1,991
Views
42
CrossRef citations to date
0
Altmetric
Review Article

mazEF-mediated programmed cell death in bacteria: “What is this?”

, &
Pages 89-100 | Received 29 Jan 2013, Accepted 07 May 2013, Published online: 25 Jun 2013

References

  • Adler E, Barak I, Stragier P. (2001). Bacillus subtilis locus encoding a killer protein and its antidote. J Bacteriol 183, 3574–81
  • Aizenman E, Engelberg-Kulka H, Glaser G. (1996). An Escherichia coli chromosomal “addiction module” regulated by guanosine [corrected] 3′,5′-bispyrophosphate: a model for programmed bacterial cell death. Proc Natl Acad Sci USA 93, 6059–63
  • Amitai S, Yassin Y, Engelberg-Kulka H. (2004). MazF-mediated cell death in Escherichia coli: a point of no return. J Bacteriol 186, 8295–300
  • Amitai S, Kolodkin-Gal I, Hananya-Meltabashi M, et al. (2009). Escherichia coli MazF leads to the simultaneous selective synthesis of both “death proteins” and “survival proteins”. PLoS Genet 5, e1000390
  • Anantharaman V, Aravind L. (2003). New connections in the prokaryotic toxin-antitoxin network: relationship with the eukaryotic nonsense-mediated RNA decay system. Genome Biol 4, R81
  • Artsimovitch I, Patlan V, Sekine S, et al. (2004). Structural basis for transcription regulation by alarmone ppGpp. Cell 117, 299–310
  • Baik S, Inoue K, Ouyang M, Inouye M. (2009). Significant bias against the ACA triplet in the tmRNA sequence of Escherichia coli K-12. J Bacteriol 191, 6157–66
  • Baker TA, Sauer RT. (2012). ClpXP, an ATP-powered unfolding and protein-degradation machine. Biochim Biophys Acta 1823, 15–28
  • Barker MM, Gaal T, Gourse RL. (2001). Mechanism of regulation of transcription initiation by ppGpp. II. Models for positive control based on properties of RNAP mutants and competition for RNAP. J Mol Biol 305, 689–702
  • Belitsky M, Avshalom H, Erental A, et al. (2011). The Escherichia coli extracellular death factor (EDF) induces the endoribonucleolytic activities of the toxins MazF and ChpBK. Mol Cell 41, 625–35
  • Bewley MC, Graziano V, Griffin K, Flanagan JM. (2009). Turned on for degradation: ATPase-independent degradation by ClpP. J Struct Biol 165, 118–25
  • Black DS, Kelly AJ, Mardis MJ, Moyed HS. (1991). Structure and organization of hip, an operon that affects lethality due to inhibition of peptidoglycan or DNA synthesis. J Bacteriol 173, 5732–9
  • Bremer H, Ehrenberg M. (1995). Guanosine tetraphosphate as a global regulator of bacterial RNA synthesis: a model involving RNA polymerase pausing and queuing. Biochim Biophys Acta 1262, 15–36
  • Budrene EO. (1985). [Formation of space-ordered structures in colonies of motile bacteria on agar]. Dokl Akad Nauk SSSR 283, 470–3
  • Christensen-Dalsgaard M, Overgaard M, Winther KS, Gerdes K. (2008). RNA decay by messenger RNA interferases. Methods Enzymol 447, 521–35
  • Christensen SK, Gerdes K. (2004). Delayed-relaxed response explained by hyperactivation of RelE. Mol Microbiol 53, 587–97
  • Christensen SK, Pedersen K, Hansen FG, Gerdes K. (2003). Toxin-antitoxin loci as stress-response-elements: ChpAK/MazF and ChpBK cleave translated RNAs and are counteracted by tmRNA. J Mol Biol 332, 809–19
  • de la Cueva-Mendez G. (2003). Distressing bacteria: structure of a prokaryotic detox program. Mol Cell 11, 848–50
  • Diderichsen B, Desmarez L. (1980). Variations in phenotype of relB mutants of Escherichia coli and the effect of pus and sup mutations. Mol Gen Genet 180, 429–37
  • Donegan NP, Thompson ET, Fu Z, Cheung AL. (2010). Proteolytic regulation of toxin-antitoxin systems by ClpPC in Staphylococcus aureus. J Bacteriol 192, 1416–22
  • Dorsey-Oresto A, Lu T, Mosel M, Dorsey-Oresto (2013). YihE kinase is a central regulator of programmed cell death in bacteria. Cell Rep 3, 528--37
