677
Views
92
CrossRef citations to date
0
Altmetric
Review Article

P450 monooxygenases (P450ome) of the model white rot fungus Phanerochaete chrysosporium

&
Pages 339-363 | Received 02 Dec 2011, Accepted 30 Mar 2012, Published online: 25 May 2012

References

  • Ahlgren R, Suske G, Waterman MR, Lund J. (1999). Role of Sp1 in cAMP-dependent transcriptional regulation of the bovine CYP11A gene. J Biol Chem, 274, 19422–19428.
  • Andersen JF, Tatsuta K, Gunji H, Ishiyama T, Hutchinson CR. (1993). Substrate specificity of 6-deoxyerythronolide B hydroxylase, a bacterial cytochrome P450 of erythromycin A biosynthesis. Biochemistry, 32, 1905–1913.
  • Asgher M, Bhatti HN, Ashraf M, Legge RL. (2008). Recent developments in biodegradation of industrial pollutants by white rot fungi and their enzyme system. Biodegradation, 19, 771–783.
  • Aust SD. (1990). Degradation of environmental pollutants by Phanerochaete chrysosporium. Microbial Ecol, 20, 197–209.
  • Berbee ML, Taylor JW. (1993). Dating the evolutionary radiations of the true fungi. Canadian J Bot, 71, 1114–1127.
  • Bernhardt R. (2006). Cytochromes P450 as versatile biocatalysts. J Biotechnol, 124, 128–145.
  • Bischoff D, Bister B, Bertazzo M, Pfeifer V, Stegmann E, Nicholson GJ, Keller S, Pelzer S, Wohlleben W, Süssmuth RD. (2005). The biosynthesis of vancomycin-type glycopeptide antibiotics – a model for oxidative side-chain cross-linking by oxygenases coupled to the action of peptide synthetases. Chembiochem, 6, 267–272.
  • Bonomi F, Long RC, Kurtz DM Jr. (1989). Purification and properties of a membrane-bound NADH-cytochrome-b5 reductase from erythrocytes of the sipunculid worm, Phascolopsis gouldii. Biochim Biophys Acta, 999, 147–156.
  • Boominathan K, Reddy CA. (1992). Fungal degradation of lignin: biotechnological applications.. In: Arora DK, Mukerjee KG, Elander RP. ed. Handbook of applied mycology, vol 4. Fungal biotechnology. New York: Marcel Dekker, 763–822.
  • Borges-Walmsley MI, Walmsley AR. (2000). cAMP signalling in pathogenic fungi: control of dimorphic switching and pathogenicity. Trends Microbiol, 8, 133–141.
  • Bourbonnais R, Paice MG. (1988). Veratryl alcohol oxidases from the lignin-degrading basidiomycete Pleurotus sajor-caju. Biochem J, 255, 445–450.
  • Bumpus JA, Brock BJ. (1988). Biodegradation of crystal violet by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol, 54, 1143–1150.
  • Bumpus JA, Tien M, Wright D, Aust SD. (1985). Oxidation of persistent environmental pollutants by a white rot fungus. Science, 228, 1434–1436.
  • Cai D, Tien M. (1993). Lignin-degrading peroxidases of Phanerochaete chrysosporium. J Biotechnol, 30, 79–90.
  • Cameron MD, Timofeevski S, Aust SD. (2000). Enzymology of Phanerochaete chrysosporium with respect to the degradation of recalcitrant compounds and xenobiotics. Appl Microbiol Biotechnol, 54, 751–758.
  • Carmichael AB, Wong LL. (2001). Protein engineering of Bacillus megaterium CYP102. The oxidation of polycyclic aromatic hydrocarbons. Eur J Biochem, 268, 3117–3125.
  • Cerniglia CE. (1997). Fungal metabolism of polycyclic aromatic hydrocarbons: past, present and future applications in bioremediation. J Ind Microbiol Biotechnol, 19, 324–333.
  • Cerniglia CE, Campbell WL, Freeman JP, Evans FE. (1989). Identification of a novel metabolite in phenanthrene metabolism by the fungus Cunninghamella elegans. Appl Environ Microbiol, 55, 2275–2279.
  • Crešnar B, Petrič S. (2011). Cytochrome P450 enzymes in the fungal kingdom. Biochim Biophys Acta, 1814, 29–35.
  • Cripps C, Bumpus JA, Aust SD. (1990). Biodegradation of azo and heterocyclic dyes by Phanerochaete chrysosporium. Appl Environ Microbiol, 56, 1114–1118.
  • Cullen D. (1997). Recent advances on the molecular genetics of ligninolytic fungi. J Biotechnol, 53, 273–289.
  • D’Souza CA, Heitman J. (2001). Conserved cAMP signaling cascades regulate fungal development and virulence. FEMS Microbiol Rev, 25, 349–364.
