437
Views
28
CrossRef citations to date
0
Altmetric
Review Article

Drug-resistant microorganisms with a higher fitness – can medicines boost pathogens?

, , , &
Pages 384-394 | Received 25 Mar 2012, Accepted 26 Jul 2012, Published online: 06 Sep 2012

References

  • Abdelraouf K, Kabbara S, Ledesma KR, Poole K, Tam VH. (2011). Effect of multidrug resistance-conferring mutations on the fitness and virulence of Pseudomonas aeruginosa. J Antimicrob Chemother, 66, 1311–1317.
  • Abu-Dayyeh I, Shio MT, Sato S, Akira S, Cousineau B, Olivier M. (2008). Leishmania-induced IRAK-1 inactivation is mediated by SHP-1 interacting with an evolutionarily conserved KTIM motif. PLoS Negl Trop Dis, 2, e305.
  • Albarracín Orio AG, Piñas GE, Cortes PR, Cian MB, Echenique J. (2011). Compensatory evolution of pbp mutations restores the fitness cost imposed by β-lactam resistance in Streptococcus pneumoniae. PLoS Pathog, 7, e1002000.
  • Alvar J, Aparicio P, Aseffa A, Den Boer M, Cañavate C, Dedet JP, Gradoni L, Ter Horst R, López-Vélez R, Moreno J. (2008). The relationship between leishmaniasis and AIDS: the second 10 years. Clin Microbiol Rev, 21, 334–59, table of contents.
  • Alvarez MN, Peluffo G, Piacenza L, Radi R. (2011). Intraphagosomal peroxynitrite as a macrophage-derived cytotoxin against internalized Trypanosoma cruzi: consequences for oxidative killing and role of microbial peroxiredoxins in infectivity. J Biol Chem, 286, 6627–6640.
  • Alves CF, de Amorim IF, Moura EP, Ribeiro RR, Alves CF, Michalick MS, Kalapothakis E, Bruna-Romero O, Tafuri WL, Teixeira MM, Melo MN. (2009). Expression of IFN-gamma, TNF-alpha, IL-10 and TGF-beta in lymph nodes associates with parasite load and clinical form of disease in dogs naturally infected with Leishmania (Leishmania) chagasi. Vet Immunol Immunopathol, 128, 349–358.
  • Andersson DI, Levin BR. (1999). The biological cost of antibiotic resistance. Curr Opin Microbiol, 2, 489–493.
  • Andersson DI, Hughes D. (2010). Antibiotic resistance and its cost: is it possible to reverse resistance? Nat Rev Microbiol, 8, 260–271.
  • Ariyanayagam MR, Fairlamb AH. (2001). Ovothiol and trypanothione as antioxidants in trypanosomatids. Mol Biochem Parasitol, 115, 189–198.
  • Ashutosh, Garg M, Sundar S, Duncan R, Nakhasi HL, Goyal N. (2012). Downregulation of mitogen-activated protein kinase 1 of Leishmania donovani field isolates is associated with antimony resistance. Antimicrob Agents Chemother, 56, 518–525.
  • Babiker HA, Hastings IM, Swedberg G. (2009). Impaired fitness of drug-resistant malaria parasites: evidence and implication on drug-deployment policies. Expert Rev Anti Infect Ther, 7, 581–593.
  • Baiocco P, Colotti G, Franceschini S, Ilari A. (2009a). Molecular basis of antimony treatment in leishmaniasis. J Med Chem, 52, 2603–2612.
  • Baiocco P, Franceschini S, Ilari A, Colotti G. (2009b). Trypanothione reductase from Leishmania infantum: cloning, expression, purification, crystallization and preliminary X-ray data analysis. Protein Pept Lett, 16, 196–200.
  • Bhardwaj S, Srivastava N, Sudan R, Saha B. (2010). Leishmania interferes with host cell signaling to devise a survival strategy. J Biomed Biotechnol, 2010, 109189.
  • Billal DS, Feng J, Leprohon P, Legare D, Ouellette M. (2011). Whole genome analysis of linezolid resistance in Streptococcus pneumoniae reveals resistance and compensatory mutations. BMC Genomics, 12, 512.
  • Biyani N, Singh AK, Mandal S, Chawla B, Madhubala R. (2011). Differential expression of proteins in antimony-susceptible and -resistant isolates of Leishmania donovani. Mol Biochem Parasitol, 179, 91–99.
