2,201
Views
128
CrossRef citations to date
0
Altmetric
Review Article

Activity, distribution and function of indole-3-acetic acid biosynthetic pathways in bacteria

, &
Pages 395-415 | Received 09 Apr 2012, Accepted 26 Jul 2012, Published online: 15 Sep 2012

References

  • Abdel-Salam MS, Klingmüller W. (1987). Transposon Tn5 mutagenesis in Azosprillum lipoferum: isolation of indoleacetic acid mutants. Mol Gen Genet, 210, 165–170.
  • Ahmad F, Ahmad I, Khan MS. (2008). Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res, 163, 173–181.
  • Akashi H, Gojobori T. (2002). Metabolic efficiency and amino acid composition in the proteomes of Escherichia coli and Bacillus subtilis. Proc Natl Acad Sci USA, 99, 3695–3700.
  • Akochy PM, Bernard D, Roy PH, Lapointe J. (2004). Direct glutaminyl-tRNA biosynthesis and indirect asparaginyl-tRNA biosynthesis in Pseudomonas aeruginosa PAO1. J Bacteriol, 186, 767–776.
  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res, 25, 3389–3402.
  • Anisimova M, Gascuel O. (2006). Approximate likelihood-ratio test for branches: A fast, accurate, and powerful alternative. Syst Biol, 55, 539–552.
  • Ardö Y. (2006). Flavour formation by amino acid catabolism. Biotechnol Adv, 24, 238–242.
  • Asano Y, Kato Y. (1998). Z-phenylacetaldoxime degradation by a novel aldoxime dehydratase from Bacillus sp. strain OxB-1. FEMS Microbiol Lett, 158, 185–190.
  • Attwood G, Li D, Pacheco D, Tavendale M. (2006). Production of indolic compounds by rumen bacteria isolated from grazing ruminants. J Appl Microbiol, 100, 1261–1271.
  • Barash I, Manulis-Sasson S. (2009). Recent evolution of bacterial pathogens: the gall-forming Pantoea agglomerans case. Annu Rev Phytopathol, 47, 133–152.
  • Barbieri P, Zanelli T, Galli E, Zanetti G. (1986). Wheat inoculation with Azospirillum brasilense Sp6 and some mutants altered in nitrogen fixation and indole-3-acetic acid production. FEMS Microbiol Lett, 36, 87–90.
  • Barbieri P, Galli E. (1993). Effect on wheat root development of inoculation with an Azospirillum brasilense mutant with altered indole-3-acetic acid production. Res Microbiol, 144, 69–75.
  • Benigni R, Bossa C. (2011). Mechanisms of chemical carcinogenicity and mutagenicity: a review with implications for predictive toxicology. Chem Rev, 111, 2507–2536.
  • Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL. (2008). GenBank. Nucleic Acids Res, 36, D25–D30.
  • Beyerler M, Michaux P, Keel C, Haas D. (1997). Effect of enhanced production of indole-3-acetic acid by the biological control agent Pseudomonas fluorescens CHA0 on plant growth. In: Ogoshi A, Kobayashi K, Homma Y, Kodama F, Kondo N, Akino S, eds. Plant growth-promoting rhizobacteria: Present status and future prospects. Paris: OECD, 310–312.
  • Bianco C, Imperlini E, Calogero R, Senatore B, Pucci P, Defez R. (2006a). Indole-3-acetic acid regulates the central metabolic pathways in Escherichia coli. Microbiology (Reading, Engl), 152, 2421–2431.
  • Bianco C, Imperlini E, Calogero R, Senatore B, Amoresano A, Carpentieri A, Pucci P, Defez R. (2006b). Indole-3-acetic acid improves Escherichia coli’s defences to stress. Arch Microbiol, 185, 373–382.
  • Bianco C, Defez R. (2010). Improvement of phosphate solubilization and Medicago plant yield by an indole-3-acetic acid-overproducing strain of Sinorhizobium meliloti. Appl Environ Microbiol, 76, 4626–4632.
  • Boer VM, Tai SL, Vuralhan Z, Arifin Y, Walsh MC, Piper MD, de Winde JH, Pronk JT, Daran JM. (2007). Transcriptional responses of Saccharomyces cerevisiae to preferred and nonpreferred nitrogen sources in glucose-limited chemostat cultures. FEMS Yeast Res, 7, 604–620.
  • Boyer M, Bally R, Perrotto S, Chaintreuil C, Wisniewski-Dyé F. (2008). A quorum-quenching approach to identify quorum-sensing-regulated functions in Azospirillum lipoferum. Res Microbiol, 159, 699–708.
  • Brandl MT, Lindow SE. (1998). Contribution of indole-3-acetic acid production to the epiphytic fitness of erwinia herbicola. Appl Environ Microbiol, 64, 3256–3263.
  • Brandl MT, Lindow SE. (1997). Environmental signals modulate the expression of an indole-3-acetic acid biosynthetic gene in Erwinia herbicola. Mol Plant Microbe Interact, 10, 499–505.
  • Brandl MT, Lindow SE. (1996). Cloning and characterization of a locus encoding an indolepyruvate decarboxylase involved in indole-3-acetic acid synthesis in Erwinia herbicola. Appl Environ Microbiol, 62, 4121–4128.
  • Brandl MT, Quiñones B, Lindow SE. (2001). Heterogeneous transcription of an indoleacetic acid biosynthetic gene in Erwinia herbicola on plant surfaces. Proc Natl Acad Sci USA, 98, 3454–3459.
  • Brandl MT, Clark EM, Lindow SE. (1996). Characterization of the indole-3-acetic acid (IAA) biosynthetic pathway in an epitphytic strain of Erwinia herbicola and IAA production in vitro. Can J Microbiol, 42, 586–592.
  • Brul S, Coote P. (1999). Preservative agents in foods. Mode of action and microbial resistance mechanisms. Int J Food Microbiol, 50, 1–17.
  • Camilleri C, Jouanin L. (1991). The TR-DNA region carrying the auxin synthesis genes of the Agrobacterium rhizogenes agropine-type plasmid pRiA4: nucleotide sequence analysis and introduction into tobacco plants. Mol Plant Microbe Interact, 4, 155–162.
  • Chalupowicz L, Barash I, Panijel M, Sessa G, Manulis-Sasson S. (2009). Regulatory interactions between quorum-sensing, auxin, cytokinin, and the Hrp regulon in relation to gall formation and epiphytic fitness of Pantoea agglomerans pv. gypsophilae. Mol Plant Microbe Interact, 22, 849–856.
