1,096
Views
43
CrossRef citations to date
0
Altmetric
Review Article

The cellulolytic system of Thermobifida fusca

&
Pages 236-247 | Received 10 Dec 2012, Accepted 12 Feb 2013, Published online: 28 Mar 2013

References

  • Adav SS, Cheow ES, Ravindran A, et al. (2012). Label free quantitative proteomic analysis of secretome by Thermobifida fusca on different lignocellulosic biomass. J Proteomics 75:3694–706
  • Adav SS, Ng CS, Sze SK. (2011). iTRAQ-based quantitative proteomic analysis of Thermobifida fusca reveals metabolic pathways of cellulose utilization. J Proteomics 74:2112–22
  • Ademark P, Varga A, Medve J, et al. (1998). Softwood hemicellulose-degrading enzymes from Aspergillus niger: purification and properties of a beta-mannanase. J Biotechnol 63:199–210
  • Ai Y-C, Zhang S, Wilson DB. (2003). Positional expression effects of cysteine mutations in the Thermobifida fusca cellulase Cel6A and Cel6B catalytic domains. Enzyme Microb Technol 32:331–6
  • Barr BK, Hsieh YL, Ganem B, Wilson DB. (1996). Identification of two functionally different classes of exocellulases. Biochemistry 35:586–92
  • Bayer EA, Lamed R, White BA, Flint HJ. (2008). From cellulosomes to cellulosomics. Chem Record 8:364–77
  • Béguin P, Aubert J-P. (1994). The biological degradation of cellulose. FEMS Microbiol Rev 13:25–58
  • Beki E, Nagy I, Vanderleyden J, et al. (2003). Cloning and heterologous expression of a beta-D-mannosidase (EC 3.2.1.25)-encoding gene from Thermobifida fusca TM51. Appl Environ Microbiol 69:1944–52
  • Bhat MK, Bhat S. (1997). Cellulose degrading enzymes and their potential industrial applications. Biotechnol Adv 15:583–620
  • Bin Yang ZD, Ding S-Y, Ewyman C. (2011). Enzymatic hydrolysis of cellulosic biomass. Biofuels 2:421–50
  • Blanco J, Coque JJ, Velasco J, Martin JF. (1997). Cloning, expression in Streptomyces lividans and biochemical characterization of a thermostable endo-beta-1,4-xylanase of Thermomonospora alba ULJB1 with cellulose-binding ability. Appl Microbiol Biotechnol 48:208–17
  • Boraston AB, Bolam DN, Gilbert HJ, Davies GJ. (2004). Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 382:769–81
  • Calza RE, Irwin DC, Wilson DB. (1985). Purification and characterization of 2-beta-1,4-endoglucanases from Thermomonospora fusca. Biochemistry 24:7797–804
  • Cantarel BL, Coutinho PM, Rancurel C, et al. (2009). The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:D233–8
  • Caspi J, Barak Y, Haimovitz R, et al. (2011). Thermobifida fusca exoglucanase Cel6B is incompatible with the cellulosomal mode in contrast to endoglucanase Cel6A. Syst Synth Biol 4:193–201
  • Caspi J, Barak Y, Haimovitz R, et al. (2009). Effect of linker length and dockerin position on conversion of a Thermobifida fusca endoglucanase to the cellulosomal mode. Appl Environ Microbiol 75:7335–42
  • Caspi J, Irwin D, Lamed R, et al. (2008). Conversion of Thermobifida fusca free exoglucanases into cellulosomal components: comparative impact on cellulose-degrading activity. J Biotechnol 135:351–7
  • Caspi J, Irwin D, Lamed R, et al. (2006). Thermobifida fusca family-6 cellulases as potential designer cellulosome components. Biocatal Biotransformation 24:3–12
  • Chen S, Wilson DB. (2007). Proteomic and transcriptomic analysis of extracellular proteins and mRNA levels in Thermobifida fusca grown on cellobiose and glucose. J Bacteriol 189:6260–5
  • Chir JL, Wan CF, Chou CH, Wu AT. (2010). Hydrolysis of cellulose in synergistic mixtures of beta-glucosidase and endo/exocellulase Cel9A from Thermobifida fusca. Biotechnol Lett 33:777–82
