511
Views
31
CrossRef citations to date
0
Altmetric
Review Article

The physicochemical process of bacterial attachment to abiotic surfaces: Challenges for mechanistic studies, predictability and the development of control strategies

, &
Pages 452-464 | Received 04 Sep 2013, Accepted 12 Nov 2013, Published online: 17 Mar 2014

References

  • Abbott A, Rutters PR, Berkeley RCW. (1983). The influence of ionic strength, pH and a protein layer on the interaction between Streptococcus mutans and glass surfaces. J Gen Microbiol 129:439–45
  • Absolom DR, Lamberti FV, Policova Z, et al. (1983). Surface thermodynamics of bacterial adhesion. Appl Environ Microbiol 46:90–7
  • An YH, Friedman RJ. (1998). Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. J Biomed Mater Res 43:338–48
  • An YH, Friedman RJ, Draughn RA, et al. (1995). Rapid quantification of staphylococci adhered to titanium surfaces using image analyzed epifluorescence microscopy. J Microbiol Meth 24:29–40
  • Barnes LM, Lo MF, Adams MR, Chamberlain AHL. (1999). Effect of milk proteins on adhesion of bacteria to stainless steel surfaces. Appl Environ Microbiol 65:4543–8
  • Bellona C, Drewes JE. (2005). The role of membrane surface charge and solute physico-chemical properties in the rejection of organic acids by NF membranes. J Membr Sci 249:227–34
  • Bhattacharjee S, Ko CH, Elimelech M. (1998). DLVO interaction between rough surfaces. Langmuir 14:3365–75
  • Blake RC, Shute EA, Howard GT. (1994). Solubilization of minerals by bacteria: electrophoretic mobility of Thiobacillus ferrooxidans in the presence of iron, pyrite, and sulfur. Appl Environ Microbiol 60:3349–57
  • Boks NP, Norde W, van der Mei HC, Busscher HJ. (2008). Forces involved in bacterial adhesion to hydrophilic and hydrophobic surfaces. Microbiology 154:3122–33
  • Bos R, van der Mei HC, Busscher HJ. (1999). Physico-chemistry of initial microbial adhesive interactions – its mechanisms and methods for study. FEMS Microbiol Rev 23:179–230
  • Bradshaw DJ, Marsh PD, Watson GK, Allison C. (1997). Effect of conditioning films on oral microbial biofilm development. Biofouling 11:217–26
  • Busscher HJ, Doornbusch GI, van der Mei HC. (1992). Adhesion of mutans streptococci to glass with and without a salivary coating as studied in a parallel plate flow chamber. J Dent Res 71:491–500
  • Busscher HJ, van der Mei HC. (1995). Use of flow chamber devices and image analysis methods to study microbial adhesion. In: Doyle RJ, Ofek I, eds. Adhesion of microbial pathogens, methods in enzymology. San Diego, CA: Academic Press, 455–77
  • Busscher HJ, Weerkamp AH, van der Mei HC, et al. (1984). Measurement of the surface free energy of bacterial cell surfaces and its relevance for adhesion. Appl Environ Microbiol 48:980–3
  • Cassat JE, Lee CY, Smeltzer MS. (2007). Investigation of biofilm formation in clinical isolates of Staphylococcus aureus. Methods Mol Biol 391:127–44
  • Chen Y, Busscher HJ, van der Mei HC, Norde W. (2011). Statistical analysis of long- and short-range forces involved in bacterial adhesion to substratum surfaces as measured using atomic force microscopy. Appl Environ Microbiol 77:5065–70
  • Chia TWR, Nguyen VT, McMeekin T, et al. (2011). Stochasticity of bacterial attachment and its predictability by the extended Derjaguin-Landau-Verwey-Overbeek theory. Appl Environ Microbiol 77:3757–64
  • Childress AE, Elimelech M. (1996). Effect of solution chemistry on the surface charge of polymeric reverse osmosis and nanofiltration membranes. J Membr Sci 119:253–68
  • Christersson CE, Fornalik MS, Baier RE, Glantz PO. (1987). In vitro attachment of oral microorganisms to solid surfaces: Evaluation of a controlled flow method. Scand J Dent Res 95:151–8
  • Clark WB, Bammann LL, Gibbons RJ. (1978). Comparative estimates of bacterial affinities and adsorption sites on hydroxyapatite surfaces. Infect Immun 19:846–53
  • Clack WB, Gibbons RJ. (1977). Influence of salivary components and extracellular polysaccharide synthesis from sucrose on the attachment of Streptococcus mutans 6715 to hydroxyapatite surfaces. Infect Immun 18:514–23
  • Clark WB, Lane MD, Beem E, et al. (1985). Relative hydrophobicities of Actinomyces viscosus and Actinomyces naeslundii strains and their adsorption to saliva-treated hydroxyapatite. Infect Immun 47:730–6
  • Czarnecki J, Warszyński P. (1987). The evaluation of tangential forces due to surface inhomogeneties in the particle deposition process. Colloid Surface 22:197–205
  • de Kerchove AJ, Elimelech M. (2005). Relevance of electrokinetic theory for “soft” particles to bacterial cells: Implications for bacterial adhesion. Langmuir 21:6462–72