  • Chapman EJ, Estelle M. (2009). Mechanism of auxin-regulated gene expression in plants. Annu Rev Genet, 43, 265–285.
  • Chen Z, Agnew JL, Cohen JD, He P, Shan L, Sheen J, Kunkel BN. (2007). Pseudomonas syringae type III effector AvrRpt2 alters Arabidopsis thaliana auxin physiology. Proc Natl Acad Sci USA, 104, 20131–20136.
  • Chung KT, Anderson GM, Fulk GE. (1975). Formation of indoleacetic acid by intestinal anaerobes. J Bacteriol, 124, 573–575.
  • Clark E, Manulis S, Ophir Y, Barash I, Gafni Y. (1993). Cloning and characterization of iaaM and iaaH from Erwinia herbicola pathovar gypsophilae. Phytopathol, 83, 234–240.
  • Codipilly D, Kleinberg I. (2008). Generation of indole/skatole during malodor formation in the salivary sediment model system and initial examination of the oral bacteria involved. J Breath Res, 2, 017017.
  • Coffey L, Owens E, Tambling K, O’Neill D, O’Connor L, O’Reilly C. (2010). Real-time PCR detection of Fe-type nitrile hydratase genes from environmental isolates suggests horizontal gene transfer between multiple genera. Antonie Van Leeuwenhoek, 98, 455–463.
  • Comai L, Surico G, Kosuge T. (1982). Relation of plasmid DNA to indoleacetic acid production in different strains of Pseudomonas syringae pv. savastanoi. J Gen Microbio, 128, 2157–2163.
  • Comai L, Kosuge T. (1983). Transposable element that causes mutations in a plant pathogenic Pseudomonas sp. J Bacteriol, 154, 1162–1167.
  • Comai L, Kosuge T. (1982). Cloning characterization of iaaM, a virulence determinant of Pseudomonas savastanoi. J Bacteriol, 149, 40–46.
  • Comai L, Kosuge T. (1980). Involvement of plasmid deoxyribonucleic acid in indoleacetic acid synthesis in Pseudomonas savastanoi. J Bacteriol, 143, 950–957.
  • Costacurta A, Mazzafera P, Rosato YB. (1998). Indole-3-acetic acid biosynthesis by Xanthomonas axonopodis pv. citri is increased in the presence of plant leaf extracts. FEMS Microbiol Lett, 159, 215–220.
  • Costacurta A, Keijers V, Vanderleyden J. (1994). Molecular cloning and sequence analysis of an Azospirillum brasilense indole-3-pyruvate decarboxylase gene. Mol Gen Genet, 243, 463–472.
  • Curnow AW, Tumbula DL, Pelaschier JT, Min B, Söll D. (1998). Glutamyl-tRNA(Gln) amidotransferase in Deinococcus radiodurans may be confined to asparagine biosynthesis. Proc Natl Acad Sci USA, 95, 12838–12843.
  • Curnow AW, Hong K, Yuan R, Kim S, Martins O, Winkler W, Henkin TM, Söll D. (1997). Glu-tRNAGln amidotransferase: a novel heterotrimeric enzyme required for correct decoding of glutamine codons during translation. Proc Natl Acad Sci USA, 94, 11819–11826.
  • de Melo MP, de Lima TM, Pithon-Curi TC, Curi R. (2004). The mechanism of indole acetic acid cytotoxicity. Toxicol Lett, 148, 103–111.
  • Deslandes B, Gariepy C, Houde A. (2001). Review of microbiological and biochemical effects of skatole on animal production. Livest Prod Sci, 71, 193–200.
  • Dhonukshe P, Tanaka H, Goh T, Ebine K, Mähönen AP, Prasad K, Blilou I, Geldner N, Xu J, Uemura T, Chory J, Ueda T, Nakano A, Scheres B, Friml J. (2008). Generation of cell polarity in plants links endocytosis, auxin distribution and cell fate decisions. Nature, 456, 962–966.
  • Ding X, Cao Y, Huang L, Zhao J, Xu C, Li X, Wang S. (2008). Activation of the indole-3-acetic acid-amido synthetase GH3-8 suppresses expansin expression and promotes salicylate- and jasmonate-independent basal immunity in rice. Plant Cell, 20, 228–240.
  • Dobbelaere S, Croonenborghs A, Thys A, Vande Broek A. (1999). Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat. Plant Soil, 212, 155–164.
  • Dubrovsky JG, Sauer M, Napsucialy-Mendivil S, Ivanchenko MG, Friml J, Shishkova S, Celenza J, Benková E. (2008). Auxin acts as a local morphogenetic trigger to specify lateral root founder cells. Proc Natl Acad Sci USA, 105, 8790–8794.
  • Ellis EM. (2007). Reactive carbonyls and oxidative stress: potential for therapeutic intervention. Pharmacol Ther, 115, 13–24.
  • Elsden SR, Hilton MG, Waller JM. (1976). The end products of the metabolism of aromatic amino acids by Clostridia. Arch Microbiol, 107, 283–288.
  • Emanuele JJ, Fitzpatrick PF. (1995a). Mechanistic studies of the flavoprotein tryptophan 2-monooxygenase. 2. pH and kinetic isotope effects. Biochemistry, 34, 3716–3723.
  • Emanuele JJ, Fitzpatrick PF. (1995b). Mechanistic studies of the flavoprotein tryptophan 2-monooxygenase. 1. Kinetic mechanism. Biochemistry, 34, 3710–3715.
  • Emanuele JJ, Heasley CJ, Fitzpatrick PF. (1995). Purification and characterization of the flavoprotein tryptophan 2-monooxygenase expressed at high levels in Escherichia coli. Arch Biochem Biophys, 316, 241–248.
  • Ernstsen A, Sandberg G, Crozier A, Wheeler CT. (1987). Endogenous indoles and the biosynthesis and metabolism of indole-3-acetic acid in cultures of Rhizobium phaseoli. Planta, 171, 422–428.
  • Ester K, Curkovic-Perica M, Kralj M. (2009). The phytohormone auxin induces G1 cell-cycle arrest of human tumor cells. Planta Med, 75, 1423–1426.
  • Evans ML, Ishikawa H, Estelle MA. (1994). Responses of Arabidopsis roots to auxin studied with high temporal resolution: comparison of wild type and auxin-response mutants. Planta, 194, 215–222.
