508
Views
37
CrossRef citations to date
0
Altmetric
Review Article

Bactericidal effects of low-intensity extremely high frequency electromagnetic field: an overview with phenomenon, mechanisms, targets and consequences

&
Pages 102-111 | Received 15 Mar 2012, Accepted 03 May 2012, Published online: 06 Jun 2012

References

  • Alipov ED, Shcheglov VS, Sarimov RM, Belyaev IY. (2003). Cell-density dependent effects of low-dose ionizing radiation on E. coli cells. Radiats Biol Radioecol, 43, 167–171.
  • Banik S, Bandyopadhyay S, Ganguly S. (2003). Bioeffects of microwave–a brief review. Bioresour Technol, 87, 155–159.
  • Belyaev I. (2005). Non-thermal biological effects of microwaves. Microwave Rev, 11, 13–29.
  • Belyaev IY, Scheglov VS, Alipov YD, Radko SP. (1993). Regularities of separate and combined effects of circularly polarized millimeter waves on E. coli cells at different phases of culture growth. Bioelectrochem Bioenerg, 31, 49–63.
  • Belyaev IY, Shcheglov VS, Alipov YD, Polunin VA. (1996). Resonance effect of millimeter waves in the power range from 10(-19) to 3 x 10(-3) W/cm2 on Escherichia coli cells at different concentrations. Bioelectromagnetics, 17, 312–321.
  • Belyaev IYa, Alipov YD, Scheglov VS, Lystsov VN. (1992). Resonance effect of microwaves on the genome conformational state of E. coli cells. Z Naturforsch, 47, 621–627.
  • Betskii OV, Devyatkov ND, Kislov VV. (2000). Low intensity millimeter waves in medicine and biology. Crit Rev Biomed Eng, 28, 247–268.
  • Blenkinsopp SA, Khoury AE, Costerton JW. (1992). Electrical enhancement of biocide efficacy against Pseudomonas aeruginosa biofilms. Appl Environ Microbiol, 58, 3770–3773.
  • Bulgakova VG, Grushina VA, Orlova TI, Petrykina ZM, Polin AN, Noks PP, Kononenko AA, Rubin AB. (1996). [The effect of millimeter-band radiation of nonthermal intensity on sensitivity of Staphylococcus to various antibiotics]. Biofizika, 41, 1289–1293.
  • Cambau E, Gutmann L. (1993). Mechanisms of resistance to quinolones. Drugs, 45 Suppl 3, 15–23.
  • Caubet R, Pedarros-Caubet F, Chu M, Freye E, de Belém Rodrigues M, Moreau JM, Ellison WJ. (2004). A radio frequency electric current enhances antibiotic efficacy against bacterial biofilms. Antimicrob Agents Chemother, 48, 4662–4664.
  • Chung C, Hung G, Lam C, Laurence M. (2006). Secondary effects of streptomycin and kanamycin on macromolecular composition of Escherichia coli B23 cell. J Exp Microbiol Immunol, 9, 11–15.
  • Cohen I, Cahan R, Shani G, Cohen E, Abramovich A. (2010). Effect of 99 GHz continuous millimeter wave electro-magnetic radiation on E. coli viability and metabolic activity. Int J Radiat Biol, 86, 390–399.
  • Fesenko EE, Geletyuk VI, Kazachenko VN, Chemeris NK. (1995). Preliminary microwave irradiation of water solutions changes their channel-modifying activity. FEBS Lett, 366, 49–52.
  • Geveke D, Brunkhorst Ch, Xu F. (2007). Radio frequency electric fields processing of orange juice. Innov Food Sci Emerg Technol, 8, 549–554.
  • Geveke DJ, Gurtler J, Zhang HQ. (2009). Inactivation of Lactobacillus plantarum in apple cider, using radio frequency electric fields. J Food Prot, 72, 656–661.
  • Golovleva V, Kopylova T, Levdikova T, Tsyganok Yu. (1997). Change in the electrophysical properties of water by microwave radiation. Rus Phys J, 40, 327–331 (in Russian).
  • Gulii OI, Markina LN, Bunin VD, Ignatov VV, Ignatov OV. (2008). [Electrooptical parameters of kanamycin-treated E. coli cell suspensions]. Mikrobiologiia, 77, 380–385.
  • Guofen Yu, Coln E, Schoenbach K, Gellerman M, Fox P, Rec L, Beebe S, Liu S. (2002). A study on biological effects of low-intensity millimeter waves. Plasm Sci, 30, 1489–1496.