  • Dunny GM, Brickman TJ, Dworkin M. (2008). Multicellular behavior in bacteria: communication, cooperation, competition and cheating. Bioessays 30, 296–8
  • Dwyer DJ, Camacho DM, Kohanski MA, et al. (2012). Antibiotic-induced bacterial cell death exhibits physiological and biochemical hallmarks of apoptosis. Mol Cell 46, 561–72
  • Engelberg-Kulka H, Hazan R, Amitai S. (2005). mazEF: a chromosomal toxin-antitoxin module that triggers programmed cell death in bacteria. J Cell Sci 118, 4327–32
  • Engelberg-Kulka H, Yelin I, Kolodkin-Gal I. (2009). Activation of a built-in bacterial programmed cell death system as a novel mechanism of action of some antibiotics. Commun Integr Biol 2, 211–12
  • Engelberg-Kulka H, Amitai S, Kolodkin-Gal I, Hazan R. (2006). Bacterial programmed cell death and multicellular behavior in bacteria. PLoS Genet 2, e135
  • Engelberg-Kulka H, Sat B, Reches M, et al. (2004). Bacterial programmed cell death systems as targets for antibiotics. Trends Microbiol 12, 66–71
  • Engelberg-Kulka H, Reches M, Narasimhan S, et al. (1998). rexB of bacteriophage lambda is an anti-cell death gene. Proc Natl Acad Sci USA 95, 15481–6
  • Erental A, Sharon I, Engelberg-Kulka H. (2012). Two programmed cell death systems in Escherichia coli: an apoptotic-like death is inhibited by the mazEF-mediated death pathway. PLoS Biol 10, e1001281
  • Fahey RC, Brown WC, Adams WB, Worsham MB. (1978). Occurrence of glutathione in bacteria. J Bacteriol 133, 1126–9
  • Falla TJ, Chopra I. (1998). Joint tolerance to beta-lactam and fluoroquinolone antibiotics in Escherichia coli results from overexpression of hipA. Antimicrob Agents Chemother 42, 3282–4
  • Faridani OR, Nikravesh A, Pandey DP, et al. (2006). Competitive inhibition of natural antisense Sok-RNA interactions activates Hok-mediated cell killing in Escherichia coli. Nucleic Acids Res 34, 5915–22
  • Ferenci T, Zhou Z, Betteridge T, et al. (2009). Genomic sequencing reveals regulatory mutations and recombinational events in the widely used MC4100 lineage of Escherichia coli K-12. J Bacteriol 191, 4025–9
  • Fineran P, Blower T, Foulds I, et al. (2009). The phage abortive infection system, ToxIN, functions as a protein-RNA toxin-antitoxin pair. Proc Natl Acad Sci USA 106, 894–99
  • Frampton R, Aggio R, Villas-Bôas S, et al. (2012). Toxin-antitoxin systems of Mycobacterium smegmatis are essential for cell survival. J Biol Chem 287, 5340–56
  • Gao Y, Chen K, Zhang B, et al. (2010). Antioxidant and free radical-scavenging activity of the extracellular death factor in Escherichia coli. Peptides 31, 1821–5
  • Gerdes K. (2000). Toxin-antitoxin modules may regulate synthesis of macromolecules during nutritional stress. J Bacteriol 182, 561–72
  • Gerdes K, Maisonneuve E. (2012). Bacterial persistence and toxin-antitoxin Loci. Annu Rev Microbiol 66, 103–23
  • Gerdes K, Rasmussen PB, Molin S. (1986). Unique type of plasmid maintenance function: postsegregational killing of plasmid-free cells. Proc Natl Acad Sci USA 83, 3116–20
  • Gerdes K, Christensen SK, Lobner-Olesen A. (2005). Prokaryotic toxin-antitoxin stress response loci. Nat Rev Microbiol 3, 371–82
  • Gotfredsen M, Gerdes K. (1998). The Escherichia coli relBE genes belong to a new toxin-antitoxin gene family. Mol Microbiol 29, 1065–76
  • Gottesman S, Roche E, Zhou Y, Sauer RT. (1998). The ClpXP and ClpAP proteases degrade proteins with carboxy-terminal peptide tails added by the SsrA-tagging system. Genes Dev 12, 1338–47
  • Griffith KL, Wolf RE, Jr.. (2004). Genetic evidence for pre-recruitment as the mechanism of transcription activation by SoxS of Escherichia coli: the dominance of DNA binding mutations of SoxS. J Mol Biol 344, 1–10
  • Gross M, Marianovsky I, Glaser G. (2006). MazG – a regulator of programmed cell death in Escherichia coli. Mol Microbiol 59, 590–601