  • Feil H, Feil WS, Chain P, Larimer F, DiBartolo G, Copeland A, Lykidis A, Trong S, Nolan M, Goltsman E, Thiel J, Malfatti S, Loper JE, Lapidus A, Detter JC, Land M, Richardson PM, Kyrpides NC, Ivanova N, Lindow SE. (2005). Comparison of the complete genome sequences of Pseudomonas syringae pv. syringae B728a and pv. tomato DC3000. Proc Natl Acad Sci USA, 102, 11064–11069.
  • Fernández M, Zúñiga M. (2006). Amino acid catabolic pathways of lactic acid bacteria. Crit Rev Microbiol, 32, 155–183.
  • Fett WF, Osman SF, Dunn MF. (1987). Auxin production by plant-pathogenic pseudomonads and xanthomonads. Appl Environ Microbiol, 53, 1839–1845.
  • Fewson CA. (1988). Microbial metabolism of mandelate: a microcosm of diversity. FEMS Microbiol Rev, 4, 85–110.
  • Fitzpatrick PF. (2010). Oxidation of amines by flavoproteins. Arch Biochem Biophys, 493, 13–25.
  • Flashner MI, Massey V. (1974). Purification and properties of L-lysine monooxygenase from Pseudomonas fluorescens. J Biol Chem, 249, 2579–2586.
  • Furukawa S, Abe M, Usuda K, Ogawa I. (2004). Indole-3-acetic acid induces microencephaly in rat fetuses. Toxicol Pathol, 32, 659–667.
  • Furukawa S, Usuda K, Abe M, Hayashi S, Ogawa I. (2007). Indole-3-acetic acid induces microencephaly in mouse fetuses. Exp Toxicol Pathol, 59, 43–52.
  • Gaffney TD, da Costa e Silva O, Yamada T, Kosuge T. (1990). Indoleacetic acid operon of Pseudomonas syringae subsp. savastanoi: transcription analysis and promoter identification. J Bacteriol, 172, 5593–5601.
  • Gamalero E, Fracchia L, Cavaletto M, Garbaye J, Frey-Klett P, Varesse GC, Martinotti MG. (2003). Characterization of functional traits of two fluorescent pseudomonads isolated from basidiomes of ectomycorrhizal fungi. Soil Biol Biochem, 35, 55–65.
  • Gieg LM, Otter A, Fedorak PM. (1996). Carbazole degradation by Pseudomonas sp. LD2: metabolic characteristics and the identification of some metabolites. Environ Sci Technol, 30, 575–585.
  • Gopalakrishna KN, Stewart BH, Kneen MM, Andricopulo AD, Kenyon GL, McLeish MJ. (2004). Mandelamide hydrolase from Pseudomonas putida: characterization of a new member of the amidase signature family. Biochemistry, 43, 7725–7735.
  • Gray WM, Kepinski S, Rouse D, Leyser O, Estelle M. (2001). Auxin regulates SCF(TIR1)-dependent degradation of AUX/IAA proteins. Nature, 414, 271–276.
  • Guindon S, Lethiec F, Duroux P, Gascuel O. (2005). PHYML Online–a web server for fast maximum likelihood-based phylogenetic inference. Nucleic Acids Res, 33, W557–W559.
  • Gutierrez CK, Matsui GY, Lincoln DE, Lovell CR. (2009). Production of the phytohormone indole-3-acetic acid by estuarine species of the genus Vibrio. Appl Environ Microbiol, 75, 2253–2258.
  • Halda-Alija L. (2003). Identification of indole-3-acetic acid producing freshwater wetland rhizosphere bacteria associated with Juncus effusus L. Can J Microbiol, 49, 781–787.
  • Hall-Stoodley L, Costerton JW, Stoodley P. (2004). Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol, 2, 95–108.
  • Hamilton S, Bongaerts RJ, Mulholland F, Cochrane B, Porter J, Lucchini S, Lappin-Scott HM, Hinton JC. (2009). The transcriptional programme of Salmonella enterica serovar Typhimurium reveals a key role for tryptophan metabolism in biofilms. BMC Genomics, 10, 599.
  • Hashimoto M, Mizutani A, Tago K, Ohnishi-Kameyama M, Shimojo T, Hayatsu M. (2006). Cloning and nucleotide sequence of carbaryl hydrolase gene (cahA) from Arthrobacter sp. RC100. J Biosci Bioeng, 101, 410–414.
  • Hassen AI, Labuschagne N. (2010). Root colonization and growth enhancement in wheat and tomato by rhizobacteria isolated from the rhizoplane of grasses. World J Microbiol Biotechnol, 26, 1837–1846.
  • Hazelwood LA, Daran JM, van Maris AJ, Pronk JT, Dickinson JR. (2008). The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl Environ Microbiol, 74, 2259–2266.
  • Hazelwood LA, Tai SL, Boer VM, de Winde JH, Pronk JT, Daran JM. (2006). A new physiological role for Pdr12p in Saccharomyces cerevisiae: export of aromatic and branched-chain organic acids produced in amino acid catabolism. FEMS Yeast Res, 6, 937–945.
  • Helinck S, Le Bars D, Moreau D, Yvon M. (2004). Ability of thermophilic lactic acid bacteria to produce aroma compounds from amino acids. Appl Environ Microbiol, 70, 3855–3861.
  • Herrera MC, Krell T, Zhang X, Ramos JL. (2009). PhhR binds to target sequences at different distances with respect to RNA polymerase in order to activate transcription. J Mol Biol, 394, 576–586.
  • Howden AJ, Preston GM. (2009). Nitrilase enzymes and their role in plant-microbe interactions. Microb Biotechnol, 2, 441–451.
  • Howden AJ, Rico A, Mentlak T, Miguet L, Preston GM. (2009). Pseudomonas syringae pv. syringae B728a hydrolyses indole-3-acetonitrile to the plant hormone indole-3-acetic acid. Mol Plant Pathol, 10, 857–865.
  • Hunter WJ. (1987). Influence of 5-methyltryptophan-resistant Bradyrhizobium japonicum on soybean root nodule indole-3-acetic acid content. Appl Environ Microbiol, 53, 1051–1055.
  • Hutcheson SW, Kosuge T. (1985). Regulation of 3-indoleacetic acid production in Pseudomonas syringae pv. savastanoi. Purification and properties of tryptophan 2-monooxygenase. J Biol Chem, 260, 6281–6287.
  • Iacobellis NS, Sisto A, Surico G, Evidente A, DiMaio E. (1994). Pathogenicity of Pseudmonas syringae subsp. savastanoi mutants defective in phytohormone production. J Phytopathol, 140, 238–248.