  • Hyland GJ. (2008). Physical basis of adverse and therapeutic effects of low intensity microwave radiation. Indian J Exp Biol, 46, 403–419.
  • Isakhanyan V, Trchounian A. (2005). Indirect and repeated electromagnetic irradiation with extremely high frequency of bacteria Escherichia coli. Biophys, 50, 604–606.
  • James CE, Mahendran KR, Molitor A, Bolla JM, Bessonov AN, Winterhalter M, Pagès JM. (2009). How beta-lactam antibiotics enter bacteria: a dialogue with the porins. PLoS ONE, 4, 1–9.
  • Kandashev V, Savin A. (1997). Resonance effects of microwaves are caused by their interaction with solitons in α-helical proteins. Electro Magneto Biol, 16, 95–106.
  • Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ. (2007). A common mechanism of cellular death induced by bactericidal antibiotics. Cell, 130, 797–810.
  • Kolter R. (2010). Biofilms in lab and nature: a molecular geneticist’s voyage to microbial ecology. Int Microbiol, 13, 1–7.
  • Matewele P. (2010). The effect of electromagnetic field on antimicrobial activity of lime oil. J Microbiol Methods, 83, 275–276.
  • McMurry LM, Hendricks M, Levy SB. (1986). Effects of toluene permeabilization and cell deenergization on tetracycline resistance in Escherichia coli. Antimicrob Agents Chemother, 29, 681–686.
  • McLeod BR, Fortun S, Costerton JW, Stewart PS. (1999). Enhanced bacterial biofilm control using electromagnetic fields in combination with antibiotics. Meth Enzymol, 310, 656–670.
  • Mnatsakanyan N, Bagramyan K, Vassilian A, Nakamoto RK, Trchounian A. (2002). F0 cysteine, bCys21, in the Escherichia coli ATP synthase is involved in regulation of potassium uptake and molecular hydrogen production in anaerobic conditions. Biosci Rep, 22, 421–430.
  • Nakae R, Nakae T. (1982). Diffusion of aminoglycoside antibiotics across the outer membrane of Escherichia coli. Antimicrob Agents Chemother, 22, 554–559.
  • Neshev N, Kirilova E. (1994). Possible non-thermal influence of millimeter waves on proton transfer in biomembranes. Electro Magneto Biol, 13, 191–194.
  • Nikolaev Yu. (2000). Distant interactions in bacteria. Microbiol, 69, 497–503.
  • Novoselova EG, Glushkova OV, Sinotova OA, Fesenko EE. (2005). Stress response of the cell to exposure to ultraweak electromagnetic radiation. Dokl Biol Sci, 401, 152–154.
  • Ohanyan V, Sargsyan H, Tadevosyan H, Trchounian A. (2008). The action of low-intensity extremely high frequency electromagnetic radiation on growth parameters for bacteria. Biophys, 53, 406–408.
  • Pakhomov AG, Akyel Y, Pakhomova ON, Stuck BE, Murphy MR. (1998). Current state and implications of research on biological effects of millimeter waves: a review of the literature. Bioelectromagnetics, 19, 393–413.
  • Pakhomov AG, Murphy MB. (2000). Comprehensive review of the research on biological effects of pulsed radiofrequency radiation in Russia and the former Soviet Union.. In: Lin JC. ed. Advances in Electromagnetic Fields in Living System, 3, Kluwer Acad Plenum Publ, New York, 265–290.
  • Pickering SA, Bayston R, Scammell BE. (2003). Electromagnetic augmentation of antibiotic efficacy in infection of orthopaedic implants. J Bone Joint Surg Br, 85, 588–593.
  • Reguera G. (2011). When microbial conversations get physical. Trends Microbiol, 19, 105–113.
  • Rojavin MA, Ziskin MC. (1998). Medical application of millimetre waves. QJM, 91, 57–66.
  • Ruediger HW. (2009). Genotoxic effects of radiofrequency electromagnetic fields. Pathophysiology, 16, 89–102.
  • Shcheglov VS, Alipov ED, Belyaev IY. (2002). Cell-to-cell communication in response of E. coli cells at different phases of growth to low-intensity microwaves. Biochim Biophys Acta, 1572, 101–106.
  • Shamis Yu, Taube Al, Shramkov Yu, Mitik-Dineva N, Vu B, Ivanova E. (2008). Development of a microwave treatment technique for bacterial decontamination of raw meat. Int J Food Engin, 4, 1–13.
  • Silva EDa. (2001). High frequency and microwave engineering. Oxford Butterworth-Heinemann.
