1,521
Views
110
CrossRef citations to date
0
Altmetric
Review Article

Bacteriophage virion-associated peptidoglycan hydrolases: potential new enzybiotics

, , , &
Pages 427-434 | Received 26 Jun 2012, Accepted 20 Aug 2012, Published online: 20 Sep 2012

References

  • Abedon ST. (2011). Lysis from without. Bacteriophage, 1, 46–49.
  • Bateman A, Rawlings ND. (2003). The CHAP domain: a large family of amidases including GSP amidase and peptidoglycan hydrolases. Trends Biochem Sci, 28, 234–237.
  • Boulanger P, Jacquot P, Plançon L, Chami M, Engel A, Parquet C, Herbeuval C, Letellier L. (2008). Phage T5 straight tail fiber is a multifunctional protein acting as a tape measure and carrying fusogenic and muralytic activities. J Biol Chem, 283, 13556–13564.
  • Briers Y, Lavigne R, Plessers P, Hertveldt K, Hanssens I, Engelborghs Y, Volckaert G. (2006). Stability analysis of the bacteriophage phiKMV lysin gp36C and its putative role during infection. Cell Mol Life Sci, 63, 1899–1905.
  • Briers Y, Miroshnikov K, Chertkov O, Nekrasov A, Mesyanzhinov V, Volckaert G, Lavigne R. (2008). The structural peptidoglycan hydrolase gp181 of bacteriophage phiKZ. Biochem Biophys Res Commun, 374, 747–751.
  • Caldentey J, Bamford DH. (1992). The lytic enzyme of the Pseudomonas phage phi 6. Purification and biochemical characterization. Biochim Biophys Acta, 1159, 44–50.
  • Callewaert L, Walmagh M, Michiels CW, Lavigne R. (2011). Food applications of bacterial cell wall hydrolases. Curr Opin Biotechnol, 22, 164–171.
  • Courchesne NM, Parisien A, Lan CQ. (2009). Production and application of bacteriophage and bacteriophage-encoded lysins. Recent Pat Biotechnol, 3, 37–45.
  • Clark JR, March JB. (2006). Bacteriophages and biotechnology: vaccines, gene therapy and antibacterials. Trends Biotechnol, 24, 212–218.
  • Daugelavicius R, Cvirkaite V, Gaidelyte A, Bakiene E, Gabrenaite-Verkhovskaya R, Bamford DH. (2005). Penetration of enveloped double-stranded RNA bacteriophages phi13 and phi6 into Pseudomonas syringae cells. J Virol, 79, 5017–5026.
  • Delbrück M. (1940). The growth of bacteriophage and lysis of the host. J Gen Physiol, 23, 643–660.
  • During K, Porsch P, Fladung M, Lörz H. (1993). Transgenic potato plants resistant to the phytopathogenic bacterium Erwinia carotovora. Plant J, 3, 587–598.
  • Fallico V, Ross RP, Fitzgerald GF, McAuliffe O. (2011). Genetic response to bacteriophage infection in Lactococcus lactis reveals a four-strand approach involving induction of membrane stress proteins, D-alanylation of the cell wall, maintenance of proton motive force, and energy conservation. J Virol, 85, 12032–12042.
  • Fenton M, Ross P, McAuliffe O, O’Mahony J, Coffey A. (2010). Recombinant bacteriophage lysins as antibacterials. Bioeng Bugs, 1, 9–16.
  • Fischetti VA. (2005). Bacteriophage lytic enzymes: novel anti-infectives. Trends Microbiol, 13, 491–496.
  • Fischetti VA. (2010). Bacteriophage endolysins: a novel anti-infective to control Gram-positive pathogens. Int J Med Microbiol, 300, 357–362.
  • Fraser JS, Maxwell KL, Davidson AR. (2007). Immunoglobulin-like domains on bacteriophage: weapons of modest damage? Curr Opin Microbiol, 10, 382–387.
  • Frias MJ, Melo-Cristino J, Ramirez M. (2009). The autolysin LytA contributes to efficient bacteriophage progeny release in Streptococcus pneumoniae. J Bacteriol, 191, 5428–5440.
  • García P, Martínez B, Obeso JM, Rodríguez A. (2008). Bacteriophages and their application in food safety. Lett Appl Microbiol, 47, 479–485.
  • García P, Rodríguez L, Rodríguez A, Martínez B. (2010). Food biopreservation: promising strategies using bacteriocins, bacteriophages and endolysins. Trends Food Sci Tech, 21, 373–382.
  • Hendrix RW, Lawrence JG, Hatfull GF, Casjens S. (2000). The origins and ongoing evolution of viruses. Trends Microbiol, 8, 504–508.