  • Ivanova EG, Doronina NV, Trotsenko IuA. (2001). [Aerobic methylobacteria are capable of synthesizing auxins]. Mikrobiologiia, 70, 452–458.
  • Jaeger CH 3rd, Lindow SE, Miller W, Clark E, Firestone MK. (1999). Mapping of sugar and amino acid availability in soil around roots with bacterial sensors of sucrose and tryptophan. Appl Environ Microbiol, 65, 2685–2690.
  • Kamilova F, Kravchenko LV, Shaposhnikov AI, Azarova T, Makarova N, Lugtenberg B. (2006). Organic acids, sugars, and L-tryptophane in exudates of vegetables growing on stonewool and their effects on activities of rhizosphere bacteria. Mol Plant Microbe Interact, 19, 250–256.
  • Kaneshiro T, Kwolek WF. (1985). Stimulated nodulation of soybeans by Rhizobium japonicum that catabolizes the conversion of tryptophan to indole-3-acetic acid. Plant Sci, 42, 141–146.
  • Kaneshiro T, Slodki ME, Plattner RD. (1983). Tryptophan catabolism to indolepyruvic and indoleacetic acid by Rhizobium japonicum L-259 mutants. Curr Microbiol, 8, 301–308.
  • Kato Y, Nakamura K, Sakiyama H, Mayhew SG, Asano Y. (2000). Novel heme-containing lyase, phenylacetaldoxime dehydratase from Bacillus sp. strain OxB-1: purification, characterization, and molecular cloning of the gene. Biochemistry, 39, 800–809.
  • Kazan K, Manners JM. (2009). Linking development to defense: auxin in plant-pathogen interactions. Trends Plant Sci, 14, 373–382.
  • Kemper E, Waffenschmidt S, Weiler EW, Rausch T, Schröder J. (1985). T-DNA auxin formation in crown gall cells. Planta, 163, 257–262.
  • Kittell BL, Helinski DR, Ditta GS. (1989). Aromatic aminotransferase activity and indoleacetic acid production in Rhizobium meliloti. J Bacteriol, 171, 5458–5466.
  • Kiziak C, Conradt D, Stolz A, Mattes R, Klein J. (2005). Nitrilase from Pseudomonas fluorescens EBC191: cloning and heterologous expression of the gene and biochemical characterization of the recombinant enzyme. Microbiology (Reading, Engl), 151, 3639–3648.
  • Kneen MM, Stan R, Yep A, Tyler RP, Saehuan C, McLeish MJ. (2011). Characterization of a thiamin diphosphate-dependent phenylpyruvate decarboxylase from Saccharomyces cerevisiae. FEBS J, 278, 1842–1853.
  • Kobayashi M, Suzuki T, Fujita T, Masuda M, Shimizu S. (1995). Occurrence of enzymes involved in biosynthesis of indole-3-acetic acid from indole-3-acetonitrile in plant-associated bacteria, Agrobacterium and Rhizobium. Proc Natl Acad Sci USA, 92, 714–718.
  • Kobayashi M, Komeda H, Nagasawa T, Nishiyama M, Horinouchi S, Beppu T, Yamada H, Shimizu S. (1993). Amidase coupled with low-molecular-mass nitrile hydratase from Rhodococcus rhodochrous J1. Sequencing and expression of the gene and purification and characterization of the gene product. Eur J Biochem, 217, 327–336.
  • Koga J. (1995). Structure and function of indolepyruvate decarboxylase, a key enzyme in indole-3-acetic acid biosynthesis. Biochim Biophys Acta, 1249, 1–13.
  • Koga J, Adachi T, Hidaka H. (1992). Purification and characterization of indolepyruvate decarboxylase. A novel enzyme for indole-3-acetic acid biosynthesis in Enterobacter cloacae. J Biol Chem, 267, 15823–15828.
  • Koga J, Adachi T, Hidaka H. (1991). Molecular cloning of the gene for indolepyruvate decarboxylase from Enterobacter cloacae. Mol Gen Genet, 226, 10–16.
  • Koga J, Syono K, Ichikawa T, Adachi T. (1994). Involvement of L-tryptophan aminotransferase in indole-3-acetic acid biosynthesis in Enterobacter cloacae. Biochim Biophys Acta, 1209, 241–247.
  • Koshiba T, Saito E, Ono N, Yamamoto N, Sato M. (1996). Purification and Properties of Flavin- and Molybdenum-Containing Aldehyde Oxidase from Coleoptiles of Maize. Plant Physiol, 110, 781–789.
  • Koyama H. (1982). Purification and characterization of a novel L-phenylalanine oxidase (Deaminating and decarboxylating) from Pseudomonas sp. P-501. J Biochem, 92, 1235–1240.
  • Kuo T, Kosuge T. (1970). Role of aminotransferase and indole-3-pyruvic acid in the synthesis of indole-3-acetic acid in Pseudomonas savastanoi. J Gen Appl Microbiol, 16, 191–204.
  • Kurosawa N, Hirata T, Suzuki H. (2009). Characterization of putative tryptophan monooxygenase from Ralstonia solanacearum [corrected]. J Biochem, 146, 23–32.
  • Lambrecht M, Vande Broek A, Dosselaere F, Vanderleyden J. (1999). The ipdC promoter auxin-responsive element of Azospirillum brasilense, a prokaryotic ancestral form of the plant AuxRE? Mol Microbiol, 32, 889–891.
  • Layh N, Parratt J, Willetts A. (1998). Characterization and partial purification of an enantioselective arylacetonitrilase from Pseudomonas fluorescens DSM 7155. J Mol Catal, 5, 467–474.
  • Lebuhn M, Heulin T, Hartmann A. (1997). Production of auxin and other indolic and phenolic compounds by Paenibacillus polymyxa strains isolated from different proximity to plant roots. FEMS Microbiol Ecol, 22, 325–334.
  • Lehmann T, Hoffmann M, Hentrich M, Pollmann S. (2010). Indole-3-acetamide-dependent auxin biosynthesis: a widely distributed way of indole-3-acetic acid production? Eur J Cell Biol, 89, 895–905.
  • Leveau JH, Gerards S. (2008). Discovery of a bacterial gene cluster for catabolism of the plant hormone indole 3-acetic acid. FEMS Microbiol Ecol, 65, 238–250.