  • Blanchette J, Racette N, Faure R, Siminovitch KA, Olivier M. (1999). Leishmania-induced increases in activation of macrophage SHP-1 tyrosine phosphatase are associated with impaired IFN-gamma-triggered JAK2 activation. Eur J Immunol, 29, 3737–3744.
  • Bocedi A, Dawood KF, Fabrini R, Federici G, Gradoni L, Pedersen JZ, Ricci G. (2010). Trypanothione efficiently intercepts nitric oxide as a harmless iron complex in trypanosomatid parasites. FASEB J, 24, 1035–1042.
  • Borrell S, Gagneux S. (2009). Infectiousness, reproductive fitness and evolution of drug-resistant Mycobacterium tuberculosis. Int J Tuberc Lung Dis, 13, 1456–1466.
  • Brochu C, Wang J, Roy G, Messier N, Wang XY, Saravia NG, Ouellette M. (2003). Antimony uptake systems in the protozoan parasite Leishmania and accumulation differences in antimony-resistant parasites. Antimicrob Agents Chemother, 47, 3073–3079.
  • Carter KC, Hutchison S, Boitelle A, Murray HW, Sundar S, Mullen AB. (2005). Sodium stibogluconate resistance in Leishmania donovani correlates with greater tolerance to macrophage antileishmanial responses and trivalent antimony therapy. Parasitology, 131, 747–757.
  • Carter KC, Hutchison S, Henriquez FL, Légaré D, Ouellette M, Roberts CW, Mullen AB. (2006). Resistance of Leishmania donovani to sodium stibogluconate is related to the expression of host and parasite gamma-glutamylcysteine synthetase. Antimicrob Agents Chemother, 50, 88–95.
  • Casadevall A, Pirofski LA. (1999). Host-pathogen interactions: redefining the basic concepts of virulence and pathogenicity. Infect Immun, 67, 3703–3713.
  • Chandra D, Naik S. (2008). Leishmania donovani infection down-regulates TLR2-stimulated IL-12p40 and activates IL-10 in cells of macrophage/monocytic lineage by modulating MAPK pathways through a contact-dependent mechanism. Clin Exp Immunol, 154, 224–234.
  • Chang KP, Reed SG, McGwire BS, Soong L. (2003). Leishmania model for microbial virulence: the relevance of parasite multiplication and pathoantigenicity. Acta Trop, 85, 375–390.
  • Coelho AC, Beverley SM, Cotrim PC. (2003). Functional genetic identification of PRP1, an ABC transporter superfamily member conferring pentamidine resistance in Leishmania major. Mol Biochem Parasitol, 130, 83–90.
  • Cohen T, Becerra MC, Murray MB. (2004). Isoniazid resistance and the future of drug-resistant tuberculosis. Microb Drug Resist, 10, 280–285.
  • Cunningham ML, Fairlamb AH. (1995). Trypanothione reductase from Leishmania donovani. Purification, characterisation and inhibition by trivalent antimonials. Eur J Biochem, 230, 460–468.
  • Dasgupta B, Roychoudhury K, Ganguly S, Kumar Sinha P, Vimal S, Das P, Roy S. (2003). Antileishmanial drugs cause up-regulation of interferon-gamma receptor 1, not only in the monocytes of visceral leishmaniasis cases but also in cultured THP1 cells. Ann Trop Med Parasitol, 97, 245–257.
  • Decuypere S, Vanaerschot M, Brunker K, Imamura H, Muller S, Rijal S, Dujardin JC, Coombs GH. (2012). Resistance to antimonials in natural Leishmania populations is associated with heterogeneous molecular adaptations. PLoS Negl Trop Dis, 6, e1514.
  • Denton H, McGregor JC, Coombs GH. (2004). Reduction of anti-leishmanial pentavalent antimonial drugs by a parasite-specific thiol-dependent reductase, TDR1. Biochem J, 381, 405–412.
  • Dey S, Ouellette M, Lightbody J, Papadopoulou B, Rosen BP. (1996). An ATP-dependent As(III)-glutathione transport system in membrane vesicles of Leishmania tarentolae. Proc Natl Acad Sci USA, 93, 2192–2197.