  • Dashtban M, Schraft H, Qin W. (2009). Fungal bioconversion of lignocellulosic residues; opportunities & perspectives. Int J Biol Sci, 5, 578–595.
  • Davin LB, Lewis NG. (2005). Lignin primary structures and dirigent sites. Curr Opin Biotechnol, 16, 407–415.
  • Dhawale SW, Dhawale SS, Dean-Ross D. (1992). Degradation of phenanthrene by Phanerochaete chrysosporium occurs under ligninolytic as well as nonligninolytic conditions. Appl Environ Microbiol, 58, 3000–3006.
  • Doddapaneni H, Yadav JS. (2004). Differential regulation and xenobiotic induction of tandem P450 monooxygenase genes pc-1 (CYP63A1) and pc-2 (CYP63A2) in the white-rot fungus Phanerochaete chrysosporium. Appl Microbiol Biotechnol, 65, 559–565.
  • Doddapaneni H, Yadav JS. (2005). Microarray-based global differential expression profiling of P450 monooxygenases and regulatory proteins for signal transduction pathways in the white rot fungus Phanerochaete chrysosporium. Mol Genet Genomics, 274, 454–466.
  • Doddapaneni H, Chakraborty R, Yadav JS. (2005a). Genome-wide structural and evolutionary analysis of the P450 monooxygenase genes (P450ome) in the white rot fungus Phanerochaete chrysosporium: evidence for gene duplications and extensive gene clustering. BMC Genomics, 6, 92.
  • Doddapaneni H, Subramanian V, Yadav JS. (2005b). Physiological regulation, xenobiotic induction, and heterologous expression of P450 monooxygenase gene pc-3 (CYP63A3), a new member of the CYP63 gene cluster in the white-rot fungus Phanerochaete chrysosporium. Curr Microbiol, 50, 292–298.
  • Dowson CG, Boddy L, Rayner ADM. (1989). Development and extension of mycelial cords in soil at different temperatures and moisture contents. Mycol Res, 92, 383–391.
  • Eriksson KE, Pettersson B, Volc J, Musilek V. (1986). Formation and partial characterization of glucose-2-oxidase, a H2O2 producing enzyme in Phanerochaete chrysosporium. Appl Microbiol Biotechnol, 23, 257–262.
  • Faber BW, van Gorcom RF, Duine JA. (2001). Purification and characterization of benzoate-para-hydroxylase, a cytochrome P450 (CYP53A1), from Aspergillus niger. Arch Biochem Biophys, 394, 245–254.
  • Fernandez-Fueyo E, Ruiz-Dueñas FJ, Ferreira P, Floudas D, Hibbett DS, Canessa P, Larrondo LF, James TY, Seelenfreund D, Lobos S, Polanco R, Tello M, Honda Y, Watanabe T, Watanabe T, San RJ, Kubicek CP, Schmoll M, Gaskell J, Hammel KE, St John FJ, Vanden Wymelenberg A, Sabat G, Splinter Bondurant S, Syed K, Yadav JS, Doddapaneni H, Subramanian V, Lavín JL, Oguiza JA, Perez G, Pisabarro AG, Ramirez L, Santoyo F, Master E, Coutinho PM, Henrissat B, Lombard V, Magnuson JK, Kües U, Hori C, Igarashi K, Samejima M, Held BW, Barry KW, Labutti KM, Lapidus A, Lindquist EA, Lucas SM, Riley R, Salamov AA, Hoffmeister D, Schwenk D, Hadar Y, Yarden O, de Vries RP, Wiebenga A, Stenlid J, Eastwood D, Grigoriev IV, Berka RM, Blanchette RA, Kersten P, Martinez AT, Vicuna R, Cullen D. (2012). Comparative genomics of Ceriporiopsis subvermispora and Phanerochaete chrysosporium provide insight into selective ligninolysis. Proc Natl Acad Sci USA, 109, 5458–5463.
  • Fruedenberg K. (1968). The constitution and biosynthesis of lignin.. In: Neish ACFreudenberg K. ed. Constitution and biosynthesis of lignin. New York: Springer-Verlag, 47–122.
  • Gadd GM. (2001). Fungi in Bioremediation. Cambridge, UK: Cambridge University Press.
  • Gold MH, Alic M. (1993). Molecular biology of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Microbiol Rev, 57, 605–622.
  • Gold MH, Wariishi H, Valli K. (1989). Extracellular peroxidases involved in lignin degradation by the white rot basidiomycete Phanerochaete chrysosporium in biocatalysis in agricultural biotechnology.. In: Whitaker JR, Sonnet P. ed. ACS Symposium Series 389. Washington, DC: American Chemical Society, 127–140.
  • Grifoll M, Hammel KE. (1997). Initial steps in the degradation of methoxychlor by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol, 63, 1175–1177.
  • Guengerich FP. (1995). Cytochrome P450 proteins and potential utilization in biodegradation. Environ Health Perspect, 103 Suppl 5, 25–28.