  • Leveau JH, Lindow SE. (2005). Utilization of the plant hormone indole-3-acetic acid for growth by Pseudomonas putida strain 1290. Appl Environ Microbiol, 71, 2365–2371.
  • Liba CM, Ferrara FI, Manfio GP, Fantinatti-Garboggini F, Albuquerque RC, Pavan C, Ramos PL, Moreira-Filho CA, Barbosa HR. (2006). Nitrogen-fixing chemo-organotrophic bacteria isolated from cyanobacteria-deprived lichens and their ability to solubilize phosphate and to release amino acids and phytohormones. J Appl Microbiol, 101, 1076–1086.
  • Linden A, Desmecht D, Vandenput S, Van de Weerdt ML, Lekeux P. (1996). Effect of serotonergic blockade on calf pulmonary function after the intravenous administration of 3-methylindole. J Comp Pathol, 114, 361–371.
  • Liu M, Nauta A, Francke C, Siezen RJ. (2008). Comparative genomics of enzymes in flavor-forming pathways from amino acids in lactic acid bacteria. Appl Environ Microbiol, 74, 4590–4600.
  • Liu P, Nester EW. (2006). Indoleacetic acid, a product of transferred DNA, inhibits vir gene expression and growth of Agrobacterium tumefaciens C58. Proc Natl Acad Sci USA, 103, 4658–4662.
  • Liu ST, Perry KL, Schardl CL, Kado CI. (1982). Agrobacterium Ti plasmid indoleacetic acid gene is required for crown gall oncogenesis. Proc Natl Acad Sci USA, 79, 2812–2816.
  • Liu X, Jia J, Popat R, Ortori CA, Li J, Diggle SP, Gao K, Cámara M. (2011). Characterisation of two quorum sensing systems in the endophytic Serratia plymuthica strain G3: differential control of motility and biofilm formation according to life-style. BMC Microbiol, 11, 26.
  • Löbler M, Klämbt D. (1985). Auxin-binding protein from coleoptile membranes of corn (Zea mays L.). I. Purification by immunological methods and characterization. J Biol Chem, 260, 9848–9853.
  • Loper JE, Schroth MN. (1986). Influence of bacterial sources of indole-3-acetic acid on root elongation of sugar beet. Phytopathol, 76, 386–389.
  • Malamy JE, Benfey PN. (1997). Down and out in Arabidopsis: the formation of lateral roots. Trends Plant Sci, 2, 390–396.
  • Malhotra M, Srivastava S. (2009). Stress-responsive indole-3-acetic acid biosynthesis by Azospirillum brasilense SM and its ability to modulate plant growth. Eur J Soil Biol, 45, 73–80.
  • Malhotra M, Srivastava S. (2008). An ipdC gene knock-out of Azospirillum brasilense strain SM and its implications on indole-3-acetic acid biosynthesis and plant growth promotion. Antonie Van Leeuwenhoek, 93, 425–433.
  • Manulis S, Valinski L, Gafni Y, Hershenhorn J. (1991). Indole-3-acetic acid biosynthetic pathways in Erwinia herbicola in relation to pathogenicity on Gypsophila paniculata. Physiol Mol Plant Pathol, 39, 161–171.
  • Manulis S, Haviv-Chesner A, Brandl MT, Lindow SE, Barash I. (1998). Differential involvement of indole-3-acetic acid biosynthetic pathways in pathogenicity and epiphytic fitness of Erwinia herbicola pv. gypsophilae. Mol Plant Microbe Interact, 11, 634–642.
  • Martens DA, Frankenberger WT. (1994). Assimilation of exogenous 2′-14C-indole-3-acetic acid and 3′-14C-tryptophan exposed to the roots of three wheat varieties. Plant Soil, 166, 281–290.
  • Mayak S, Tirosh T, Glick BR. (1997). The influence of plant growth promoting rhizobacterium pseudomonas putida GR12-2 on the rooting of mung bean cuttings. In: Ogoshi A, Kobayashi K, Homma Y, Kodama F, Kondo N, Akino S, eds. Plant growth-promoting rhizobacteria: Present status and future prospects. Paris: OECD, 313–315.
  • Mayaux JF, Cerbelaud E, Soubrier F, Yeh P, Blanche F, Pétré D. (1991). Purification, cloning, and primary structure of a new enantiomer-selective amidase from a Rhodococcus strain: structural evidence for a conserved genetic coupling with nitrile hydratase. J Bacteriol, 173, 6694–6704.
  • Mazzola M, White FF. (1994). A mutation in the indole-3-acetic acid biosynthesis pathway of Pseudomonas syringae pv. syringae affects growth in Phaseolus vulgaris and syringomycin production. J Bacteriol, 176, 1374–1382.
  • McLeish MJ, Kneen MM, Gopalakrishna KN, Koo CW, Babbitt PC, Gerlt JA, Kenyon GL. (2003). Identification and characterization of a mandelamide hydrolase and an NAD(P)+-dependent benzaldehyde dehydrogenase from Pseudomonas putida ATCC 12633. J Bacteriol, 185, 2451–2456.
  • Meuwley P, Pilet P. (1991). Local treatment with indole-3-acetic acid induces differential growth responses in Zea mays L. roots. Planta, 185, 58–64.
  • Mikkelsen MD, Hansen CH, Wittstock U, Halkier BA. (2000). Cytochrome P450 CYP79B2 from Arabidopsis catalyzes the conversion of tryptophan to indole-3-acetaldoxime, a precursor of indole glucosinolates and indole-3-acetic acid. J Biol Chem, 275, 33712–33717.
  • Mino Y. (1970). Studies on destruction of indole-3-acetic acid by a species of Arthrobacter. IV. Decomposition products. Plant Cell Physiol, 11, 129–138.
  • Mohammed N, Onodera R, Or-Rashid MM. (2003). Degradation of tryptophan and related indolic compounds by ruminal bacteria, protozoa and their mixture in vitro. Amino Acids, 24, 73–80.
  • Morris DA, Johnson CF. (1987). Regulation of auxin transport in pea (Pisum sativum L.) by phenylacetic acid: Inhibition of polar auxin transport in intact plants and in stem segments. Planta, 172, 408–416.
  • Müller H, Westendorf C, Leitner E, Chernin L, Riedel K, Schmidt S, Eberl L, Berg G. (2009). Quorum-sensing effects in the antagonistic rhizosphere bacterium Serratia plymuthica HRO-C48. FEMS Microbiol Ecol, 67, 468–478.
  • Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JD. (2006). A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science, 312, 436–439.
