1,087
Views
51
CrossRef citations to date
0
Altmetric
Review Article

Response to temperature stress in rhizobia

&
Pages 219-228 | Received 06 Feb 2012, Accepted 08 Jun 2012, Published online: 23 Jul 2012

References

  • Alexander E, Pham D, Steck TR. (1999). The viable-but-nonculturable condition is induced by copper in Agrobacterium tumefaciens and Rhizobium leguminosarum. Appl Environ Microbiol, 65, 3754–3756.
  • Alexandre A, Oliveira S. (2011). Most heat-tolerant rhizobia show high induction of major chaperone genes upon stress. FEMS Microbiol Ecol, 75, 28–36.
  • Aslam M, Mahmood IA, Peoples MB, Schwenke GD, Herridge DF. (2003). Contribution of chickpea nitrogen fixation to increased wheat production and soil organic fertility in rain-fed cropping. Biol Fertility Soils, 38, 59–64.
  • Babst M, Hennecke H, Fischer HM. (1996). Two different mechanisms are involved in the heat-shock regulation of chaperonin gene expression in Bradyrhizobium japonicum. Mol Microbiol, 19, 827–839.
  • Barra-Bily L, Pandey SP, Trautwetter A, Blanco C, Walker GC. (2010a). The Sinorhizobium meliloti RNA chaperone Hfq mediates symbiosis of S. meliloti and alfalfa. J Bacteriol, 192, 1710–1718.
  • Barra-Bily L, Fontenelle C, Jan G, Flechard M, Trautwetter A, Pandey SP, Walker GC, Blanco C. (2010b). Proteomic alterations explain phenotypic changes in Sinorhizobium meliloti lacking the RNA chaperone Hfq. J Bacteriol, 192, 1719–1729.
  • Basaglia M, Povolo S, Casella S. (2007). Resuscitation of viable but not culturable Sinorhizobium meliloti 41 pRP4-luc: effects of oxygen and host plant. Curr Microbiol, 54, 167–174.
  • Bever JD, Simms EL. (2000). Evolution of nitrogen fixation in spatially structured populations of Rhizobium. Heredity (Edinb), 85 Pt 4, 366–372.
  • Bittner AN, Oke V. (2006). Multiple groESL operons are not key targets of RpoH1 and RpoH2 in Sinorhizobium meliloti. J Bacteriol, 188, 3507–3515.
  • Bittner AN, Foltz A, Oke V. (2007). Only one of five groEL genes is required for viability and successful symbiosis in Sinorhizobium meliloti. J Bacteriol, 189, 1884–1889.
  • Boussau B, Karlberg EO, Frank AC, Legault BA, Andersson SG. (2004). Computational inference of scenarios for alpha-proteobacterial genome evolution. Proc Natl Acad Sci USA, 101, 9722–9727.
  • Bowen GD, Kennedy MM. (1959). Effect of high soil temperatures on Rhizobium spp. Queensl J Agr Sci, 16, 177–197.
  • Braeken K, Fauvart M, Vercruysse M, Beullens S, Lambrichts I, Michiels J. (2008). Pleiotropic effects of a rel mutation on stress survival of Rhizobium etli CNPAF512. BMC Microbiol, 8, 219.
  • Brooks SJ, Collins JJ, Brill WJ. (1984). Repression of nitrogen fixation in Klebsiella pneumoniae at high temperature. J Bacteriol, 157, 460–464.
  • Chaudhuri TK, Verma VK, Maheshwari A. (2009). GroEL assisted folding of large polypeptide substrates in Escherichia coli: Present scenario and assignments for the future. Prog Biophys Mol Biol, 99, 42–50.
  • Chen H, Gao K, Kondorosi E, Kondorosi A, Rolfe BG. (2005). Functional genomic analysis of global regulator NolR in Sinorhizobium meliloti. Mol Plant Microbe Interact, 18, 1340–1352.