  • Guengerich FP. (2002). Cytochrome P450 enzymes in the generation of commercial products. Nat Rev Drug Discov, 1, 359–366.
  • Guengerich FP. (2006). Cytochrome P450s and other enzymes in drug metabolism and toxicity. AAPS J, 8, E101–E111.
  • Güray T, Arinç E. (1991). Kinetic properties of purified sheep lung microsomal NADH-cytochrome b5 reductase. Int J Biochem, 23, 1315–1320.
  • Hammel KE. (1995). Mechanisms for polycyclic aromatic hydrocarbon degradation by ligninolytic fungi. Environ Health Perspect, 103 Suppl 5, 41–43.
  • Hammel KE, Kalyanaraman B, Kirk TK. (1986). Oxidation of polycyclic aromatic hydrocarbons and dibenzo[p]-dioxins by Phanerochaete chrysosporium ligninase. J Biol Chem, 261, 16948–16952.
  • Harford-Cross CF, Carmichael AB, Allan FK, England PA, Rouch DA, Wong LL. (2000). Protein engineering of cytochrome p450(cam) (CYP101) for the oxidation of polycyclic aromatic hydrocarbons. Protein Eng, 13, 121–128.
  • Hawksworth DL, Kirk PM. Sutton BC, Pegler DN. (1995). Ainsworth and Bisby’s dictionary of the fungi, 8th ed. New York, NY: CAB International.
  • Hickey WJ, Fuster DJ, Lamar RT. (1994). Transformation of atrazine in soil by Phanerochaete chrysosporium. Soil Biol Biochem, 26, 1665–1671.
  • Hiratsuka N, Oyadomari M, Shinohara H, Tanaka H, Wariishi H. (2005). Metabolic mechanisms involved in hydroxylation reactions of diphenyl compounds by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Biochem Eng J, 23, 241–246.
  • Hogg JA. (1992). Steroids, the steroid community, and Upjohn in perspective: a profile of innovation. Steroids, 57, 593–616.
  • Holzbaur D, Andrawis A, Tien M. (1991). Molecular biology of lignin peroxidases from Phanerochaete chrysosporium.. In: Leong SA, Berka RM. ed. Molecular Industrial Mycology. Systems and Applications for Filamentous Fungi. New York: Marcel Dekker, 197–223.
  • Honkakoski P, Negishi M. (2000). Regulation of cytochrome P450 (CYP) genes by nuclear receptors. Biochem J, 347, 321–337.
  • Hughes TR, Mao M, Jones AR, Burchard J, Marton MJ, Shannon KW, Lefkowitz SM, Ziman M, Schelter JM, Meyer MR, Kobayashi S, Davis C, Dai H, He YD, Stephaniants SB, Cavet G, Walker WL, West A, Coffey E, Shoemaker DD, Stoughton R, Blanchard AP, Friend SH, Linsley PS. (2001). Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nat Biotechnol, 19, 342–347.
  • Ichinose H, Wariishi H. (2012). Heterologous expression and mechanistic investigation of a fungal cytochrome P450 (CYP5150A2): involvement of alternative redox partners. Arch Biochem Biophys, 518, 8–15.
  • Ingelman-Sundberg M. (2004). Pharmacogenetics of cytochrome P450 and its applications in drug therapy: the past, present and future. Trends Pharmacol Sci, 25, 193–200.
  • Isin EM, Guengerich FP. (2007). Complex reactions catalyzed by cytochrome P450 enzymes. Biochim Biophys Acta, 1770, 314–329.
  • Jackson MM, Hou L, Banerjee HN, Sridhar R, Dutta SK. (1999). Disappearance of 2,4-dinitrotoluene and 2-Amino,4,6-dinitrotoluene by Phanerochaete chrysosporium under non-ligninolytic conditions. Bull Environ Contam Toxicol, 62, 390–396.
  • Jeffries TW. (1990). Biodegradation of lignin-carbohydrate complexes. Biodegradation, 1, 163–176.
  • Jennewein S, Park H, DeJong JM, Long RM, Bollon AP, Croteau RB. (2005). Coexpression in yeast of Taxus cytochrome P450 reductase with cytochrome P450 oxygenases involved in Taxol biosynthesis. Biotechnol Bioeng, 89, 588–598.
  • Jones JP, O’Hare EJ, Wong LL. (2001). Oxidation of polychlorinated benzenes by genetically engineered CYP101 (cytochrome P450(cam)). Eur J Biochem, 268, 1460–1467.
  • Kamei I, Kogura R, Kondo R. (2006). Metabolism of 4,4′-dichlorobiphenyl by white-rot fungi Phanerochaete chrysosporium and Phanerochaete sp. MZ142. Appl Microbiol Biotechnol, 72, 566–575.