  • O’Brien PJ, Siraki AG, Shangari N. (2005). Aldehyde sources, metabolism, molecular toxicity mechanisms, and possible effects on human health. Crit Rev Toxicol, 35, 609–662.
  • Okamoto S, Eltis LD. (2007). Purification and characterization of a novel nitrile hydratase from Rhodococcus sp. RHA1. Mol Microbiol, 65, 828–838.
  • O’Mahony R, Doran J, Coffey L, Cahill OJ, Black GW, O’Reilly C. (2005). Characterisation of the nitrile hydratase gene clusters of Rhodococcus erythropolis strains AJ270 and AJ300 and Microbacterium sp. AJ115 indicates horizontal gene transfer and reveals an insertion of IS1166. Antonie Van Leeuwenhoek, 87, 221–232.
  • Omay SH, Schmidt WA, Martin P, Bangerth F. (1993). Indoleacetic acid production in the rhizosphere bacterium Azospirillum brasilense Cd under in vitro conditions. Can J Microbiol, 39, 187–192.
  • Ona O, Van Impe J, Prinsen E, Vanderleyden J. (2005). Growth and indole-3-acetic acid biosynthesis of Azospirillum brasilense Sp245 is environmentally controlled. FEMS Microbiol Lett, 246, 125–132.
  • O’Reilly C, Turner PD. (2003). The nitrilase family of CN hydrolysing enzymes - a comparative study. J Appl Microbiol, 95, 1161–1174.
  • Pace HC, Brenner C. (2001). The nitrilase superfamily: classification, structure and function. Genome Biol, 2, REVIEWS0001.
  • Patek M, Knoppova M, Volkova O, Pavlik A, Kubac D, Nesvera J, Martinkova L. (2009). Organization, regulation and expression of nitrile degradation genes of Rhodococcus erythropolis. N Biotechnol 25, 104.
  • Patten CL, Glick BR. (2002a). Regulation of indoleacetic acid production in Pseudomonas putida GR12-2 by tryptophan and the stationary-phase sigma factor RpoS. Can J Microbiol, 48, 635–642.
  • Patten CL, Glick BR. (2002b). Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol, 68, 3795–3801.
  • Peck SC, Kende H. (1995). Sequential induction of the ethylene biosynthetic enzymes by indole-3-acetic acid in etiolated peas. Plant Mol Biol, 28, 293–301.
  • Peer WA, Blakeslee JJ, Yang H, Murphy AS. (2011). Seven things we think we know about auxin transport. Mol Plant, 4, 487–504.
  • Petrásek J, Friml J. (2009). Auxin transport routes in plant development. Development, 136, 2675–2688.
  • Phi QT, Park YM, Ryu CM, Park SH, Ghim SY. (2008). Functional identification and expression of indole-3-pyruvate decarboxylase from Paenibacillus polymyxa E681. J Microbiol Biotechnol, 18, 1235–1244.
  • Pilet PE, Saugy M. (1987). Effect on Root Growth of Endogenous and Applied IAA and ABA: A Critical Reexamination. Plant Physiol, 83, 33–38.
  • Pittard J, Camakaris H, Yang J. (2005). The TyrR regulon. Mol Microbiol, 55, 16–26.
  • Pohl M, Sprenger GA, Müller M. (2004). A new perspective on thiamine catalysis. Curr Opin Biotechnol, 15, 335–342.
  • Prinsen E, Costacurta A, Michiels K, Vanderleyden J, Van Onckelen H. (1993). Azospirillum brasilense indole-3-acetic acid biosyntheis – evidence for a nontryptophan-dependent pathway. Mol Plant Microbe Interact 6, 609–615.
  • Prusty R, Grisafi P, Fink GR. (2004). The plant hormone indoleacetic acid induces invasive growth in Saccharomyces cerevisiae. Proc Natl Acad Sci USA, 101, 4153–4157.
  • Raddidi N, Cherif A, Boudabous A, Daffonchio D. (2008). Screening of plant growth promoting traits of Bacillus thuringiensis. Ann Microbiol, 58, 47–52.
  • Revelles O, Espinosa-Urgel M, Fuhrer T, Sauer U, Ramos JL. (2005). Multiple and interconnected pathways for L-lysine catabolism in Pseudomonas putida KT2440. J Bacteriol, 187, 7500–7510.
  • Rijnen L, Bonneau S, Yvon M. (1999). Genetic characterization of the major lactococcal aromatic aminotransferase and its involvement in conversion of amino acids to aroma compounds. Appl Environ Microbiol, 65, 4873–4880.
  • Robinette D, Matthysse AG. (1990). Inhibition by Agrobacterium tumefaciens and Pseudomonas savastanoi of development of the hypersensitive response elicited by Pseudomonas syringae pv. phaseolicola. J Bacteriol, 172, 5742–5749.
  • Rodionov DA, Novichkov PS, Stavrovskaya ED, Rodionova IA, Li X, Kazanov MD, Ravcheev DA, Gerasimova AV, Kazakov AE, Kovaleva GY, Permina EA, Laikova ON, Overbeek R, Romine MF, Fredrickson JK, Arkin AP, Dubchak I, Osterman AL, Gelfand MS. (2011). Comparative genomic reconstruction of transcriptional networks controlling central metabolism in the Shewanella genus. BMC Genomics, 12 Suppl 1, S3.
  • Rothballer M, Schmid M, Fekete A, Hartmann A. (2005). Comparative in situ analysis of ipdC-gfpmut3 promoter fusions of Azospirillum brasilense strains Sp7 and Sp245. Environ Microbiol, 7, 1839–1846.
  • Russell WR, Gratz SW, Duncan SH, Holtrop G, Ince J, Scobbie L, Duncan G, Johnstone AM, Lobley GE, Wallace RJ, Duthie GG, Flint HJ. (2011). High-protein, reduced-carbohydrate weight-loss diets promote metabolite profiles likely to be detrimental to colonic health. Am J Clin Nutr, 93, 1062–1072.
  • Ryu RJ, Patten CL. (2008). Aromatic amino acid-dependent expression of indole-3-pyruvate decarboxylase is regulated by TyrR in Enterobacter cloacae UW5. J Bacteriol, 190, 7200–7208.
  • Saleh SS, Glick BR. (2001). Involvement of gacS and rpoS in enhancement of the plant growth-promoting capabilities of Enterobacter cloacae CAL2 and UW4. Can J Microbiol, 47, 698–705.