  • Downing T, Imamura H, Decuypere S, Clark TG, Coombs GH, Cotton JA, Hilley JD, de Doncker S, Maes I, Mottram JC, Quail MA, Rijal S, Sanders M, Schönian G, Stark O, Sundar S, Vanaerschot M, Hertz-Fowler C, Dujardin JC, Berriman M. (2011). Whole genome sequencing of multiple Leishmania donovani clinical isolates provides insights into population structure and mechanisms of drug resistance. Genome Res, 21, 2143–2156.
  • Downing T, Stark O, Vanaerschot M, Imamura H, Sanders M, Decuypere S, de Doncker S, Maes I, Rijal S, Sundar S, Dujardin JC, Berriman M, Schönian G. (2012). Genome-wide SNP and microsatellite variation illuminate population-level epidemiology in the Leishmania donovani species complex. Infect Genet Evol, 12, 149–159.
  • Escobar P, Yardley V, Croft SL. (2001). Activities of hexadecylphosphocholine (miltefosine), AmBisome, and sodium stibogluconate (Pentostam) against Leishmania donovani in immunodeficient scid mice. Antimicrob Agents Chemother, 45, 1872–1875.
  • Ferreira Cdos S, Martins PS, Demicheli C, Brochu C, Ouellette M, Frézard F. (2003). Thiol-induced reduction of antimony(V) into antimony(III): a comparative study with trypanothione, cysteinyl-glycine, cysteine and glutathione. Biometals, 16, 441–446.
  • Flohé L, Budde H, Bruns K, Castro H, Clos J, Hofmann B, Kansal-Kalavar S, Krumme D, Menge U, Plank-Schumacher K, Sztajer H, Wissing J, Wylegalla C, Hecht HJ. (2002). Tryparedoxin peroxidase of Leishmania donovani: molecular cloning, heterologous expression, specificity, and catalytic mechanism. Arch Biochem Biophys, 397, 324–335.
  • Forget G, Gregory DJ, Whitcombe LA, Olivier M. (2006). Role of host protein tyrosine phosphatase SHP-1 in Leishmania donovani-induced inhibition of nitric oxide production. Infect Immun, 74, 6272–6279.
  • Frézard F, Demicheli C, Ferreira CS, Costa MA. (2001). Glutathione-induced conversion of pentavalent antimony to trivalent antimony in meglumine antimoniate. Antimicrob Agents Chemother, 45, 913–916.
  • Gagneux S, Long CD, Small PM, Van T, Schoolnik GK, Bohannan BJ. (2006). The competitive cost of antibiotic resistance in Mycobacterium tuberculosis. Science, 312, 1944–1946.
  • Gomez MA, Contreras I, Hallé M, Tremblay ML, McMaster RW, Olivier M. (2009). Leishmania GP63 alters host signaling through cleavage-activated protein tyrosine phosphatases. Sci Signal, 2, ra58.
  • Gourbal B, Sonuc N, Bhattacharjee H, Legare D, Sundar S, Ouellette M, Rosen BP, Mukhopadhyay R. (2004). Drug uptake and modulation of drug resistance in Leishmania by an aquaglyceroporin. J Biol Chem, 279, 31010–31017.
  • Haldar AK, Yadav V, Singhal E, Bisht KK, Singh A, Bhaumik S, Basu R, Sen P, Roy S. (2010). Leishmania donovani isolates with antimony-resistant but not -sensitive phenotype inhibit sodium antimony gluconate-induced dendritic cell activation. PLoS Pathog, 6, e1000907.
  • Haldar AK, Sen P, Roy S. (2011). Use of antimony in the treatment of leishmaniasis: current status and future directions. Mol Biol Int, 2011, 571242.
  • Hansen C, Hansen EW, Hansen HR, Gammelgaard B, Stürup S. (2011). Reduction of Sb(V) in a human macrophage cell line measured by HPLC-ICP-MS. Biol Trace Elem Res, 144, 234–243.
  • Holzmuller P, Sereno D, Lemesre JL. (2005). Lower nitric oxide susceptibility of trivalent antimony-resistant amastigotes of Leishmania infantum. Antimicrob Agents Chemother, 49, 4406–4409.
  • Iyer JP, Kaprakkaden A, Choudhary ML, Shaha C. (2008). Crucial role of cytosolic tryparedoxin peroxidase in Leishmania donovani survival, drug response and virulence. Mol Microbiol, 68, 372–391.