  • Kanaly RA, Hur HG. (2006). Growth of Phanerochaete chrysosporium on diesel fuel hydrocarbons at neutral pH. Chemosphere, 63, 202–211.
  • Kasai N, Ikushiro S, Hirosue S, Arisawa A, Ichinose H, Uchida Y, Wariishi H, Ohta M, Sakaki T. (2010a). Atypical kinetics of cytochromes P450 catalysing 3′-hydroxylation of flavone from the white-rot fungus Phanerochaete chrysosporium. J Biochem, 147, 117–125.
  • Kasai N, Ikushiro S, Shinkyo R, Yasuda K, Hirosue S, Arisawa A, Ichinose H, Wariishi H, Sakaki T. (2010b). Metabolism of mono- and dichloro-dibenzo-p-dioxins by Phanerochaete chrysosporium cytochromes P450. Appl Microbiol Biotechnol, 86, 773–780.
  • Kelley RL, Reddy CA. (1986). Purification and characterization of glucose oxidase from ligninolytic cultures of Phanerochaete chrysosporium. J Bacteriol, 166, 269–274.
  • Kelly SL, Lamb DC, Corran AJ, Baldwin BC, Parks LW. (1995). Purification and reconstitution of activity of Saccharomyces cerevisiae P450 61, a sterol delta-22-desaturase, and inhibition by azole antifungal agents. J Biol Chem, 272, 9986–9988.
  • Kennedy DW, Aust SD, Bumpus JA. (1990). Comparative biodegradation of alkyl halide insecticides by the white rot fungus, Phanerochaete chrysosporium (BKM-F-1767). Appl Environ Microbiol, 56, 2347–2353.
  • Kersten PJ, Cullen D. (1993). Cloning and characterization of cDNA encoding glyoxal oxidase, a H2O2-producing enzyme from the lignin-degrading basidiomycete Phanerochaete chrysosporium. Proc Natl Acad Sci USA, 90, 7411–7413.
  • Kersten P, Cullen D. (2007). Extracellular oxidative systems of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Fungal Genet Biol, 44, 77–87.
  • Kersten PJ, Kirk TK. (1987). Involvement of a new enzyme, glyoxal oxidase, in extracellular H2O2 production by Phanerochaete chrysosporium. J Bacteriol, 169, 2195–2201.
  • Kirk TK, Farrell RL. (1987). Enzymatic “combustion”: the microbial degradation of lignin. Annu Rev Microbiol, 41, 465–505.
  • Kishimoto D, Oku A, Kurihara N. (1995). Enantiotopic selectivity of cytochrome P450-catalyzed oxidative demethylation of methoxychlor: alteration of selectivity depending on isozymes and substrate concentrations. Pestic Biochem Physiol, 51, 12–19.
  • Kitazume T, Takaya N, Nakayama N, Shoun H. (2000). Fusarium oxysporum fatty-acid subterminal hydroxylase (CYP505) is a membrane-bound eukaryotic counterpart of Bacillus megaterium cytochrome P450BM3. J Biol Chem, 275, 39734–39740.
  • Koch DJ, Chen MM, van Beilen JB, Arnold FH. (2009). In vivo evolution of butane oxidation by terminal alkane hydroxylases AlkB and CYP153A6. Appl Environ Microbiol, 75, 337–344.
  • Kohler A, Jager A, Willershausen H, Graf H. (1988). Extracellular ligninase of P. chrysosporium Burdsall has no role in the degradation of DDT. Appl Microbiol Biotech, 29, 618–620.
  • Krcmár P, Ulrich R. (1998). Degradation of polychlorinated biphenyl mixtures by the lignin-degrading fungus Phanerochaete chrysosporium. Folia Microbiol (Praha), 43, 79–84.
  • Kulkarni AP, Hodgson E. (1980). Metabolism of insecticides by mixed function oxidase systems. Pharmacol Ther, 8, 379–475.
  • Kullman SW, Matsumura F. (1996). Metabolic pathways utilized by Phanerochaete chrysosporium for degradation of the cyclodiene pesticide endosulfan. Appl Environ Microbiol, 62, 593–600.
  • Kullman SW, Matsumura F. (1997). Identification of a novel cytochrome P-450 gene from the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol, 63, 2741–2746.
  • Kupfer D, Bulger WH, Theoharides AD. (1990). Metabolism of methoxychlor by hepatic P-450 monooxygenases in rat and human. 1. Characterization of a novel catechol metabolite. Chem Res Toxicol, 3, 8–16.
  • Lamm AS, Chen AR, Reynolds WF, Reese PB. (2007). Steroid hydroxylation by Whetzelinia sclerotiorum, Phanerochaete chrysosporium and Mucor plumbeus. Steroids, 72, 713–722.
  • MacDonald J, Doering M, Canam T, Gong Y, Guttman DS, Campbell MM, Master ER. (2011). Transcriptomic responses of the softwood-degrading white-rot fungus Phanerochaete carnosa during growth on coniferous and deciduous wood. Appl Environ Microbiol, 77, 3211–3218.