  • Hermoso JA, García JL, García P. (2007). Taking aim on bacterial pathogens: from phage therapy to enzybiotics. Curr Opin Microbiol, 10, 461–472.
  • Kanamaru S, Ishiwata Y, Suzuki T, Rossmann MG, Arisaka F. (2005). Control of bacteriophage T4 tail lysozyme activity during the infection process. J Mol Biol, 346, 1013–1020.
  • Kao SH, McClain WH. (1980). Baseplate protein of bacteriophage T4 with both structural and lytic functions. J Virol, 34, 95–103.
  • Kasman LM, Kasman A, Westwater C, Dolan J, Schmidt MG, Norris JS. (2002). Overcoming the phage replication threshold: a mathematical model with implications for phage therapy. J Virol, 76, 5557–5564.
  • Kenny JG, McGrath S, Fitzgerald GF, van Sinderen D. (2004). Bacteriophage Tuc2009 encodes a tail-associated cell wall-degrading activity. J Bacteriol, 186, 3480–3491.
  • Kivelä HM, Daugelavicius R, Hankkio RH, Bamford JK, Bamford DH. (2004). Penetration of membrane-containing double-stranded-DNA bacteriophage PM2 into Pseudoalteromonas hosts. J Bacteriol, 186, 5342–5354.
  • Lavigne R, Briers Y, Hertveldt K, Robben J, Volckaert G. (2004). Identification and characterization of a highly thermostable bacteriophage lysozyme. Cell Mol Life Sci, 61, 2753–2759.
  • Leiman PG, Arisaka F, van Raaij MJ, Kostyuchenko VA, Aksyuk AA, Kanamaru S, Rossmann MG. (2010). Morphogenesis of the T4 tail and tail fibers. Virol J, 7, 355.
  • Letellier L, Plançon L, Bonhivers M, Boulanger P. (1999). Phage DNA transport across membranes. Res Microbiol, 150, 499–505.
  • López R, García E. (2004). Recent trends on the molecular biology of pneumococcal capsules, lytic enzymes, and bacteriophage. FEMS Microbiol Rev, 28, 553–580.
  • Lu TK, Collins JJ. (2007). Dispersing biofilms with engineered enzymatic bacteriophage. Proc Natl Acad Sci USA, 104, 11197–11202.
  • Lu TK, Koeris MS. (2011). The next generation of bacteriophage therapy. Curr Opin Microbiol, 14, 524–531.
  • Lukacik P, Barnard TJ, Keller PW, Chaturvedi KS, Seddiki N, Fairman JW, Noinaj N, Kirby TL, Henderson JP, Steven AC, Hinnebusch BJ, Buchanan SK. (2012). Structural engineering of a phage lysin that targets gram-negative pathogens. Proc Natl Acad Sci USA, 109, 9857–9862.
  • Mahony J, McAuliffe O, Ross RP, van Sinderen D. (2011). Bacteriophages as biocontrol agents of food pathogens. Curr Opin Biotechnol, 22, 157–163.
  • Manoharadas S, Witte A, Bläsi U. (2009). Antimicrobial activity of a chimeric enzybiotic towards Staphylococcus aureus. J Biotechnol, 139, 118–123.
  • Matsuzaki S, Rashel M, Uchiyama J, Sakurai S, Ujihara T, Kuroda M, Ikeuchi M, Tani T, Fujieda M, Wakiguchi H, Imai S. (2005). Bacteriophage therapy: a revitalized therapy against bacterial infectious diseases. J Infect Chemother, 11, 211–219.
  • Mindich L, Lehman J. (1979). Cell wall lysin as a component of the bacteriophage phi 6 virion. J Virol, 30, 489–496.
  • Moak M, Molineux IJ. (2000). Role of the Gp16 lytic transglycosylase motif in bacteriophage T7 virions at the initiation of infection. Mol Microbiol, 37, 345–355.
  • Moak M, Molineux IJ. (2004). Peptidoglycan hydrolytic activities associated with bacteriophage virions. Mol Microbiol, 51, 1169–1183.
  • Nelson DC, Schmelcher M, Rodriguez-Rubio L, Klumpp J, Pritchard DG, Dong S, Donovan DM. (2012). Endolysins as antimicrobials. Adv Virus Res, 83, 299–365.
  • Nishima W, Kanamaru S, Arisaka F, Kitao A. (2011). Screw motion regulates multiple functions of T4 phage protein gene product 5 during cell puncturing. J Am Chem Soc, 133, 13571–13576.