  • Jha TK, Sundar S, Thakur CP, Bachmann P, Karbwang J, Fischer C, Voss A, Berman J. (1999). Miltefosine, an oral agent, for the treatment of Indian visceral leishmaniasis. N Engl J Med, 341, 1795–1800.
  • Kaye P, Scott P. (2011). Leishmaniasis: complexity at the host-pathogen interface. Nat Rev Microbiol, 9, 604–615.
  • Krauth-Siegel RL, Comini MA. (2008). Redox control in trypanosomatids, parasitic protozoa with trypanothione-based thiol metabolism. Biochim Biophys Acta, 1780, 1236–1248.
  • Laguna F. (2003). Treatment of leishmaniasis in HIV-positive patients. Ann Trop Med Parasitol, 97 Suppl 1, 135–142.
  • Légaré D, Richard D, Mukhopadhyay R, Stierhof YD, Rosen BP, Haimeur A, Papadopoulou B, Ouellette M. (2001). The Leishmania ATP-binding cassette protein PGPA is an intracellular metal-thiol transporter ATPase. J Biol Chem, 276, 26301–26307.
  • López-Rojas R, Domínguez-Herrera J, McConnell MJ, Docobo-Peréz F, Smani Y, Fernández-Reyes M, Rivas L, Pachón J. (2011). Impaired virulence and in vivo fitness of colistin-resistant Acinetobacter baumannii. J Infect Dis, 203, 545–548.
  • Maisnier-Patin S, Andersson DI. (2004). Adaptation to the deleterious effects of antimicrobial drug resistance mutations by compensatory evolution. Res Microbiol, 155, 360–369.
  • Mandal G, Wyllie S, Singh N, Sundar S, Fairlamb AH, Chatterjee M. (2007). Increased levels of thiols protect antimony unresponsive Leishmania donovani field isolates against reactive oxygen species generated by trivalent antimony. Parasitology, 134, 1679–1687.
  • Manna L, Reale S, Vitale F, Gravino AE. (2009). Evidence for a relationship between Leishmania load and clinical manifestations. Res Vet Sci, 87, 76–78.
  • Marcusson LL, Frimodt-Møller N, Hughes D. (2009). Interplay in the selection of fluoroquinolone resistance and bacterial fitness. PLoS Pathog, 5, e1000541.
  • Matlashewski G, Arana B, Kroeger A, Battacharya S, Sundar S, Das P, Sinha PK, Rijal S, Mondal D, Zilberstein D, Alvar J. (2011). Visceral leishmaniasis: elimination with existing interventions. Lancet Infect Dis, 11, 322–325.
  • Mittal MK, Rai S, Ashutosh, Ravinder, Gupta S, Sundar S, Goyal N. (2007). Characterization of natural antimony resistance in Leishmania donovani isolates. Am J Trop Med Hyg, 76, 681–688.
  • Mookerjee Basu J, Mookerjee A, Sen P, Bhaumik S, Sen P, Banerjee S, Naskar K, Choudhuri SK, Saha B, Raha S, Roy S. (2006). Sodium antimony gluconate induces generation of reactive oxygen species and nitric oxide via phosphoinositide 3-kinase and mitogen-activated protein kinase activation in Leishmania donovani-infected macrophages. Antimicrob Agents Chemother, 50, 1788–1797.
  • Moreira W, Leprohon P, Ouellette M. (2011). Tolerance to drug-induced cell death favours the acquisition of multidrug resistance in Leishmania. Cell Death Dis, 2, e201.
  • Moxon R, Tang C. (2000). Challenge of investigating biologically relevant functions of virulence factors in bacterial pathogens. Philos Trans R Soc Lond, B, Biol Sci, 355, 643–656.
  • Mukherjee SB, Das M, Sudhandiran G, Shaha C. (2002). Increase in cytosolic Ca2+ levels through the activation of non-selective cation channels induced by oxidative stress causes mitochondrial depolarization leading to apoptosis-like death in Leishmania donovani promastigotes. J Biol Chem, 277, 24717–24727.
  • Mukherjee A, Padmanabhan PK, Singh S, Roy G, Girard I, Chatterjee M, Ouellette M, Madhubala R. (2007). Role of ABC transporter MRPA, gamma-glutamylcysteine synthetase and ornithine decarboxylase in natural antimony-resistant isolates of Leishmania donovani. J Antimicrob Chemother, 59, 204–211.