  • Martinez D, Larrondo LF, Putnam N, Gelpke MD, Huang K, Chapman J, Helfenbein KG, Ramaiya P, Detter JC, Larimer F, Coutinho PM, Henrissat B, Berka R, Cullen D, Rokhsar D. (2004). Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat Biotechnol, 22, 695–700.
  • Martinez D, Challacombe J, Morgenstern I, Hibbett D, Schmoll M, Kubicek CP, Ferreira P, Ruiz-Duenas FJ, Martinez AT, Kersten P, Hammel KE, Vanden Wymelenberg A, Gaskell J, Lindquist E, Sabat G, Bondurant SS, Larrondo LF, Canessa P, Vicuna R, Yadav J, Doddapaneni H, Subramanian V, Pisabarro AG, Lavín JL, Oguiza JA, Master E, Henrissat B, Coutinho PM, Harris P, Magnuson JK, Baker SE, Bruno K, Kenealy W, Hoegger PJ, Kües U, Ramaiya P, Lucas S, Salamov A, Shapiro H, Tu H, Chee CL, Misra M, Xie G, Teter S, Yaver D, James T, Mokrejs M, Pospisek M, Grigoriev IV, Brettin T, Rokhsar D, Berka R, Cullen D. (2009). Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion. Proc Natl Acad Sci USA, 106, 1954–1959.
  • Masaphy S, Levanon D, Henis Y, Venkateswarlu K, Kelly SL. (1996). Evidence for cytochrome P-450 and P-450-mediated benzo(a)pyrene hydroxylation in the white rot fungus Phanerochaete chrysosporium. FEMS Microbiol Lett, 135, 51–55.
  • Matsuzaki F, Wariishi H. (2004). Functional diversity of cytochrome P450s of the white-rot fungus Phanerochaete chrysosporium. Biochem Biophys Res Commun, 324, 387–393.
  • Matsuzaki F, Wariishi H. (2005). Molecular characterization of cytochrome P450 catalyzing hydroxylation of benzoates from the white-rot fungus Phanerochaete chrysosporium. Biochem Biophys Res Commun, 334, 1184–1190.
  • Matsuzaki F, Shimizu M, Wariishi H. (2008). Proteomic and metabolomic analyses of the white-rot fungus Phanerochaete chrysosporium exposed to exogenous benzoic acid. J Proteome Res, 7, 2342–2350.
  • Minami M, Suzuki K, Shimizu A, Hongo T, Sakamoto T, Ohyama N, Kitaura H, Kusaka A, Iwama K, Irie T. (2009). Changes in the gene expression of the white rot fungus Phanerochaete chrysosporium due to the addition of atropine. Biosci Biotechnol Biochem, 73, 1722–1731.
  • Miners JO. (2002). Evolution of drug metabolism: hitchhiking the technology bandwagon. Clin Exp Pharmacol Physiol, 29, 1040–1044.
  • Mougin C, Pericaud C, Malosse C, Laugero C, Asther M. (1996). Biotransformation of the insecticide lindane by the white rot basidiomycete Phanerochaete chrysosporium. Pestic Sci, 47, 51–59.
  • Mougin C, Laugero C, Asther M, Chaplain V. (1997b). Biotransformation of s-triazine herbicides and related degradation products in liquid cultures by the white rot fungus Phanerochaete chrysosporium. Pestic Sci, 49, 169–177.
  • Mougin C, Pericaud C, Dubroca J, Asther M. (1997a). Enhanced mineralization of lindane in soils supplemented with the white rot basidiomycete Phanerochaete chrysosporium. Soil Biol Biochem, 29, 1321–1324.
  • Murataliev MB, Ariño A, Guzov VM, Feyereisen R. (1999). Kinetic mechanism of cytochrome P450 reductase from the house fly (Musca domestica). Insect Biochem Mol Biol, 29, 233–242.
  • Murray M, Reidy GF. (1990). Selectivity in the inhibition of mammalian cytochromes P-450 by chemical agents. Pharmacol Rev, 42, 85–101.
  • Nakayama N, Takemae A, Shoun H. (1996). Cytochrome P450foxy, a catalytically self-sufficient fatty acid hydroxylase of the fungus Fusarium oxysporum. J Biochem, 119, 435–440.
  • Nelson DR. (1998). Metazoan cytochrome P450 evolution. Comp Biochem Physiol C, Pharmacol Toxicol Endocrinol, 121, 15–22.
  • Nelson DR. (1999). Cytochrome P450 and the individuality of species. Arch Biochem Biophys, 369, 1–10.
  • Ning D, Wang H, Ding C, Lu H. (2010a). Novel evidence of cytochrome P450-catalyzed oxidation of phenanthrene in Phanerochaete chrysosporium under ligninolytic conditions. Biodegradation, 21, 889–901.