  • Chen LS, Figueredo A, Villani H, Michajluk J, Hungria M. (2002). Diversity and symbiotic effectiveness of rhizobia isolated from field-grown soybean nodules in Paraguay. Biol Fertility Soils, 35, 448–457.
  • Cloutier J, Prévost D, Nadeau P, Antoun H. (1992). Heat and cold shock protein synthesis in arctic and temperate strains of rhizobia. Appl Environ Microbiol, 58, 2846–2853.
  • Cooper VS, Vohr SH, Wrocklage SC, Hatcher PJ. (2010). Why genes evolve faster on secondary chromosomes in bacteria. PLoS Comput Biol, 6, e1000732.
  • Dowling DN, Broughton WJ. (1986). Competition for nodulation of legumes. Annu Rev Microbiol, 40, 131–157.
  • Downie JA. (2010). The roles of extracellular proteins, polysaccharides and signals in the interactions of rhizobia with legume roots. FEMS Microbiol Rev, 34, 150–170.
  • Drouin P, Prévost D, Antoun H. (2000). Physiological adaptation to low temperatures of strains of Rhizobium leguminosarum bv. viciae associated with Lathyrus spp.(1). FEMS Microbiol Ecol, 32, 111–120.
  • Duzan HM, Mabood F, Souleimanov A, Smith DL. (2006). Nod Bj-V (C18:1, MeFuc) production by Bradyrhizobium japonicum (USDA110, 532C) at suboptimal growth temperatures. J Plant Physiol, 163, 107–111.
  • Fares MA, Moya A, Barrio E. (2004). GroEL and the maintenance of bacterial endosymbiosis. Trends Genet, 20, 413–416.
  • Fares MA, Barrio E, Sabater-Muñoz B, Moya A. (2002). The evolution of the heat-shock protein GroEL from Buchnera, the primary endosymbiont of aphids, is governed by positive selection. Mol Biol Evol, 19, 1162–1170.
  • Fayet O, Ziegelhoffer T, Georgopoulos C . (1989). The groES and groEL heat shock gene products of Escherichia coli are essential for bacterial growth at all temperatures. J Bacteriol, 171, 1379–1385.
  • Fischer HM, Schneider K, Babst M, Hennecke H. (1999). GroEL chaperonins are required for the formation of a functional nitrogenase in Bradyrhizobium japonicum. Arch Microbiol, 171, 279–289.
  • Fischer HM, Babst M, Kaspar T, Acuña G, Arigoni F, Hennecke H. (1993). One member of a gro-ESL-like chaperonin multigene family in Bradyrhizobium japonicum is co-regulated with symbiotic nitrogen fixation genes. EMBO J, 12, 2901–2912.
  • Giller KE, Beare MH, Lavelle P, Izac AMN, Swift MJ. (1997). Agricultural intensification, soil biodiversity and agroecosystem function. Appl Soil Ecol, 6, 3–16.
  • Gould P, Maguire M, Lund PA. (2007a). Distinct mechanisms regulate expression of the two major groEL homologues in Rhizobium leguminosarum. Arch Microbiol, 187, 1–14.
  • Gould PS, Burgar HR, Lund PA. (2007b). Homologous cpn60 genes in Rhizobium leguminosarum are not functionally equivalent. Cell Stress Chaperones, 12, 123–131.
  • Govezensky D, Greener T, Segal G, Zamir A. (1991). Involvement of GroEL in nif gene regulation and nitrogenase assembly. J Bacteriol, 173, 6339–6346.
  • Graham PH. (1992). Stress tolerance in Rhizobium and Bradyrhizobium, and nodulation under adverse soil-conditions. Can J Microbiol, 38, 475–484.
  • Grant AJ, Farris M, Alefounder P, Williams PH, Woodward MJ, O’Connor CD. (2003). Co-ordination of pathogenicity island expression by the BipA GTPase in enteropathogenic Escherichia coli (EPEC). Mol Microbiol, 48, 507–521.
  • Guisbert E, Yura T, Rhodius VA, Gross CA. (2008). Convergence of molecular, modeling, and systems approaches for an understanding of the Escherichia coli heat shock response. Microbiol Mol Biol Rev, 72, 545–554.