  • Hammer BK, Bassler BL. (2003). Quorum sensing controls biofilm formation in Vibrio cholerae. Mol Microbiol 50, 101–4
  • Haseltine WA, Block R. (1973). Synthesis of guanosine tetra- and pentaphosphate requires the presence of a codon-specific, uncharged transfer ribonucleic acid in the acceptor site of ribosomes. Proc Natl Acad Sci USA 70, 1564–8
  • Hayes F. (2003). Toxins-antitoxins: plasmid maintenance, programmed cell death, and cell cycle arrest. Science 301, 1496–9
  • Hazan R, Sat B, Engelberg-Kulka H. (2004). Escherichia coli mazEF-mediated cell death is triggered by various stressful conditions. J Bacteriol 186, 3663–9
  • Henke JM, Bassler BL. (2004). Bacterial social engagements. Trends Cell Biol 14, 648–56
  • Hensey C, Gautier J. (1998). Programmed cell death during Xenopus development: a spatio-temporal analysis. Dev Biol 203, 36–48
  • Hibbing ME, Fuqua C, Parsek MR, Peterson SB. (2010). Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Microbiol 8, 15–25
  • Inouye M. (2006). The discovery of mRNA interferases: implication in bacterial physiology and application to biotechnology. J Cell Physiol 209, 670–6
  • Izawa S, Maeda K, Miki T, et al. (1998). Importance of glucose-6-phosphate dehydrogenase in the adaptive response to hydrogen peroxide in Saccharomyces cerevisiae. Biochem J 330, 811–17
  • Jensen RB, Gerdes K. (1995). Programmed cell death in bacteria: proteic plasmid stabilization systems. Mol Microbiol 17, 205–10
  • Jishage M, Kvint K, Shingler V, Nystrom T. (2002). Regulation of sigma factor competition by the alarmone ppGpp. Genes Dev 16, 1260–70
  • Keren I, Wu Y, Inocencio J, et al. (2013). Killing by bactericidal antibiotics does not depend on reactive oxygen species. Science 339, 1213–16
  • Kim Y, Wood TK. (2010). Toxins Hha and CspD and small RNA regulator Hfq are involved in persister cell formation through MqsR in Escherichia coli. Biochem Biophys Res Commun 391, 209–13
  • Kirstein J, Hoffmann A, Lilie H, et al. (2009). The antibiotic ADEP reprogrammes ClpP, switching it from a regulated to an uncontrolled protease. EMBO Mol Med 1, 37–49
  • Kolodkin-Gal I, Engelberg-Kulka H. (2008). The extracellular death factor: physiological and genetic factors influencing its production and response in Escherichia coli. J Bacteriol 190, 3169–75
  • Kolodkin-Gal I, Hazan R, Gaathon A, et al. (2007). A linear pentapeptide is a quorum-sensing factor required for mazEF-mediated cell death in Escherichia coli. Science 318, 652–5
  • Laurie AD, Bernardo LM, Sze CC, et al. (2003). The role of the alarmone (p)ppGpp in sigma N competition for core RNA polymerase. J Biol Chem 278, 1494–503
  • Lee ME, Baker TA, Sauer RT. (2010). Control of substrate gating and translocation into ClpP by channel residues and ClpX binding. J Mol Biol 399, 707–18
  • Magnuson RD. (2007). Hypothetical functions of toxin-antitoxin systems. J Bacteriol 189, 6089–92
  • Maisonneuve E, Shakespeare LJ, Jorgensen MG, Gerdes K. (2011). Bacterial persistence by RNA endonucleases. Proc Natl Acad Sci USA 108, 13206–11
  • Marianovsky I, Aizenman E, Engelberg-Kulka H, Glaser G. (2001). The regulation of the Escherichia coli mazEF promoter involves an unusual alternating palindrome. J Biol Chem 276, 5975–84
  • Maurizi MR, Clark WP, Katayama Y, et al. (1990). Sequence and structure of ClpP, the proteolytic component of the ATP-dependent Clp protease of Escherichia coli. J Biol Chem 265, 12536–45
  • Metzger S, Schreiber G, Aizenman E, et al. (1989). Characterization of the relA1 mutation and a comparison of relA1 with new relA null alleles in Escherichia coli. J Biol Chem 264, 21146–52
  • Moll I, Engelberg-Kulka H. (2012). Selective translation during stress in Escherichia coli. Trends Biochem Sci