  • Sánchez-Rodríguez C, Rubio-Somoza I, Sibout R, Persson S. (2010). Phytohormones and the cell wall in Arabidopsis during seedling growth. Trends Plant Sci, 15, 291–301.
  • Schröder G, Waffenschmidt S, Weiler EW, Schröder J. (1984). The T-region of Ti plasmids codes for an enzyme synthesizing indole-3-acetic acid. Eur J Biochem, 138, 387–391.
  • Schütz A, Golbik R, König S, Hübner G, Tittmann K. (2005). Intermediates and transition states in thiamin diphosphate-dependent decarboxylases. A kinetic and NMR study on wild-type indolepyruvate decarboxylase and variants using indolepyruvate, benzoylformate, and pyruvate as substrates. Biochemistry, 44, 6164–6179.
  • Schütz A, Sandalova T, Ricagno S, Hübner G, König S, Schneider G. (2003a). Crystal structure of thiamindiphosphate-dependent indolepyruvate decarboxylase from Enterobacter cloacae, an enzyme involved in the biosynthesis of the plant hormone indole-3-acetic acid. Eur J Biochem, 270, 2312–2321.
  • Schütz A, Golbik R, Tittmann K, Svergun DI, Koch MH, Hübner G, König S. (2003b). Studies on structure-function relationships of indolepyruvate decarboxylase from Enterobacter cloacae, a key enzyme of the indole acetic acid pathway. Eur J Biochem, 270, 2322–2331.
  • Sekimoto H, Seo M, Kawakami N, Komano T, Desloire S, Liotenberg S, Marion-Poll A, Caboche M, Kamiya Y, Koshiba T. (1998). Molecular cloning and characterization of aldehyde oxidases in Arabidopsis thaliana. Plant Cell Physiol, 39, 433–442.
  • Seo M, Akaba S, Oritani T, Delarue M, Bellini C, Caboche M, Koshiba T. (1998). Higher activity of an aldehyde oxidase in the auxin-overproducing superroot1 mutant of Arabidopsis thaliana. Plant Physiol, 116, 687–693.
  • Sezonov G, Joseleau-Petit D, D’Ari R. (2007). Escherichia coli physiology in Luria-Bertani broth. J Bacteriol, 189, 8746–8749.
  • Sheppard K, Söll D. (2008). On the evolution of the tRNA-dependent amidotransferases, GatCAB and GatDE. J Mol Biol, 377, 831–844.
  • Shokri D, Emtiazi G. (2010). Indole-3-acetic acid (IAA) production in symbiotic and non-symbiotic nitrogen-fixing bacteria and its optimization by Taguchi design. Curr Microbiol, 61, 217–225.
  • Simon S, Petrášek J. (2011). Why plants need more than one type of auxin. Plant Sci, 180, 454–460.
  • Singh RP, Bijo AJ, Baghel RS, Reddy CR, Jha B. (2011). Role of bacterial isolates in enhancing the bud induction in the industrially important red alga Gracilaria dura. FEMS Microbiol Ecol, 76, 381–392.
  • Small DK, Morris DA. (1990). Promotion of elongation and acid invertase activity in Phaseolus vulgaris L. internode segments by phenylacetic acid. Plant Growth Regulat, 9, 329–340.
  • Smidt M, Kosuge T. (1978). The role of indole-3-acetic acid accumulation by alpha methyl tryptophan-resistant mutants of Pseudomonas savastanoi in gall formation on oleanders. Physiol Plant Pathol, 13, 203–214.
  • Smit BA, van Hylckama Vlieg JE, Engels WJ, Meijer L, Wouters JT, Smit G. (2005). Identification, cloning, and characterization of a Lactococcus lactis branched-chain alpha-keto acid decarboxylase involved in flavor formation. Appl Environ Microbiol, 71, 303–311.
  • Smith EA, Macfarlane GT. (1997). Formation of phenolic and indolic compounds by anaerobic bacteria in the human large intestine. Microb Ecol, 33, 180–188.
  • Smith EA, Macfarlane GT. (1996). Enumeration of human colonic bacteria producing phenolic and indolic compounds: effects of pH, carbohydrate availability and retention time on dissimilatory aromatic amino acid metabolism. J Appl Bacteriol, 81, 288–302.
  • Sokolova MG, Akimova GP, Vaishlia OB. (2011). [Effect of phytohormones synthesized by rhizosphere bacteria on plants]. Prikl Biokhim Mikrobiol, 47, 302–307.
  • Spaepen S, Dobbelaere S, Croonenborghs A, Vanderleyden J. (2008). Effects of Azospirillum brasilense indole-3-acetic acid production on inoculated wheat plants. Plant Soil, 312, 15–23.
  • Spaepen S, Versées W, Gocke D, Pohl M, Steyaert J, Vanderleyden J. (2007). Characterization of phenylpyruvate decarboxylase, involved in auxin production of Azospirillum brasilense. J Bacteriol, 189, 7626–7633.
  • Surico G, Comai L, Kosuge T. (1984). Pathogenicity of strains of Pseudomonas syringae pv. savastanoi and theri indoleacetic acid-deficient mutants on olive and oleander. Phytopathol, 74, 490–493.
  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol, 28, 2731–2739.
  • Teufel R, Mascaraque V, Ismail W, Voss M, Perera J, Eisenreich W, Haehnel W, Fuchs G. (2010). Bacterial phenylalanine and phenylacetate catabolic pathway revealed. Proc Natl Acad Sci USA, 107, 14390–14395.
  • Theunis M, Kobayashi H, Broughton WJ, Prinsen E. (2004). Flavonoids, NodD1, NodD2, and nod-box NB15 modulate expression of the y4wEFG locus that is required for indole-3-acetic acid synthesis in Rhizobium sp. strain NGR234. Mol Plant Microbe Interact, 17, 1153–1161.
  • Thimann KV, Lane RH. (1938). After-effects of treatment of seed with auxin. Am J Bot, 25, 535–543.
  • Thomashow LS, Reeves S, Thomashow MF. (1984). Crown gall oncogenesis: evidence that a T-DNA gene from the Agrobacterium Ti plasmid pTiA6 encodes an enzyme that catalyzes synthesis of indoleacetic acid. Proc Natl Acad Sci USA, 81, 5071–5075.
  • Thornton-Manning JR, Nichols WK, Manning BW, Skiles GL, Yost GS. (1993). Metabolism and bioactivation of 3-methylindole by Clara cells, alveolar macrophages, and subcellular fractions from rabbit lungs. Toxicol Appl Pharmacol, 122, 182–190.