  • Hartl FU, Hayer-Hartl M. (2009). Converging concepts of protein folding in vitro and in vivo. Nat Struct Mol Biol, 16, 574–581.
  • Hashem FM, Swelim DM, Kuykendall LD, Mohamed AI, Abdel-Wahab SM, Hegazi NI. (1998). Identification and characterization of salt- and thermo-tolerant Leucaena-nodulating Rhizobium strains. Biol Fertility Soils, 27, 335–341.
  • Hellweg C, Pühler A, Weidner S. (2009). The time course of the transcriptomic response of Sinorhizobium meliloti 1021 following a shift to acidic pH. BMC Microbiol, 9, 37.
  • Hernandez-Salmeron JE, Santoyo G. (2011). Phylogenetic analysis reveals gene conversions in multigene families of rhizobia. Genet Mol Res, 10, 1383–1392.
  • Horn G, Hofweber R, Kremer W, Kalbitzer HR. (2007). Structure and function of bacterial cold shock proteins. Cell Mol Life Sci, 64, 1457–1470.
  • Hungria M, Vargas MAT. (2000). Environmental factors affecting N2 fixation in grain legumes in the tropics, with an emphasis on Brazil. Field Crops Res, 65, 151–164.
  • Ivic A, Olden D, Wallington EJ, Lund PA. (1997). Deletion of Escherichia coli groEL is complemented by a Rhizobium leguminosarum groEL homologue at 37 degrees C but not at 43 degrees C. Gene, 194, 1–8.
  • Jensen ES, Hauggaard-Nielsen H. (2003). How can increased use of biological N-2 fixation in agriculture benefit the environment? Plant Soil, 252, 177–186.
  • Karanja NK, Wood M. (1988). Selecting Rhizobium phaseoli strains for use with beans (Phaseolus vulgaris L.) in Kenya: Tolerance of high temperature and antibiotic resistance. Plant Soil, 112, 15–22.
  • Kishinevsky BD, Sen D, Weaver RW. (1992). Effect of high root temperature on Bradyrhizobium-peanut symbiosis. Plant Soil, 143, 275–282.
  • Kiss E, Huguet T, Poinsot V, Batut J. (2004). The typA gene is required for stress adaptation as well as for symbiosis of Sinorhizobium meliloti 1021 with certain Medicago truncatula lines. Mol Plant Microbe Interact, 17, 235–244.
  • Kondorosi E, Pierre M, Cren M, Haumann U, Buiré M, Hoffmann B, Schell J, Kondorosi A. (1991). Identification of NolR, a negative transacting factor controlling the nod regulon in Rhizobium meliloti. J Mol Biol, 222, 885–896.
  • Krol E, Becker A. (2011). ppGpp in Sinorhizobium meliloti: biosynthesis in response to sudden nutritional downshifts and modulation of the transcriptome. Mol Microbiol, 81, 1233–1254.
  • Kulkarni S, Nautiyal CS. (1999). Characterization of high temperature-tolerant rhizobia isolated from Prosopis juliflora grown in alkaline soil. J Gen Appl Microbiol, 45, 213–220.
  • Kulkarni S, Surange S, Nautiyal CS. (2000). Crossing the limits of Rhizobium existence in extreme conditions. Curr Microbiol, 41, 402–409.
  • La Favre AK, Eaglesham ARJ. (1986). The effects of high-temperatures on soybean nodulation and growth with different strains of Bradyrhizobia. Can J Microbiol, 32, 22–27.
  • Labidi M, Laberge S, Vézina LP, Antoun H. (2000). The dnaJ (hsp40) locus in Rhizobium leguminosarum bv. phaseoli is required for the establishment of an effective symbiosis with Phaseolus vulgaris. Mol Plant Microbe Interact, 13, 1271–1274.