  • Ning D, Wang H, Zhuang Y. (2010b). Induction of functional cytochrome P450 and its involvement in degradation of benzoic acid by Phanerochaete chrysosporium. Biodegradation, 21, 297–308.
  • Nishida A, Eriksson KE. (1987). Formation, purification and partial characterization of methanol oxidase, a H2O2-producing enzyme in Phanerochaete chrysosporium. Biotechnol Appl Biochem, 9, 325–338.
  • Novotny C, Erbanova P, Sasek V, Kubatova A, Cajthaml T, Lang E, Krahl J, Zadrazil F.. (1999). Extracellular oxidative enzyme production and PAH removal in soil by exploratory mycelium of white rot fungi. Biodegradation, 10, 159–168.
  • Orth AB, Tien M. (1995). Biotechnology of lignin degradation.. In: Esser K, Lemke PA. ed. The Mycota. II. Genetics and Biotechnology. Berlin, Heidelberg, New York: Springer, 287–302.
  • Ortiz de Montellano PR, Reich NO. (1986). Inhibition of cytochrome P450 enzymes. In: Ortiz de Montellano PR. ed. Cytochrome P450: Structure, Mechanism and Biochemistry, Plenum Press, New York, 273– 314.
  • Paszczynski A, Crawford RL. (1995). Potential for bioremediation of xenobiotic compounds by the white rot fungus Phanerochaete chrysosporium. Biotechnol Prog, 11, 368–379.
  • Paszczynski A, Crawford RL, Huynch VB. (1988). Manganese peroxidase of Phanerochaete chrysosporium: purification. Methods Enzymol, 161, 264–270.
  • Paternolli C, Antonini M, Ghisellini P, Nicolini C. (2004). Recombinant cytochrome p450 immobilization for biosensor applications. Langmuir, 20, 11706–11712.
  • Peng RH, Xiong AS, Xue Y, Fu XY, Gao F, Zhao W, Tian YS, Yao QH. (2008). Microbial biodegradation of polyaromatic hydrocarbons. FEMS Microbiol Rev, 32, 927–955.
  • Peterson DH. (1952). Microbial transformation of steroids. Introduction of oxygen at carbon-11 of progesterone. J. Am. Chem. Soc. 74, 5933–5936.
  • Pointing SB. (2001). Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol, 57, 20–33.
  • Rabinovich ML, Bolobova AV, Vasil’chenko LG. (2004). Fungal decomposition of natural aromatic structures and xenobiotics: A review. Appl Biochem Microbiol, 40, 5–23.
  • Reddy CA. (1993). An overview of the recent advances on the physiology and molecular biology of lignin peroxidases of Phanerochaete chrysosporium. J Biotechnol, 30, 91–107.
  • Reddy CA. (1995). The potential for white rot fungi in the treatment of pollutants. Curr Biol, 6, 320–328.
  • Reddy CA, D’Souza TM. (1994). Physiology and molecular biology of the lignin peroxidases of Phanerochaete chrysosporium. FEMS Microbiol Rev, 13, 137–152.
  • Reichhart D, Salaün JP, Benveniste I, Durst F. (1979). Induction by manganese, ethanol, phenobarbital, and herbicides of microsomal cytochrome P-450 in higher plant tissues. Arch Biochem Biophys, 196, 301–303.
  • Rude MA, Baron TS, Brubaker S, Alibhai M, Del Cardayre SB, Schirmer A. (2011). Terminal olefin (1-alkene) biosynthesis by a novel p450 fatty acid decarboxylase from Jeotgalicoccus species. Appl Environ Microbiol, 77, 1718–1727.
  • Ruettinger RT, Wen LP, Fulco AJ. (1989). Coding nucleotide, 5′ regulatory, and deduced amino acid sequences of P-450BM-3, a single peptide cytochrome P-450:NADPH-P-450 reductase from Bacillus megaterium. J Biol Chem, 264, 10987–10995.
  • Ryan TP, Bumpus JA. (1989). Biodegradation of 2,4,5-trichlorophenoxyacetic acid in liquid culture and in soil by the white rot fungus Phanerochaete chrysosporium. Appl Microbiol Biotechnol, 31, 302–307.
  • Sanglard D, Loper JC. (1989). Characterization of the alkane-inducible cytochrome P450 (P450alk) gene from the yeast Candida tropicalis: identification of a new P450 gene family. Gene, 76, 121–136.
  • Sariaslani SF. (1991). Microbial cytochromes P-450 and xenobiotic metabolism. Adv Appl Microbiol, 36, 133–177.
  • Sarkanen KV, Ludwig CH. (1971). Lignins. Occurrence, formation, structure and reactions. New York: Wiley-Intersceince.