  • Paul VD, Rajagopalan SS, Sundarrajan S, George SE, Asrani JY, Pillai R, Chikkamadaiah R, Durgaiah M, Sriram B, Padmanabhan S. (2011). A novel bacteriophage Tail-Associated Muralytic Enzyme (TAME) from Phage K and its development into a potent antistaphylococcal protein. BMC Microbiol, 11, 226.
  • Piuri M, Hatfull GF. (2006). A peptidoglycan hydrolase motif within the mycobacteriophage TM4 tape measure protein promotes efficient infection of stationary phase cells. Mol Microbiol, 62, 1569–1585.
  • Rashel M, Uchiyama J, Takemura I, Hoshiba H, Ujihara T, Takatsuji H, Honke K, Matsuzaki S. (2008). Tail-associated structural protein gp61 of Staphylococcus aureus phage phi MR11 has bifunctional lytic activity. FEMS Microbiol Lett, 284, 9–16.
  • Ribelles P, Rodríguez I, Suárez JE. (2012). LysA2, the Lactobacillus casei bacteriophage A2 lysin is an endopeptidase active on a wide spectrum of lactic acid bacteria. Appl Microbiol Biotechnol, 94, 101–110.
  • Rodríguez L, Martínez B, Zhou Y, Rodríguez A, Donovan DM, García P. (2011). Lytic activity of the virion-associated peptidoglycan hydrolase HydH5 of Staphylococcus aureus bacteriophage vB_SauS-phiIPLA88. BMC Microbiol, 11, 138.
  • Rodríguez-Rubio L, Martínez B, Rodríguez A, Donovan DM, García P. (2012a). Enhanced staphylolytic activity of the Staphylococcus aureus bacteriophage vB_SauS-phiIPLA88 HydH5 virion-associated peptidoglycan hydrolase: fusions, deletions, and synergy with LysH5. Appl Environ Microbiol, 78, 2241–2248.
  • Rodríguez-Rubio L, Gutiérrez D, Martínez B, Rodríguez A, Götz F, García P. (2012b). The Tape Measure Protein of the Staphylococcus aureus Bacteriophage vB_SauS-phiIPLA35 Has an Active Muramidase Domain. Appl Environ Microbiol, 78, 6369–6371.
  • Rydman PS, Bamford DH. (2000). Bacteriophage PRD1 DNA entry uses a viral membrane-associated transglycosylase activity. Mol Microbiol, 37, 356–363.
  • Rydman PS, Bamford DH. (2002). The lytic enzyme of bacteriophage PRD1 is associated with the viral membrane. J Bacteriol, 184, 104–110.
  • Sharma M, Anand SK. (2002). Characterization of constitutive microflora of biofilms in dairy processing lines. Food Microbiol, 19, 627–636.
  • Sudiarta IP, Fukushima T, Sekiguchi J. (2010). Bacillus subtilis CwlP of the SP-{beta} prophage has two novel peptidoglycan hydrolase domains, muramidase and cross-linkage digesting DD-endopeptidase. J Biol Chem, 285, 41232–41243.
  • Takác M, Bläsi U. (2005). Phage P68 virion-associated protein 17 displays activity against clinical isolates of Staphylococcus aureus. Antimicrob Agents Chemother, 49, 2934–2940.
  • Vipra AA, Desai SN, Roy P, Patil R, Raj JM, Narasimhaswamy N, Paul VD, Chikkamadaiah R, Sriram B. (2012). Antistaphylococcal activity of bacteriophage derived chimeric protein P128. BMC Microbiol, 12, 41.
  • Wattinger L, Stephan R, Layer F, Johler S. (2012). Comparison of Staphylococcus aureus isolates associated with food intoxication with isolates from human nasal carriers and human infections. Eur J Clin Microbiol Infect Dis, 31, 455–464.
  • Yoong P, Schuch R, Nelson D, Fischetti VA. (2004). Identification of a broadly active phage lytic enzyme with lethal activity against antibiotic-resistant Enterococcus faecalis and Enterococcus faecium. J Bacteriol, 186, 4808–4812.
  • Young I, Wang I, Roof WD. (2000). Phages will out: strategies of host cell lysis. Trends Microbiol, 8, 120–128.
  • Zimmer M, Vukov N, Scherer S, Loessner MJ. (2002). The murein hydrolase of the bacteriophage phi3626 dual lysis system is active against all tested Clostridium perfringens strains. Appl Environ Microbiol, 68, 5311–5317.
  • Zou Y, Hou C. (2010). Systematic analysis of an amidase domain CHAP in 12 Staphylococcus aureus genomes and 44 staphylococcal phage genomes. Comput Biol Chem, 34, 251–257.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.