  • Laranjo M, Oliveira S. (2006). Rhizobial strain improvement: genetic analysis and modification. In: Ray RC. (Ed.), Microbial Biotechnology in Agriculture and Aquaculture. Enfield, New Hampshire, USA: Science Publisher Inc, pp. 225–260.
  • Laranjo M, Oliveira S. (2011). Tolerance of Mesorhizobium type strains to different environmental stresses. Antonie Van Leeuwenhoek, 99, 651–662.
  • Lira MD, Lima AST, Arruda JRF, Smith DL. (2005). Effect of root temperature on nodule development of bean, lentil and pea. Soil Biol Biochem, 37, 235–239.
  • Lund PA. (2009). Multiple chaperonins in bacteria – why so many? FEMS Microbiol Rev, 33, 785–800.
  • Martínez-Salazar JM, Sandoval-Calderón M, Guo X, Castillo-Ramírez S, Reyes A, Loza MG, Rivera J, Alvarado-Affantranger X, Sánchez F, González V, Dávila G, Ramírez-Romero MA. (2009). The Rhizobium etli RpoH1 and RpoH2 sigma factors are involved in different stress responses. Microbiology (Reading, Engl), 155, 386–397.
  • Masson-Boivin C, Giraud E, Perret X, Batut J. (2009). Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes? Trends Microbiol, 17, 458–466.
  • McGovern VP, Oliver JD. (1995). Induction of cold-responsive proteins in Vibrio vulnificus. J Bacteriol, 177, 4131–4133.
  • Mhadhbi H, Jebara M, Zitoun A, Limam F, Aouani ME. (2008). Symbiotic effectiveness and response to mannitol-mediated osmotic stress of various chickpea-rhizobia associations. World J Microbiol Biotechnol, 24, 1027–1035.
  • Michiels J, Verreth C, Vanderleyden J. (1994). Effects of temperature stress on bean-nodulating Rhizobium strains. Appl Environ Microbiol, 60, 1206–1212.
  • Minder AC, Fischer HM, Hennecke H, Narberhaus F. (2000). Role of HrcA and CIRCE in the heat shock regulatory network of Bradyrhizobium japonicum. J Bacteriol, 182, 14–22.
  • Minder AC, Narberhaus F, Babst M, Hennecke H, Fischer HM. (1997). The dnaKJ operon belongs to the sigma32-dependent class of heat shock genes in Bradyrhizobium japonicum. Mol Gen Genet, 254, 195–206.
  • Mitsui H, Sato T, Sato Y, Ito N, Minamisawa K. (2004). Sinorhizobium meliloti RpoH1 is required for effective nitrogen-fixing symbiosis with alfalfa. Mol Genet Genomics, 271, 416–425.
  • Morita M, Kanemori M, Yanagi H, Yura T. (1999). Heat-induced synthesis of sigma32 in Escherichia coli: structural and functional dissection of rpoH mRNA secondary structure. J Bacteriol, 181, 401–410.
  • Münchbach M, Nocker A, Narberhaus F. (1999). Multiple small heat shock proteins in rhizobia. J Bacteriol, 181, 83–90.
  • Munévar F, Wollum AG. (1981). Growth of Rhizobium japonicum strains at temperatures above 27 degrees C. Appl Environ Microbiol, 42, 272–276.
  • Murata M, Fujimoto H, Nishimura K, Charoensuk K, Nagamitsu H, Raina S, Kosaka T, Oshima T, Ogasawara N, Yamada M. (2011). Molecular strategy for survival at a critical high temperature in Eschierichia coli. PLoS ONE, 6, e20063.
  • Nandal K, Sehrawat AR, Yadav AS, Vashishat RK, Boora KS. (2005). High temperature-induced changes in exopolysaccharides, and protein profile of heat-resistant mutants of Rhizobium sp. (Cajanus). Microbiol Res, 160, 367–373.
  • Narberhaus F, Waldminghaus T, Chowdhury S. (2006). RNA thermometers. FEMS Microbiol Rev, 30, 3–16.
