool for the expression of proteins at low temperature. Extremophiles, 5, 257–264.
  • Vazquez SC, Coria SH, MacCormack WP. (2004). Extracellular proteases from eight psychrotolerant Antarctic strains. Microbiol Res, 159, 157–166.
  • Vincent WF. (1988). Microbial System of Antarctica. Cambridge: Cambridge University Press.
  • Vishniac HS. (1993). The microbiology of Antarctic soils. In: Friedman EI (eds) Antarctic Microbiology. New York: Wiley-Liss, p. 297.
  • Wang Q, Hou Y, Xu Z, Miao J, Li G. (2008). Optimization of cold-active protease production by the psychrophilic bacterium Colwellia sp. NJ341 with response surface methodology. Bioresour Technol, 99, 1926–1931.
  • Wang Q, Hou Y, Xu Z, Miao J, Li G. (2008a). Purification and properties of an extracellular cold-active protease from the psychrophilic bacterium Pseudoalteromonas sp. NJ276. Biochem Eng, 38, 362–368.
  • Wang QF, Miao JL, Hou YH, Ding Y, Wang GD, Li GY. (2005). Purification and characterization of an extracellular cold-active serine protease from the psychrophilic bacterium Colwellia sp. NJ341. Biotechnol Lett, 27, 1195–1198.
  • Yang C, Wang F, Hao J, Zhang K, Yuan N, Sun M. (2010). Identification of a proteolytic bacterium, HW08, and characterization of its extracellular cold-active alkaline metalloprotease Ps5. Biosci Biotechnol Biochem, 74, 1220–1225.
  • Yayanos AA. (1995). Microbiology to 10,500 meters in the deep sea. Annu Rev Microbiol, 49, 777–805.
  • Yuan Q, Hayashi A, Kitamura Y, Shimada T, Na R, Jin X. (2009). Purification and characterization of cold-adapted metalloprotease from deep sea water lactic acid bacteria Enterococcus Faecalis TN-9. Int J Biol, 1, 12–21.
  • Zecchinon L, Claverie P, Collins T, D’Amico S, Delille D, Feller G, Georlette D, Gratia E, Hoyoux A, Meuwis MA, Sonan G, Gerday C. (2001). Did psychrophilic enzymes really win the challenge? Extremophiles, 5, 313–321.
  • Zeng R, Zhang R, Zhao J, Lin N. (2003). Cold-active serine alkaline protease from the psychrophilic bacterium Pseudomonas strain DY-A: enzyme purification and characterization. Extremophiles, 7, 335–337.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.