  • Mukhopadhyay R, Dey S, Xu N, Gage D, Lightbody J, Ouellette M, Rosen BP. (1996). Trypanothione overproduction and resistance to antimonials and arsenicals in Leishmania. Proc Natl Acad Sci USA, 93, 10383–10387.
  • Mukhopadhyay R, Mukherjee S, Mukherjee B, Naskar K, Mondal D, Decuypere S, Ostyn B, Prajapati VK, Sundar S, Dujardin JC, Roy S. (2011). Characterisation of antimony-resistant Leishmania donovani isolates: biochemical and biophysical studies and interaction with host cells. Int J Parasitol, 41, 1311–1321.
  • Murray HW, Oca MJ, Granger AM, Schreiber RD. (1989). Requirement for T cells and effect of lymphokines in successful chemotherapy for an intracellular infection. Experimental visceral leishmaniasis. J Clin Invest, 83, 1253–1257.
  • Murray HW. (1999). Kala-azar as an AIDS-related opportunistic infection. AIDS Patient Care STDS, 13, 459–465.
  • Murray HW, Nathan CF. (1999). Macrophage microbicidal mechanisms in vivo: reactive nitrogen versus oxygen intermediates in the killing of intracellular visceral Leishmania donovani. J Exp Med, 189, 741–746.
  • Murray HW, Delph-Etienne S. (2000). Roles of endogenous gamma interferon and macrophage microbicidal mechanisms in host response to chemotherapy in experimental visceral leishmaniasis. Infect Immun, 68, 288–293.
  • Murray HW, Jungbluth A, Ritter E, Montelibano C, Marino MW. (2000a). Visceral leishmaniasis in mice devoid of tumor necrosis factor and response to treatment. Infect Immun, 68, 6289–6293.
  • Murray HW, Montelibano C, Peterson R, Sypek JP. (2000b). Interleukin-12 regulates the response to chemotherapy in experimental visceral Leishmaniasis. J Infect Dis, 182, 1497–1502.
  • Murray HW, Lu CM, Brooks EB, Fichtl RE, DeVecchio JL, Heinzel FP. (2003). Modulation of T-cell costimulation as immunotherapy or immunochemotherapy in experimental visceral leishmaniasis. Infect Immun, 71, 6453–6462.
  • Nandan D, Lo R, Reiner NE. (1999). Activation of phosphotyrosine phosphatase activity attenuates mitogen-activated protein kinase signaling and inhibits c-FOS and nitric oxide synthase expression in macrophages infected with Leishmania donovani. Infect Immun, 67, 4055–4063.
  • Nandan D, Tran T, Trinh E, Silverman JM, Lopez M. (2007). Identification of leishmania fructose-1,6-bisphosphate aldolase as a novel activator of host macrophage Src homology 2 domain containing protein tyrosine phosphatase SHP-1. Biochem Biophys Res Commun, 364, 601–607.
  • Narayan S, Bimal S, Singh SK, Gupta AK, Singh VP, Sinha PK, Das P. (2009). Leishmania donovani vs immunity: T-cells sensitized from Leishmania of one donor may modulate their cytokines pattern on re-stimulation with Leishmania from different donor in visceral leishmaniasis. Exp Parasitol, 121, 69–75.
  • Orr HA. (2009). Fitness and its role in evolutionary genetics. Nat Rev Genet, 10, 531–539.
  • Ouakad M, Vanaerschot M, Rijal S, Sundar S, Speybroeck N, Kestens L, Boel L, De Doncker S, Maes I, Decuypere S, Dujardin JC. (2011). Increased metacyclogenesis of antimony-resistant Leishmania donovani clinical lines. Parasitology, 138, 1392–1399.
  • Pathak MK, Yi T. (2001). Sodium stibogluconate is a potent inhibitor of protein tyrosine phosphatases and augments cytokine responses in hemopoietic cell lines. J Immunol, 167, 3391–3397.
  • Piñeyro MD, Arcari T, Robello C, Radi R, Trujillo M. (2011). Tryparedoxin peroxidases from Trypanosoma cruzi: high efficiency in the catalytic elimination of hydrogen peroxide and peroxynitrite. Arch Biochem Biophys, 507, 287–295.
  • Poulin R, Combes C. (1999). The concept of virulence: interpretations and implications. Parasitol Today (Regul Ed), 15, 474–475.