  • Servent D, Ducrocq C, Henry Y, Servy C, Lenfant M. (1992). Multiple enzymatic pathways involved in the metabolism of glyceryl trinitrate in Phanerochaete chrysosporium. Biotechnol Appl Biochem, 15, 257–266.
  • Shah MM, Barr DP, Chung N, Aust SD. (1992). Use of white rot fungi in the degradation of environmental chemicals. Toxicol Lett, 64-65 Spec No, 493–501.
  • Shary S, Kapich AN, Panisko EA, Magnuson JK, Cullen D, Hammel KE. (2008). Differential expression in Phanerochaete chrysosporium of membrane-associated proteins relevant to lignin degradation. Appl Environ Microbiol, 74, 7252–7257.
  • Sono M, Roach MP, Coulter ED, Dawson JH. (1996). Heme-containing oxygenases. Chem Rev, 96, 2841–2888.
  • Sparla F, Bagnaresi P, Scagliarini S, Trost P. (1997). NADH:Fe(III)-chelate reductase of maize roots is an active cytochrome b5 reductase. FEBS Lett, 414, 571–575.
  • Subramanian V, Yadav JS. (2008). Regulation and heterologous expression of P450 enzyme system components of the white rot fungus Phanerochaete chrysosporium. Enzyme Microb Technol, 43, 205–213.
  • Subramanian V, Yadav JS. (2009). Role of P450 monooxygenases in the degradation of the endocrine-disrupting chemical nonylphenol by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol, 75, 5570–5580.
  • Subramanian V, Doddapaneni H, Syed K, Yadav JS. (2010). P450 redox enzymes in the white rot fungus Phanerochaete chrysosporium: gene transcription, heterologous expression, and activity analysis on the purified proteins. Curr Microbiol, 61, 306–314.
  • Sulistyaningdyah WT, Ogawa J, Li QS, Shinkyo R, Sakaki T, Inouye K, Schmid RD, Shimizu S. (2004). Metabolism of polychlorinated dibenzo-p-dioxins by cytochrome P450 BM-3 and its mutant. Biotechnol Lett, 26, 1857–1860.
  • Sutherland JB, Selby AL, Freeman JP, Evans FE, Cerniglia CE. (1991). Metabolism of phenanthrene by Phanerochaete chrysosporium. Appl Environ Microbiol, 57, 3310–3316.
  • Syed K, Doddapaneni H, Subramanian V, Lam YW, Yadav JS. (2010). Genome-to-function characterization of novel fungal P450 monooxygenases oxidizing polycyclic aromatic hydrocarbons (PAHs). Biochem Biophys Res Commun, 399, 492–497.
  • Syed K, Kattamuri C, Thompson TB, Yadav JS. (2011a). Cytochrome b5 reductase-cytochrome b5 as an active P450 redox enzyme system in Phanerochaete chrysosporium: atypical properties and in vivo evidence of electron transfer capability to CYP63A2. Arch Biochem Biophys, 509, 26–32.
  • Syed K, Porollo A, Lam YW, Yadav JS. (2011b). A fungal P450 (CYP5136A3) capable of oxidizing polycyclic aromatic hydrocarbons and endocrine disrupting alkylphenols: role of Trp(129) and Leu(324). PLoS ONE, 6, e28286.
  • Tan Z, Huang M, Puga A, Xia Y. (2004). A critical role for MAP kinases in the control of Ah receptor complex activity. Toxicol Sci, 82, 80–87.
  • Teramoto H, Tanaka H, Wariishi H. (2004a). Degradation of 4-nitrophenol by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl Microbiol Biotechnol, 66, 312–317.
  • Teramoto H, Tanaka H, Wariishi H. (2004b). Fungal cytochrome P450s catalyzing hydroxylation of substituted toluenes to form their hydroxymethyl derivatives. FEMS Microbiol Lett, 234, 255–260.
  • Thurston CF. (1994) The structure and function of fungal laccases. Microbiology, 140, 19–26.
  • Tien M. (1987). Properties of ligninase from Phanerochaete chrysosporium and their possible applications. Crit Rev Microbiol, 15, 141–168.
  • Tien M, Kirk TK. (1988). Lignin peroxidase of Phanerochaete chrysosporium. Methods Enzymol, 161, 238–249.
  • Urlacher VB, Eiben S. (2006). Cytochrome P450 monooxygenases: perspectives for synthetic application. Trends Biotechnol, 24, 324–330.
  • van Beilen JB, Duetz WA, Schmid A, Witholt B. (2003). Practical issues in the application of oxygenases. Trends Biotechnol, 21, 170–177.
  • van Beilen JB, Holtackers R, Lüscher D, Bauer U, Witholt B, Duetz WA. (2005). Biocatalytic production of perillyl alcohol from limonene by using a novel Mycobacterium sp. cytochrome P450 alkane hydroxylase expressed in Pseudomonas putida. Appl Environ Microbiol, 71, 1737–1744.