  • Narberhaus F, Krummenacher P, Fischer HM, Hennecke H. (1997). Three disparately regulated genes for sigma 32-like transcription factors in Bradyrhizobium japonicum. Mol Microbiol, 24, 93–104.
  • Narberhaus F, Käser R, Nocker A, Hennecke H. (1998). A novel DNA element that controls bacterial heat shock gene expression. Mol Microbiol, 28, 315–323.
  • Nocker A, Krstulovic NP, Perret X, Narberhaus F. (2001). ROSE elements occur in disparate rhizobia and are functionally interchangeable between species. Arch Microbiol, 176, 44–51.
  • Nogales J, Campos R, BenAbdelkhalek H, Olivares J, Lluch C, Sanjuan J. (2002). Rhizobium tropici genes involved in free-living salt tolerance are required for the establishment of efficient nitrogen-fixing symbiosis with Phaseolus vulgaris. Mol Plant Microbe Interact, 15, 225–232.
  • O’Connell KP, Thomashow MF. (2000). Transcriptional organization and regulation of a polycistronic cold shock operon in Sinorhizobium meliloti RM1021 encoding homologs of the Escherichia coli major cold shock gene cspA and ribosomal protein gene rpsU. Appl Environ Microbiol, 66, 392–400.
  • O’Connell KP, Gustafson AM, Lehmann MD, Thomashow MF. (2000). Identification of cold shock gene loci in Sinorhizobium meliloti by using a luxAB reporter transposon. Appl Environ Microbiol, 66, 401–405.
  • Ogawa J, Long SR. (1995). The Rhizobium meliloti groELc locus is required for regulation of early nod genes by the transcription activator NodD. Genes Dev, 9, 714–729.
  • Ogutcu H, Algur OF, Elkoca E, Kantar F. (2008). The determination of symbiotic effectiveness of Rhizobium strains isolated from wild chickpeas collected from high altitudes in Erzurum. Turk J Agric For, 32, 241–248.
  • Oliver JD. (2005). The viable but nonculturable state in bacteria. J Microbiol, 43 Spec No, 93–100.
  • Ono Y, Mitsui H, Sato T, Minamisawa K. (2001). Two RpoH homologs responsible for the expression of heat shock protein genes in Sinorhizobium meliloti. Mol Gen Genet, 264, 902–912.
  • Paek KH, Walker GC. (1987). Escherichia coli dnaK null mutants are inviable at high temperature. J Bacteriol, 169, 283–290.
  • Pfennig PL, Flower AM. (2001). BipA is required for growth of Escherichia coli K12 at low temperature. Mol Genet Genomics, 266, 313–317.
  • Potrykus K, Cashel M. (2008). (p)ppGpp: still magical? Annu Rev Microbiol, 62, 35–51.
  • Prell J, Poole P. (2006). Metabolic changes of rhizobia in legume nodules. Trends Microbiol, 14, 161–168.
  • Rajkowitsch L, Chen D, Stampfl S, Semrad K, Waldsich C, Mayer O, Jantsch MF, Konrat R, Bläsi U, Schroeder R. (2007). RNA chaperones, RNA annealers and RNA helicases. RNA Biol, 4, 118–130.
  • Räsänen LA, Elväng AM, Jansson J, Lindström K. (2001). Effect of heat stress on cell activity and cell morphology of the tropical rhizobium, Sinorhizobium arboris. FEMS Microbiol Ecol, 34, 267–278.
  • Riccillo PM, Collavino MM, Grasso DH, England R, de Bruijn FJ, Aguilar OM. (2000). A guaB mutant strain of Rhizobium tropici CIAT899 pleiotropically defective in thermal tolerance and symbiosis. Mol Plant Microbe Interact, 13, 1228–1236.
  • Rodrigues CS, Laranjo M, Oliveira S. (2006). Effect of heat and pH stress in the growth of chickpea mesorhizobia. Curr Microbiol, 53, 1–7.
  • Rodríguez-Quiñones F, Maguire M, Wallington EJ, Gould PS, Yerko V, Downie JA, Lund PA. (2005). Two of the three groEL homologues in Rhizobium leguminosarum are dispensable for normal growth. Arch Microbiol, 183, 253–265.