  • Sinitsyn NI, Petrosyan VI, Yolkin VA, Devyatkov ND, Gulyaev YuV, Betskii OV. (2000). Special function of the “millimeter wavelength waves-aqueous medium” system in nature. Crit Rev Biomed Eng, 28, 269–305.
  • Tadevosyan H, Kalantaryan V, Trchounian A. (2006). Direct and mediated effects of the extremely high frequency coherent electromagnetic radiation (millimeter waves) with low intensity on bacteria.. In: Biological Effects of Electromagnetic Fields. Proc. 4th Intern. Workshop, Crete, Greece, 1307–1314.
  • Tadevosyan H, Kalantaryan V, Trchounian A. (2007). The effects of electromagnetic radiation of extremely high frequency and low intensity on the growth rate of Escherichia coli and the role of medium pH. Biophys, 52, 893–898.
  • Tadevosyan H, Kalantaryan V, Trchounian A. (2008). Extremely high frequency electromagnetic radiation enforces bacterial effects of inhibitors and antibiotics. Cell Biochem Biophys, 51, 97–103.
  • Tadevosyan H, Trchounian A. (2009). Effects of coherent extremely high frequency and low intensity electromagnetic radiation on the activity of membrane systems of Escherichia coli bacteria. Biofizika, 54, 1055–1059 (in Russian).
  • Torgomyan H, Kalantaryan V, Trchounian A. (2011a). Low intensity electromagnetic irradiation with 70.6 and 73 GHz frequencies affects Escherichia coli growth and changes water properties. Cell Biochem Biophys, 60, 275–281.
  • Torgomyan H, Ohanyan V, Blbulyan S, Kalantaryan V, Trchounian A. (2012). Electromagnetic irradiation of Enterococcus hirae at low-intensity 51.8- and 53.0-GHz frequencies: changes in bacterial cell membrane properties and enhanced antibiotics effects. FEMS Microbiol Lett, 329, 131–137.
  • Torgomyan H, Tadevosyan H, Trchounian A. (2011b). Extremely high frequency electromagnetic irradiation in combination with antibiotics enhances antibacterial effects on Escherichia coli. Curr Microbiol, 62, 962–967.
  • Torgomyan H, Trchounian A. (2012). Escherichia coli membrane-associated energy-dependent processes and sensitivity toward antibiotics changes as responses to low-intensity electromagnetic irradiation of 70.6 and 73 GHz frequencies. Cell Biochem Biophys, 62, 451–461.
  • Torgomyan H, Trchounian A. (2011). Low-intensity electromagnetic irradiation of 70.6 and 73 GHz frequencies enhances the effects of disulfide bonds reducer on Escherichia coli growth and affects the bacterial surface oxidation-reduction state. Biochem Biophys Res Commun, 414, 265–269.
  • Trchounian A. (2004). Escherichia coli proton-translocating F0F1-ATP synthase and its association with solute secondary transporters and/or enzymes of anaerobic oxidation-reduction under fermentation. Biochem Biophys Res Commun, 315, 1051–1057.
  • Trchounian A, Ogandzhanyan E, Sarkisyan E, Gonyan S, Oganesyan A, Oganesyan S. (2001). Membranotropic effects of electromagnetic radiation of extremely high frequency in Escherichia coli. Biophys, 46, 69–76.
  • Trushin MV. (2003). The possible role of electromagnetic fields in bacterial communication. J Microbiol Immunol Infect, 36, 153–160.
  • Ukuku DO, Geveke DJ, Cooke P, Zhang HQ. (2008). Membrane damage and viability loss of Escherichia coli K-12 in apple juice treated with radio frequency electric field. J Food Prot, 71, 684–690.
  • Usichenko TI, Edinger H, Gizhko VV, Lehmann C, Wendt M, Feyerherd F. (2006). Low-intensity electromagnetic millimeter waves for pain therapy. Evid Based Complement Alternat Med, 3, 201–207.
  • Xu C, Lin X, Ren H, Zhang Y, Wang S, Peng X. (2006). Analysis of outer membrane proteome of Escherichia coli related to resistance to ampicillin and tetracycline. Proteomics, 6, 462–473.
  • Zand N, Foroudi F, Mailova E, Voskanyan A. (2010). Sterilization of flexible pouch by high frequency electromagnetic induction, using cooked chick and chick meal. Afr J Microbiol Res, 4, 2011–2021.
  • Zieliński M, Ciesielski S, Cydzik-Kwiatkowska A, Turek J, Dębowski M. (2007). Influence of microwave radiation on bacterial community structure in biofilm. Proc Biochem, 42, 1250–1253.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.