  • Vanden Wymelenberg A, Gaskell J, Mozuch M, Kersten P, Sabat G, Martinez D, Cullen D. (2009). Transcriptome and secretome analyses of Phanerochaete chrysosporium reveal complex patterns of gene expression. Appl Environ Microbiol, 75, 4058–4068.
  • Warrilow AG, Lamb DC, Kelly DE, Kelly SL. (2002). Phanerochaete chrysosporium NADPH-cytochrome P450 reductase kinetic mechanism. Biochem Biophys Res Commun, 299, 189–195.
  • Warrilow A, Ugochukwu C, Lamb D, Kelly D, Kelly S. (2008). Expression and characterization of CYP51, the ancient sterol 14-demethylase activity for cytochromes P450 (CYP), in the white-rot fungus Phanerochaete chrysosporium. Lipids, 43, 1143–1153.
  • Vanden Wymelenberg A, Gaskell J, Mozuch M, Kersten P, Sabat G, Martinez D, Cullen D. (2009). Transcriptome and secretome analyses of Phanerochaete chrysosporium reveal complex patterns of gene expression. Appl Environ Microbiol, 75, 4058–4068.
  • Xu JR. (2000). Map kinases in fungal pathogens. Fungal Genet Biol, 31, 137–152.
  • Yadav JS, Reddy CA. (1992). Non-involvement of lignin peroxidases and manganese peroxidases in 2,4,5-trichlorophenoxyacetic acid degradation by Phanerochaete chrysosporium. Biotechnol Lett, 14, 1089–1092.
  • Yadav JS, Reddy CA. (1993a). Mineralization of 2,4-dichlorophenoxyacetic acid (2,4-D) and mixtures of 2,4-D and 2,4,5-trichlorophenoxyacetic acid by Phanerochaete chrysosporium. Appl Environ Microbiol, 59, 2904–2908.
  • Yadav JS, Reddy CA. (1993b). Degradation of benzene, toluene, ethylbenzene, and xylenes (BTEX) by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl Environ Microbiol, 59, 756–762.
  • Yadav JS, Loper JC. (1997). Cytochrome P450 enzymes from microbial degraders of aromatic and aliphatic hydrocarbons. Proceedings of the superfund basic research program (SBRP), Chapel Hill, NC, Feb 24–26, p. 69.
  • Yadav JS, Loper JC. (2000). Cytochrome P450 oxidoreductase gene and its differentially terminated cDNAs from the white rot fungus Phanerochaete chrysosporium. Curr Genet, 37, 65–73.
  • Yadav JS, Quensen JF 3rd, Tiedje JM, Reddy CA. (1995a). Degradation of polychlorinated biphenyl mixtures (Aroclors 1242, 1254, and 1260) by the white rot fungus Phanerochaete chrysosporium as evidenced by congener-specific analysis. Appl Environ Microbiol, 61, 2560–2565.
  • Yadav JS, Wallace RE, Reddy CA. (1995b). Mineralization of mono- and dichlorobenzenes and simultaneous degradation of chloro- and methyl-substituted benzenes by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol, 61, 677–680.
  • Yadav JS, Bethea C, Reddy CA. (2000). Mineralization of trichloroethylene (TCE) by the white rot fungus Phanerochaete chrysosporium. Bull Environ Contam Toxicol, 65, 28–34.
  • Yadav JS, Lawrence DL, Nuck BA, Federle TW, Reddy CA. (2001a). Biotransformation of linear alkylbenzene sulfonate (LAS) by Phanerochaete chrysosporium: oxidation of alkyl side-chain. Biodegradation, 12, 443–453.
  • Yadav JS, Loper JC, Soellner MB. (2001b). Cytochrome P450 monooxygenase genes in the white rot fungus Phanerochaete chrysosporium: tandem genes and splice variants. In: 101st ASM Meeting, Orlando, FL, May 20–24, 2001. Abstract No. Q-469.
  • Yadav JS, Soellner MB, Loper JC, Mishra PK. (2003). Tandem cytochrome P450 monooxygenase genes and splice variants in the white rot fungus Phanerochaete chrysosporium: cloning, sequence analysis, and regulation of differential expression. Fungal Genet Biol, 38, 10–21.
  • Yadav JS, Doddapaneni H, Subramanian V. (2006). P450ome of the white rot fungus Phanerochaete chrysosporium: structure, evolution and regulation of expression of genomic P450 clusters. Biochem Soc Trans, 34, 1165–1169.
  • Zhang F, Rodriguez S, Keasling JD. (2011). Metabolic engineering of microbial pathways for advanced biofuels production. Curr Opin Biotechnol, 22, 775–783.
  • Zouari H, Labat M, Sayadi S. (2002). Degradation of 4-chlorophenol by the white rot fungus Phanerochaete chrysosporium in free and immobilized cultures. Bioresour Technol, 84, 145–150.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.