  • Deng Y, Fong SS. (2010a). Development and application of a PCR-targeted gene disruption method for studying CelR function in Thermobifida fusca. Appl Environ Microbiol 76:2098–106
  • Deng Y, Fong SS. (2010b). Influence of culture aeration on the cellulase activity of Thermobifida fusca. Appl Microbiol Biotechnol 85:965–74
  • Deng Y, Fong SS. (2011a). Laboratory evolution and multi-platform genome re-sequencing of the cellulolytic actinobacterium Thermobifida fusca. J Biol Chem 286:39958–66
  • Deng Y, Fong SS. (2011b). Metabolic engineering of Thermobifida fusca for direct aerobic bioconversion of untreated lignocellulosic biomass to 1-propanol. Metab Eng 13:570–7
  • Fekete CA, Kiss L. (2012). Purification and Characterization of a recombinant beta-D: -xylosidase from Thermobifida fusca TM51. Prot J 31:641–50
  • Gao PJ, Chen GJ, Wang TH, et al. (2001). Non-hydrolytic disruption of crystalline structure of cellulose by cellulose binding domain and linker sequence of cellobiohydrolase I from Penicillium janthinellum. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 33:13–18
  • Gebler J, Gilkes NR, Claeyssens M, et al. (1992). Stereoselective hydrolysis catalyzed by related beta-1,4-glucanases and beta-1,4-xylanases. J Biol Chem 267:12559–61
  • Henrissat B. (1991). A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280:309–16
  • Hilge M, Gloor SM, Rypniewski W, et al. (1998). High-resolution native and complex structures of thermostable beta-mannanase from Thermomonospora fusca - substrate specificity in glycosyl hydrolase family 5. Structure 6:1433–44
  • Irwin D, Jung ED, Wilson DB. (1994). Characterization and sequence of a Thermomonospora fusca xylanase. Appl Environ Microbiol 60:763–70
  • Irwin D, Shin DH, Zhang S, et al. (1998). Roles of the catalytic domain and two cellulose binding domains of Thermomonospora fusca E4 in cellulose hydrolysis. J Bacteriol 180:1709–14
  • Irwin DC, Cheng M, Xiang B, et al. (2003). Cloning, expression and characterization of a family-74 xyloglucanase from Thermobifida fusca. Eur J Biochem 270:3083–91
  • Irwin DC, Spezio M, Walker LP, Wilson DB. (1993). Activity studies of eight purified cellulases: specificity, synergism, and binding domain effects. Biotechnol Bioeng 42:1002–13
  • Irwin DC, Zhang S, Wilson DB. (2000). Cloning, expression and characterization of a family 48 exocellulase, Cel48A, from Thermobifida fusca. Eur J Biochem 267:4988–97
  • Jeoh T, Wilson DB, Walker LP. (2006). Effect of cellulase mole fraction and cellulose recalcitrance on synergism in cellulose hydrolysis and binding. Biotechnol Prog 22:270–7
  • Jung ED, Lao G, Irwin D, et al. (1993). DNA sequences and expression in Streptomyces lividans of an exoglucanase gene and an endoglucanase gene from Thermomonospora fusca. Appl Environ Microbiol 59:3032–43
  • Kim E, Irwin DC, Walker LP, Wilson DB. (1998). Factorial optimization of a six-cellulase mixture. Biotechnol Bioeng 58:494–501
  • Kim JH, Irwin D, Wilson DB. (2004). Purification and characterization of Thermobifida fusca xylanase 10B. Can J Microbiol 50:835–43
  • Kostylev M, Moran-Mirabal JM, Walker LP, Wilson DB. (2011). Determination of the molecular states of the processive endocellulase Thermobifida fusca Cel9A during crystalline cellulose depolymerization. Biotechnol Bioeng 109:295–9
  • Lao G, Ghangas GS, Jung ED, Wilson DB. (1991). DNA sequences of three beta-1,4-endoglucanase genes from Thermomonospora fusca. J Bacteriol 173:3397–407
  • Li Y, Irwin DC, Wilson DB. (2007). Processivity, substrate binding, and mechanism of cellulose hydrolysis by Thermobifida fusca Cel9A. Appl Environ Microbiol 73:3165–72