  • Mortier-Barriere I, de Saizieu A, Claverys JP, Martin B. (1998). Competence-specific induction of recA is required for full recombination proficiency during transformation in Streptococcus pneumoniae. Mol Microbiol 27, 159–70
  • Mosteller RD. (1978). Evidence that glucose starvation-sensitive mutants are altered in the relB locus. J Bacteriol 133, 1034–7
  • Moyed HS, Bertrand KP. (1983). hipA, a newly recognized gene of Escherichia coli K-12 that affects frequency of persistence after inhibition of murein synthesis. J Bacteriol 155, 768–75
  • Munoz-Gomez AJ, Santos-Sierra S, Berzal-Herranz A, et al. (2004). Insights into the specificity of RNA cleavage by the Escherichia coli MazF toxin. FEBS Lett 567, 316–20
  • Murray KD, Bremer H. (1996). Control of spoT-dependent ppGpp synthesis and degradation in Escherichia coli. J Mol Biol 259, 41–57
  • Mutschler H, Gebhardt M, Shoeman RL, Meinhart A. (2011). A novel mechanism of programmed cell death in bacteria by toxin-antitoxin systems corrupts peptidoglycan synthesis. PLoS Biol 9, e1001033
  • Nariya H, Inouye M. (2008). MazF, an mRNA interferase, mediates programmed cell death during multicellular Myxococcus development. Cell 132, 55–66
  • O'Brien V. (1998). Viruses and apoptosis. J Gen Virol 79, 1833–45
  • Overgaard M, Borch J, Gerdes K. (2009). RelB and RelE of Escherichia coli form a tight complex that represses transcription via the ribbon-helix-helix motif in RelB. J Mol Biol 394, 183–96
  • Overgaard M, Borch J, Jorgensen MG, Gerdes K. (2008). Messenger RNA interferase RelE controls relBE transcription by conditional cooperativity. Mol Microbiol 69, 841–57
  • Pandey DP, Gerdes K. (2005). Toxin-antitoxin loci are highly abundant in free-living but lost from host-associated prokaryotes. Nucleic Acids Res 33, 966–76
  • Pedersen K, Christensen SK, Gerdes K. (2002). Rapid induction and reversal of a bacteriostatic condition by controlled expression of toxins and antitoxins. Mol Microbiol 45, 501–10
  • Peters JE, Thate TE, Craig NL. (2003). Definition of the Escherichia coli MC4100 genome by use of a DNA array. J Bacteriol 185, 2017–21
  • Porankiewicz J, Wang J, Clarke AK. (1999). New insights into the ATP-dependent Clp protease: Escherichia coli and beyond. Mol Microbiol 32, 449–58
  • Ramage H, Connolly L, Cox J. (2009). Comprehensive functional analysis of Mycobacterium tuberculosis toxin-antitoxin systems: implications for pathogenesis, stress responses, and evolution. PLoS genetics 5
  • Reeh S, Pedersen S, Friesen JD. (1976). Biosynthetic regulation of individual proteins in relA+ and relA strains of Escherichia coli during amino acid starvation. Mol Gen Genet 149, 279–89
  • Reid BG, Fenton WA, Horwich AL, Weber-Ban EU. (2001). ClpA mediates directional translocation of substrate proteins into the ClpP protease. Proc Natl Acad Sci USA 98, 3768–72
  • Rice KC, Mann EE, Endres JL, et al. (2007). The cidA murein hydrolase regulator contributes to DNA release and biofilm development in Staphylococcus aureus. Proc Natl Acad Sci USA 104, 8113–18
  • Saavedra L, Sesma F. (2005). Atypical genetic locus associated with the zwf gene encoding the glucose 6-phosphate dehydrogenase from Enterococcus mundtii CRL35. Curr Microbiol 51, 148–52
  • Sandoval JM, Arenas FA, Vasquez CC. (2011). Glucose-6-phosphate dehydrogenase protects Escherichia coli from tellurite-mediated oxidative stress. PLoS One 6, e25573
  • Sat B, Reches M, Engelberg-Kulka H. (2003). The Escherichia coli mazEF suicide module mediates thymineless death. J Bacteriol 185, 1803–7
  • Sat B, Hazan R, Fisher T, et al. (2001). Programmed cell death in Escherichia coli: some antibiotics can trigger mazEF lethality. J Bacteriol 183, 2041–5