  • Pym AS, Saint-Joanis B, Cole ST. (2002). Effect of katG mutations on the virulence of Mycobacterium tuberculosis and the implication for transmission in humans. Infect Immun, 70, 4955–4960.
  • Rais S, Perianin A, Lenoir M, Sadak A, Rivollet D, Paul M, Deniau M. (2000). Sodium stibogluconate (Pentostam) potentiates oxidant production in murine visceral leishmaniasis and in human blood. Antimicrob Agents Chemother, 44, 2406–2410.
  • Rijal S, Bhandari S, Koirala S, Singh R, Khanal B, Loutan L, Dujardin JC, Boelaert M, Chappuis F. (2010). Clinical risk factors for therapeutic failure in kala-azar patients treated with pentavalent antimonials in Nepal. Trans R Soc Trop Med Hyg, 104, 225–229.
  • Rijal S, Chappuis F, Singh R, Bovier PA, Acharya P, Karki BM, Das ML, Desjeux P, Loutan L, Koirala S. (2003). Treatment of visceral leishmaniasis in south-eastern Nepal: decreasing efficacy of sodium stibogluconate and need for a policy to limit further decline. Trans R Soc Trop Med Hyg, 97, 350–354.
  • Rivas L, Moreno J, Cañavate C, Alvar J. (2004). Virulence and disease in leishmaniasis: what is relevant for the patient? Trends Parasitol, 20, 297–301.
  • Romão PR, Tovar J, Fonseca SG, Moraes RH, Cruz AK, Hothersall JS, Noronha-Dutra AA, Ferreira SH, Cunha FQ. (2006). Glutathione and the redox control system trypanothione/trypanothione reductase are involved in the protection of Leishmania spp. against nitrosothiol-induced cytotoxicity. Braz J Med Biol Res, 39, 355–363.
  • Rosenthal E, Marty P, Poizot-Martin I, Reynes J, Pratlong F, Lafeuillade A, Jaubert D, Boulat O, Dereure J, Gambarelli F. (1995). Visceral leishmaniasis and HIV-1 co-infection in southern France. Trans R Soc Trop Med Hyg, 89, 159–162.
  • Sander P, Springer B, Prammananan T, Sturmfels A, Kappler M, Pletschette M, Böttger EC. (2002). Fitness cost of chromosomal drug resistance-conferring mutations. Antimicrob Agents Chemother, 46, 1204–1211.
  • Saunders EC, DE Souza DP, Naderer T, Sernee MF, Ralton JE, Doyle MA, Macrae JI, Chambers JL, Heng J, Nahid A, Likic VA, McConville MJ. (2010). Central carbon metabolism of Leishmania parasites. Parasitology, 137, 1303–1313.
  • Sereno D, Holzmuller P, Mangot I, Cuny G, Ouaissi A, Lemesre JL. (2001). Antimonial-mediated DNA fragmentation in Leishmania infantum amastigotes. Antimicrob Agents Chemother, 45, 2064–2069.
  • Sherman DR, Mdluli K, Hickey MJ, Arain TM, Morris SL, Barry CE 3rd, Stover CK. (1996). Compensatory ahpC gene expression in isoniazid-resistant Mycobacterium tuberculosis. Science, 272, 1641–1643.
  • Singh R, Kumar D, Duncan RC, Nakhasi HL, Salotra P. (2010). Overexpression of histone H2A modulates drug susceptibility in Leishmania parasites. Int J Antimicrob Agents, 36, 50–57.
  • Sudhandiran G, Shaha C. (2003). Antimonial-induced increase in intracellular Ca2+ through non-selective cation channels in the host and the parasite is responsible for apoptosis of intracellular Leishmania donovani amastigotes. J Biol Chem, 278, 25120–25132.
  • Sun H, Yan SC, Cheng WS. (2000). Interaction of antimony tartrate with the tripeptide glutathione implication for its mode of action. Eur J Biochem, 267, 5450–5457.
  • Sundar S, More DK, Singh MK, Singh VP, Sharma S, Makharia A, Kumar PC, Murray HW. (2000). Failure of pentavalent antimony in visceral leishmaniasis in India: report from the center of the Indian epidemic. Clin Infect Dis, 31, 1104–1107.