  • Li Y, Irwin DC, Wilson DB. (2010). Increased crystalline cellulose activity via combinations of amino acid changes in the family 9 catalytic domain and family 3c cellulose binding module of Thermobifida fusca Cel9A. Appl Environ Microbiol 76:2582–8
  • Liu Y-S, Zeng Y, Luo Y, et al. (2009). Does the cellulose-binding module move on the cellulose surface? Cellulose 16:587–97
  • Lykidis A, Mavromatis K, Ivanova N, et al. (2007). Genome sequence and analysis of the soil cellulolytic actinomycete Thermobifida fusca YX. J Bacteriol 189:2477–86
  • Lynd LR, Van Zyl WH, Mcbride JE, Laser M. (2005). Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16:577–83
  • Lynd LR, Weimer PJ, Van Zyl WH, Pretorius IS. (2002). Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–77
  • Lynd LR, Wyman CE, Gerngross TU. (1999). Biocommodity engineering. Biotechnol Prog 15:777–93
  • Mccleary BV. (1983). Enzymic interactions in the hydrolysis of galactomannan in germinating guar: the role of exo-Î2-mannanase. Phytochemistry 22:649–58
  • Mcgrath CE, Vuong TV, Wilson DB. (2009). Site-directed mutagenesis to probe catalysis by a Thermobifida fusca beta-1,3-glucanase (Lam81A). Protein Eng Des Sel 22:375–82
  • Mcgrath CE, Wilson DB. (2006). Characterization of a Thermobifida fusca beta-1,3-glucanase (Lam81A) with a potential role in plant biomass degradation. Biochemistry 45:14094–100
  • Morais S, Barak Y, Caspi J, et al. (2010). Cellulase-xylanase synergy in designer cellulosomes for enhanced degradation of a complex cellulosic substrate. mBio 1(5)
  • Morais S, Barak Y, Hadar Y, et al. (2011). Assembly of xylanases into designer cellulosomes promotes efficient hydrolysis of the xylan component of a natural recalcitrant cellulosic substrate. mBio 2(6)
  • Morais S, Salama-Alber O, Barak Y, et al. (2012). Functional association of catalytic and ancillary modules dictates enzymatic activity in glycoside hydrolase family 43 beta-xylosidase. J Biol Chem 287:9213–21
  • Moran-Mirabal JM, Bolewski JC, Walker LP. (2011). Reversibility and binding kinetics of Thermobifida fusca cellulases studied through fluorescence recovery after photobleaching microscopy. Biophys Chem 155:20–8
  • Moran-Mirabal JM, Bolewski JC, Walker LP. (2013). Thermobifida fusca cellulases exhibit limited surface diffusion on bacterial micro-crystalline cellulose. Biotechnol Bioeng 110:47–56
  • Moser F, Irwin D, Chen S, Wilson DB. (2008). Regulation and characterization of Thermobifida fusca carbohydrate-binding module proteins E7 and E8. Biotechnol Bioeng 100:1066–77
  • Pei XQ, Yi ZL, Tang CG, Wu ZL. (2010). Three amino acid changes contribute markedly to the thermostability of beta-glucosidase BglC from Thermobifida fusca. Bioresour Technol 102:3337–42
  • Posta K, Beki E, Wilson DB, et al. (2004). Cloning, characterization and phylogenetic relationships of cel5B, a new endoglucanase encoding gene from Thermobifida fusca. J Basic Microbiol 44:383–99
  • Rubin EM. (2008). Genomics of cellulosic biofuels. Nature 454:841–5
  • Saha BC. (2003). Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–91
  • Sakon J, Irwin D, Wilson DB, Karplus PA. (1997). Structure and mechanism of endo/exocellulase E4 from Thermomonospora fusca. Nat Struct Biol 4:810–8
  • Sanchez MM, Irwin DC, Pastor FI, et al. (2004). Synergistic activity of Paenibacillus sp. BP-23 cellobiohydrolase Cel48C in association with the contiguous endoglucanase Cel9B and with endo- or exo-acting glucanases from Thermobifida fusca. Biotechnol Bioeng 87:161–9
  • Sasvari Z, Posta K, Hornok L. (2008). Expression patterns of cel5A-cel5B, two endoglucanase encoding genes of Thermobifida fusca. Acta Microbiol Immunol Hung 55:437–46