  • Van Onckelen H, Prinsen E, Inze D, Rudelsheim R, Van Lijsebettens M, Follin A, Schell J, Van Montagu M, De Greef J. (1986). Agrobacterium T-DNA gene 1 codes for tryptophan 2-monooxygenase activity in tobacco crown gall cells. FEBS Lett, 198, 357–360.
  • Van Puyvelde S, Cloots L, Engelen K, Das F, Marchal K, Vanderleyden J, Spaepen S. (2011). Transcriptome analysis of the rhizosphere bacterium Azospirillum brasilense reveals an extensive auxin response. Microb Ecol, 61, 723–728.
  • Vande Broek A, Lambrecht M, Eggermont K, Vanderleyden J. (1999). Auxins upregulate expression of the indole-3-pyruvate decarboxylase gene in Azospirillum brasilense. J Bacteriol, 181, 1338–1342.
  • Vande Broek A, Gysegom P, Ona O, Hendrickx N, Prinsen E, Van Impe J, Vanderleyden J. (2005). Transcriptional analysis of the Azospirillum brasilense indole-3-pyruvate decarboxylase gene and identification of a cis-acting sequence involved in auxin responsive expression. Mol Plant Microbe Interact, 18, 311–323.
  • Vandeputte O, Oden S, Mol A, Vereecke D, Goethals K, El Jaziri M, Prinsen E. (2005). Biosynthesis of auxin by the gram-positive phytopathogen Rhodococcus fascians is controlled by compounds specific to infected plant tissues. Appl Environ Microbiol, 71, 1169–1177.
  • Vega-Hernández MC, León-Barrios M, Pérez-Galdona R. (2002). Indole-3-acetic acid production from indole-3-acetonitrile in Bradyrhizobium. Soil Biol Biochem, 34, 665–668.
  • Versées W, Spaepen S, Vanderleyden J, Steyaert J. (2007). The crystal structure of phenylpyruvate decarboxylase from Azospirillum brasilense at 1.5 A resolution. Implications for its catalytic and regulatory mechanism. FEBS J, 274, 2363–2375.
  • Vesely DL, Hudson JL, Pipkin JL Jr, Pack LD, Meiners SE. (1985). Plant growth-promoting hormones activate mammalian guanylate cyclase activity. Endocrinology, 116, 1887–1892.
  • Wakagi T, Fukuda E, Ogawa Y, Kino H, Matsuzawa H. (2002). A novel bifunctional molybdo-enzyme catalyzing both decarboxylation of indolepyruvate and oxidation of indoleacetaldehyde from a thermoacidophilic archaeon, Sulfolobus sp. strain 7. FEBS Lett, 510, 196–200.
  • Wang D, Pajerowska-Mukhtar K, Culler AH, Dong X. (2007). Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Curr Biol, 17, 1784–1790.
  • Waters CM, Bassler BL. (2005). Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol, 21, 319–346.
  • Werther T, Spinka M, Tittmann K, Schütz A, Golbik R, Mrestani-Klaus C, Hübner G, König S. (2008). Amino acids allosterically regulate the thiamine diphosphate-dependent alpha-keto acid decarboxylase from Mycobacterium tuberculosis. J Biol Chem, 283, 5344–5354.
  • White FF, Ziegler SF. (1991). Cloning of the genes for indoleacetic acid synthesis from Pseudomonas syringae pv. syringae. Mol Plant Microbe Interact, 4, 207–210.
  • Whitehead TR, Price NP, Drake HL, Cotta MA. (2008). Catabolic pathway for the production of skatole and indoleacetic acid by the acetogen Clostridium drakei, Clostridium scatologenes, and swine manure. Appl Environ Microbiol, 74, 1950–1953.
  • Wightman F, Lighty DL. (1982). Identification of phenylacetic acid as a natural auxin in the shoots of higher plants. Physiol Plant, 55, 17–24.
  • Wightman F, Schneider EA, Thimann KV. (1980). Hormonal factors controlling the initiation and development of lateral roots. II. Effects of exogenous growth factors on lateral root formation in pea roots. Physiol Plant, 49, 304–314.
  • Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC, Siuzdak G. (2009). Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci USA, 106, 3698–3703.
  • Xie H, Pasternak JJ, Glick BR. (1996). Isolation and characterization of mutants of the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2 that overproduce indoleacetic acid. Curr Microbiol, 32, 67–71.
  • Xie SX, Kato Y, Komeda H, Yoshida S, Asano Y. (2003). A gene cluster responsible for alkylaldoxime metabolism coexisting with nitrile hydratase and amidase in Rhodococcus globerulus A-4. Biochemistry, 42, 12056–12066.
  • Yamada T. (1993). The role of auxin in plant-disease development. Annu Rev Phytopathol, 31, 253–273.
  • Yang S, Zhang Q, Guo J, Charkowski AO, Glick BR, Ibekwe AM, Cooksey DA, Yang CH. (2007). Global effect of indole-3-acetic acid biosynthesis on multiple virulence factors of Erwinia chrysanthemi 3937. Appl Environ Microbiol, 73, 1079–1088.
  • Yang S, Perna NT, Cooksey DA, Okinaka Y, Lindow SE, Ibekwe AM, Keen NT, Yang CH. (2004). Genome-wide identification of plant-upregulated genes of Erwinia chrysanthemi 3937 using a GFP-based IVET leaf array. Mol Plant Microbe Interact, 17, 999–1008.
  • Yanofsky C, Horn V, Gollnick P. (1991). Physiological studies of tryptophan transport and tryptophanase operon induction in Escherichia coli. J Bacteriol, 173, 6009–6017.
  • Yokoyama MT, Carlson JR. (1979). Microbial metabolites of tryptophan in the intestinal tract with special reference to skatole. Am J Clin Nutr, 32, 173–178.
  • Yuan ZC, Haudecoeur E, Faure D, Kerr KF, Nester EW. (2008). Comparative transcriptome analysis of Agrobacterium tumefaciens in response to plant signal salicylic acid, indole-3-acetic acid and gamma-amino butyric acid reveals signalling cross-talk and Agrobacterium–plant co-evolution. Cell Microbiol, 10, 2339–2354.
  • Yvon M, Thirouin S, Rijnen L, Fromentier D, Gripon JC. (1997). An aminotransferase from Lactococcus lactis initiates conversion of amino acids to cheese flavor compounds. Appl Environ Microbiol, 63, 414–419.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.