  • Sundar S, Sinha PK, Rai M, Verma DK, Nawin K, Alam S, Chakravarty J, Vaillant M, Verma N, Pandey K, Kumari P, Lal CS, Arora R, Sharma B, Ellis S, Strub-Wourgaft N, Balasegaram M, Olliaro P, Das P, Modabber F. (2011). Comparison of short-course multidrug treatment with standard therapy for visceral leishmaniasis in India: an open-label, non-inferiority, randomised controlled trial. Lancet, 377, 477–486.
  • t’Kindt R, Scheltema RA, Jankevics A, Brunker K, Rijal S, Dujardin JC, Breitling R, Watson DG, Coombs GH, Decuypere S. (2010). Metabolomics to unveil and understand phenotypic diversity between pathogen populations. PLoS Negl Trop Dis, 4, e904.
  • Tanaka MM, Valckenborgh F. (2011). Escaping an evolutionary lobster trap: drug resistance and compensatory mutation in a fluctuating environment. Evolution, 65, 1376–1387.
  • Thakur CP, Mitra DK, Narayan S. (2003). Skewing of cytokine profiles towards T helper cell type 2 response in visceral leishmaniasis patients unresponsive to sodium antimony gluconate. Trans R Soc Trop Med Hyg, 97, 409–412.
  • Van Assche T, Deschacht M, da Luz RA, Maes L, Cos P. (2011). Leishmania-macrophage interactions: insights into the redox biology. Free Radic Biol Med, 51, 337–351.
  • Vanaerschot M, De Doncker S, Rijal S, Maes L, Dujardin JC, Decuypere S. (2011). Antimonial resistance in Leishmania donovani is associated with increased in vivo parasite burden. PLoS ONE, 6, e23120.
  • Vanaerschot M, Maes I, Ouakad M, Adaui V, Maes L, De Doncker S, Rijal S, Chappuis F, Dujardin JC, Decuypere S. (2010). Linking in vitro and in vivo survival of clinical Leishmania donovani strains. PLoS ONE, 5, e12211.
  • Verma S, Kumar R, Katara GK, Singh LC, Negi NS, Ramesh V, Salotra P. (2010). Quantification of parasite load in clinical samples of leishmaniasis patients: IL-10 level correlates with parasite load in visceral leishmaniasis. PLoS ONE, 5, e10107.
  • Wiese M. (1998). A mitogen-activated protein (MAP) kinase homologue of Leishmania mexicana is essential for parasite survival in the infected host. EMBO J, 17, 2619–2628.
  • World Health Organisation. (2011). Available at: http://www.who.int. Accessed on 3 March 2012.
  • Wyllie S, Cunningham ML, Fairlamb AH. (2004). Dual action of antimonial drugs on thiol redox metabolism in the human pathogen Leishmania donovani. J Biol Chem, 279, 39925–39932.
  • Wyllie S, Vickers TJ, Fairlamb AH. (2008). Roles of trypanothione S-transferase and tryparedoxin peroxidase in resistance to antimonials. Antimicrob Agents Chemother, 52, 1359–1365.
  • Wyllie S, Mandal G, Singh N, Sundar S, Fairlamb AH, Chatterjee M. (2010). Elevated levels of tryparedoxin peroxidase in antimony unresponsive Leishmania donovani field isolates. Mol Biochem Parasitol, 173, 162–164.
  • Yan S, Li F, Ding K, Sun H. (2003a). Reduction of pentavalent antimony by trypanothione and formation of a binary and ternary complex of antimony(III) and trypanothione. J Biol Inorg Chem, 8, 689–697.
  • Yan S, Wong IL, Chow LM, Sun H. (2003b). Rapid reduction of pentavalent antimony by trypanothione: potential relevance to antimonial activation. Chem Commun (Camb), 266–267.
  • Zhang K, Beverley SM. (2010). Phospholipid and sphingolipid metabolism in Leishmania. Mol Biochem Parasitol, 170, 55–64.
  • Zhang O, Xu W, Balakrishna Pillai A, Zhang K. (2012). Developmentally regulated sphingolipid degradation in Leishmania major. PLoS ONE, 7, e31059.
  • Zhou Y, Messier N, Ouellette M, Rosen BP, Mukhopadhyay R. (2004). Leishmania major LmACR2 is a pentavalent antimony reductase that confers sensitivity to the drug pentostam. J Biol Chem, 279, 37445–37451.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.