  • Shibuya H, Kaneko S, Hayashi K. (2000). Enhancement of the thermostability and hydrolytic activity of xylanase by random gene shuffling. Biochem J 349:651–6
  • Spiridonov NA, Wilson DB. (1999). Characterization and cloning of celR, a transcriptional regulator of cellulase genes from Thermomonospora fusca. J Biol Chem 274:13127–32
  • Spiridonov NA, Wilson DB. (2000). A celR mutation affecting transcription of cellulase genes in Thermobifida fusca. J Bacteriol 182:252–5
  • Spiridonov NA, Wilson DB. (2001). Cloning and biochemical characterization of BglC, a beta-glucosidase from the cellulolytic actinomycete Thermobifida fusca. Curr Microbiol 42:295–301
  • Tomme P, Warren RAJ, Miller Robert C, et al. (1996) Cellulose-binding domains: classification and properties. Enzymatic degradation of insoluble carbohydrates. American Chemical Society. Washington D. C. Chapter 10, pp 142--63
  • Vaaje-Kolstad G, Horn SJ, Van Aalten DM, et al. (2005). The non-catalytic chitin-binding protein CBP21 from Serratia marcescens is essential for chitin degradation. J Biol Chem 280:28492–7
  • Vaaje-Kolstad G, Westereng B, Horn SJ, et al. (2010). An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science 330:219–22
  • Vuong TV, Wilson DB. (2011) Chapter 11: EngineeringThermobifida fusca cellulases: catalytic mechanisms and improved activity. In: Golan AE, ed. Biotechnology in agriculture, industry and medicine. cellulase: types and action, mechanisms and uses. New York: Nova, 251--64
  • Vuong TV, Wilson DB. (2009a). The absence of an identifiable single catalytic base residue in Thermobifida fusca exocellulase Cel6B. FEBS J 276:3837–45
  • Vuong TV, Wilson DB. (2009b). Processivity, synergism, and substrate specificity of Thermobifida fusca Cel6B. Appl Environ Microbiol 75:6655–61
  • Wang Q, Xia T. (2008). Enhancement of the activity and alkaline pH stability of Thermobifida fusca xylanase A by directed evolution. Biotechnol Lett 30:937–44
  • Wilson D, Irwin D, Tsao G, et al. (1999). Genetics and properties of cellulases recent progress in bioconversion of lignocellulosics. Heidelberg: Springer Berlin
  • Wilson DB. (1992). Biochemistry and genetics of actinomycete cellulases. Crit Rev Biotechnol 12:45–63
  • Wilson DB. (2004). Studies of Thermobifida fusca plant cell wall degrading enzymes. Chem Rec 4:72–82
  • Wilson DB. (2009). Cellulases and biofuels. Curr Opin Biotechnol 20:295–9
  • Wolfgang DE, Wilson DB. (1999). Mechanistic studies of active site mutants of Thermomonospora fusca endocellulase E2. Biochemistry 38:9746–51
  • Xiao Z, Zhang X, Gregg DJ, Saddler JN. (2004). Effects of sugar inhibition on cellulases and beta-glucosidase during enzymatic hydrolysis of softwood substrates. Appl Biochem Biotechnol 113–116:1115–26
  • Zhang S, Barr BK, Wilson DB. (2000a). Effects of noncatalytic residue mutations on substrate specificity and ligand binding of Thermobifida fusca endocellulase cel6A. Eur J Biochem 267:244–52
  • Zhang S, Irwin DC, Wilson DB. (2000b). Site-directed mutation of noncatalytic residues of Thermobifida fusca exocellulase Cel6B. Eur J Biochem 267:3101–15
  • Zhang S, Lao G, Wilson DB. (1995). Characterization of a Thermomonospora fusca exocellulase. Biochemistry 34:3386–95
  • Zhang S, Wilson DB. (1997). Surface residue mutations which change the substrate specificity of Thermomonospora fusca endoglucanase E2. J Biotechnol 57:101–13
  • Zhang YH, Himmel ME, Mielenz JR. (2006). Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 24:452–81
  • Zhou W, Irwin DC, Escovar-Kousen J, Wilson DB. (2004). Kinetic studies of Thermobifida fusca Cel9A active site mutant enzymes. Biochemistry 43:9655–63

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.