  • Rosen R, Ron EZ. (2002). Proteome analysis in the study of the bacterial heat-shock response. Mass Spectrom Rev, 21, 244–265.
  • Rüdiger S, Germeroth L, Schneider-Mergener J, Bukau B. (1997). Substrate specificity of the DnaK chaperone determined by screening cellulose-bound peptide libraries. EMBO J, 16, 1501–1507.
  • Sadowsky M. (2005). Soil stress factors influencing symbiotic nitrogen fixation. In: Werner D, Newton WE. (Eds.), Nitrogen Fixation in Agriculture, Forestry, Ecology, and the Environment. Netherlands: Springer, pp. 89–112.
  • Sauviac L, Philippe H, Phok K, Bruand C. (2007). An extracytoplasmic function sigma factor acts as a general stress response regulator in Sinorhizobium meliloti. J Bacteriol, 189, 4204–4216.
  • Sprent JI, Gehlot HS. (2010). Nodulated legumes in arid and semi-arid environments: are they important? Plant Ecol Divers, 3, 211–219.
  • Sun X, Griffith M, Pasternak JJ, Glick BR. (1995). Low temperature growth, freezing survival, and production of antifreeze protein by the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Can J Microbiol, 41, 776–784.
  • Teixeira EI, Fischer G, Velthuizen Hv, Walter C, Ewert F. (2011). Global hot-spots of heat stress on agricultural crops due to climate change. Agr Forest Meteorol, doi:10.1016/j.agrformet.2011.09.002, in press.
  • Vriezen JA, de Bruijn FJ, Nüsslein KR. (2012). Desiccation induces viable but non-culturable cells in Sinorhizobium meliloti 1021. AMB Express, 2, 6.
  • Waldminghaus T, Fippinger A, Alfsmann J, Narberhaus F. (2005). RNA thermometers are common in alpha- and gamma-proteobacteria. Biol Chem, 386, 1279–1286.
  • Wang JD, Herman C, Tipton KA, Gross CA, Weissman JS. (2002). Directed evolution of substrate-optimized GroEL/S chaperonins. Cell, 111, 1027–1039.
  • Xu H, Griffith M, Patten CL, Glick BR. (1998). Isolation and characterization of an antifreeze protein with ice nucleation activity from the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Can J Microbiol, 44, 64–73.
  • Young JP, Crossman LC, Johnston AW, Thomson NR, Ghazoui ZF, Hull KH, Wexler M, Curson AR, Todd JD, Poole PS, Mauchline TH, East AK, Quail MA, Churcher C, Arrowsmith C, Cherevach I, Chillingworth T, Clarke K, Cronin A, Davis P, Fraser A, Hance Z, Hauser H, Jagels K, Moule S, Mungall K, Norbertczak H, Rabbinowitsch E, Sanders M, Simmonds M, Whitehead S, Parkhill J. (2006). The genome of Rhizobium leguminosarum has recognizable core and accessory components. Genome Biol, 7, R34.
  • Zahran HH. (2001). Rhizobia from wild legumes: diversity, taxonomy, ecology, nitrogen fixation and biotechnology. J Biotechnol, 91, 143–153.
  • Zhang F, Lynch DH, Smith DL. (1995). Impact of low root temperatures in soybean [Glycine max (L) Merr] on nodulation and nitrogen fixation. Environ Exp Bot, 35, 279–285.
  • Zhang H, Prithiviraj B, Charles TC, Driscoll BT, Smith DL. (2003). Low temperature tolerant Bradyrhizobium japonicum strains allowing improved nodulation and nitrogen fixation of soybean in a short season (cool spring) area. Eur J Agron, 19, 205–213.
  • Zuber U, Schumann W. (1994). CIRCE, a novel heat shock element involved in regulation of heat shock operon dnaK of Bacillus subtilis. J Bacteriol, 176, 1359–1363.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.