  • Scherrer R, Moyed HS. (1988). Conditional impairment of cell division and altered lethality in hipA mutants of Escherichia coli K-12. J Bacteriol 170, 3321–6
  • Schreiber G, Metzger S, Aizenman E, et al. (1991). Overexpression of the relA gene in Escherichia coli. J Biol Chem 266, 3760–7
  • Schuster CF, Park JH, Prax M, et al. (2012). Characterization of a mazEF toxin-antitoxin homologue from Staphylococcus equorum. J Bacteriol
  • Spira B, Hu X, Ferenci T. (2008). Strain variation in ppGpp concentration and RpoS levels in laboratory strains of Escherichia coli K-12. Microbiology 154, 2887–95
  • Suzuki M, Zhang J, Liu M, et al. (2005). Single protein production in living cells facilitated by an mRNA interferase. Mol Cell 18, 253–61
  • Svitil AL, Cashel M, Zyskind JW. (1993). Guanosine tetraphosphate inhibits protein synthesis in vivo. A possible protective mechanism for starvation stress in Escherichia coli. J Biol Chem 268, 2307–11
  • Syed MA, Koyanagi S, Sharma E, et al. (2011). The chromosomal mazEF locus of Streptococcus mutans encodes a functional type II toxin-antitoxin addiction system. J Bacteriol 193, 1122–30
  • Tashiro Y, Kawata K, Taniuchi A, et al. (2012). RelE-mediated dormancy is enhanced at high cell density in Escherichia coli. J Bacteriol 194, 1169–76
  • Torok I, Kari C. (1980). Accumulation of ppGpp in a relA mutant of Escherichia coli during amino acid starvation. J Biol Chem 255, 3838–40
  • Tsilibaris V, Maenhaut-Michel G, Mine N, Van Melderen L. (2007). What is the benefit to Escherichia coli of having multiple toxin-antitoxin systems in its genome? J Bacteriol 189, 6101–8
  • Unoson C, Wagner EG. (2008). A small SOS-induced toxin is targeted against the inner membrane in Escherichia coli. Mol Microbiol 70, 258–70
  • Van Melderen L, Saavedra De Bast M. (2009). Bacterial toxin-antitoxin systems: more than selfish entities? PLoS Genet 5, e1000437
  • Vesper O, Amitai S, Belitsky M, et al. (2011). Selective translation of leaderless mRNAs by specialized ribosomes generated by MazF in Escherichia coli. Cell 147, 147–57
  • Vinella D, Gagny B, Joseleau-Petit D, et al. (1996). Mecillinam resistance in Escherichia coli is conferred by loss of a second activity of the AroK protein. J Bacteriol 178, 3818–28
  • Waters CM, Bassler BL. (2005). Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21, 319–46
  • Waters CM, Lu W, Rabinowitz JD, Bassler BL. (2008). Quorum sensing controls biofilm formation in Vibrio cholerae through modulation of cyclic di-GMP levels and repression of vpsT. J Bacteriol 190, 2527–36
  • Wendrich TM, Blaha G, Wilson DN, et al. (2002). Dissection of the mechanism for the stringent factor RelA. Mol Cell 10, 779–88
  • Williams JJ, Hergenrother PJ. (2012). Artificial activation of toxin-antitoxin systems as an antibacterial strategy. Trends Microbiol 20, 291–8
  • Yamaguchi Y, Inouye M. (2009). mRNA interferases, sequence-specific endoribonucleases from the toxin-antitoxin systems. Prog Mol Biol Transl Sci 85, 467–500
  • Yamaguchi Y, Inouye M. (2011). Regulation of growth and death in Escherichia coli by toxin-antitoxin systems. Nat Rev Microbiol 9, 779–90
  • Yamaguchi Y, Park JH, Inouye M. (2011). Toxin-antitoxin systems in bacteria and archaea. Annu Rev Genet 45, 61–79
  • Zhang J, Inouye M. (2002). MazG, a nucleoside triphosphate pyrophosphohydrolase, interacts with Era, an essential GTPase in Escherichia coli. J Bacteriol 184, 5323–9
  • Zhang Y, Zhang J, Hoeflich KP, et al. (2003). MazF cleaves cellular mRNAs specifically at ACA to block protein synthesis in Escherichia coli. Mol Cell 12, 913–23
  • Zhao J, Wang Q, Li M, et al. (2013). Escherichia coli toxin hipA gene affects biofilm formation and DNA release. Microbiology 159, 633--40

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.