  • Dillon JK, Fuerst JA, Hayward AC, Davis GHG. (1986). A comparison of five methods for assaying bacterial hydrophobicity. J Microbiol Meth 6:13–9
  • Ducker WA, Senden TJ. (1992). Measurement of forces in liquids using a force microscope. Langmuir 8:1831–6
  • Dykes GA, Amarowicz R, Pegg RB. (2003). An antioxidant bearberry (Arctostaphylos uva-ursi) extract modulates surface hydrophobicity of a wide range of food-related bacteria: Implications for functional food safety. Food Control 14:515–8
  • Faille C, Jullien C, Fontaine F, et al. (2002). Adhesion of Bacillus spores and Escherichia coli cells to inert surfaces: Role of surface hydrophobicity. Can J Microbiol 48:728–38
  • Faircloth DC, Allen NL. (2003). High resolution measurements of surface charge densities on insulator surfaces. IEEE Trans Dielectr Electr Insul 10:285–90
  • Fang HHP, Chanb KY, Xu LC. (2000). Quantification of bacterial adhesion forces using atomic force microscopy (AFM). J Microbiol Meth 40:89–97
  • Goulter RM, Gentle IR, Dykes GA. (2009). Issues in determining factors influencing bacterial attachment: A review using the attachment of Escherichia coli to abiotic surfaces as an example. Lett Appl Microbiol 49:1–7
  • Goulter RM, Taran E, Gentle IR, et al. (2011). Surface roughness of stainless steel influences attachment and detachment of Escherichia coli O157. J Food Prot 74:1359–63
  • Groessner-Schreiber B, Hannig M, Dück A, et al. (2004). Do different implant surfaces exposed in the oral cavity of humans show different biofilm compositions and activities? Eur J Oral Sci 112:516–22
  • Harris JM. (1992). Poly(ethylene glycol) chemistry: biotechnical and biomedical applications. New York: Plenum Press
  • Hassan AN, Frank JF. (2004). Attachment of Escherichia coli O157:H7 grown in tryptic soy broth and nutrient broth to apple and lettuce surfaces as related to cell hydrophobicity, surface charge, and capsule production. Int J Food Microbiol 96:103–9
  • Hermansson M. (1999). The DLVO theory in microbial adhesion. Colloids Surf B 14:105–19
  • Hong SH, Jeong J, Shim S, et al. (2008). Effect of electric currents on bacterial detachment and inactivation. Biotechnol Bioeng 100:379–86
  • Hood SK, Zottola EA. (1997). Adherence to stainless steel by foodborne microorganisms during growth in model food systems. Int J Food Microbiol 37:145–53
  • Hori K, Matsumoto S. (2010). Bacterial adhesion: from mechanism to control. Biochem Eng J 48:424–34
  • Hui YW, Dykes GA. (2012). Modulation of cell surface hydrophobicity and attachment of bacteria to abiotic surfaces and shrimp by Malaysian herb extracts. J Food Prot 75:1507–11
  • Jucker BA, Harms H, Hug SJ, Zehnder AJ. (1997). Adsorption of bacterial surface polysaccharides on mineral oxides is mediated by hydrogen bonds. Colloids Surf B 9:311–43
  • Jucker BA, Harms H, Zehnder AJ. (1996). Adhesion of the positively charged bacterium Stenotrophomonas (Xanthomonas) maltophilia 70401 to glass and Teflon. J Bacteriol 178:5472–9
  • Kang S, Choi H. (2005). Effect of surface hydrophobicity on the adhesion of S. cerevisiae onto modified surfaces by poly(styrene-ran-sulfonic acid) random copolymers. Colloids Surf B 46:70–7
  • Katsikogianni M, Missirlis YF. (2004). Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria-material interactions. Eur Cell Mater 8:37–57
  • Li B, Logan BE. (2004). Bacterial adhesion to glass and metal-oxide surfaces. Colloids Surf B 36:81–90
  • Li J, McLandsborough LA. (1999). The effects of the surface charge and hydrophobicity of Escherichia coli on its adhesion to beef muscle. Int J Food Microbiol 53:185–93
  • Liang OD, Ascencio F, Vazquez-Juarez R, Wadstrom T. (1993). Binding of collagen, fibronectin, lactoferrin, laminin, vitronectin and heparin sulphate to Staphylococcus aureus strain V8 at various growth phases and under nutrient stress conditions. Zentralbl Bakteriol 279:180–90
  • Lindahl M, Faris A, Wadstrom T, Hjerten S. (1981). A new test based on ‘Salting Out’ to measure relative surface hydrophobicity of bacterial cells. Biochim Biophys Acta 677:471–6
  • Liu Y, Yang SF, Li Y, et al. (2004). The influence of cell and substratum surface hydrophobicities on microbial attachment. J Biotechnol 110:251–6
  • Lower SK, Tadanier CJ, Hochella MF. (2000). Measuring interfacial and adhesion forces between bacteria and mineral surfaces with biological force microscopy. Geochim Cosmochim Acta 64:3133–9
  • Lytle DA, Rice EW, Johnson CH, Fox KR. (1999). Electrophoretic mobilities of Escherichia coli 0157:H7 and wild-type Escherichia coli strains. Appl Environ Microbiol 65:3222–5
  • Madigan MT, Martinko JM, Parker J. (2003). Brock biology of microorganisms, 10th ed. Upper Saddle River, NJ: Prentice Hall, Pearson Education, Inc
  • Marshall KC, Stout R, Mitchell R. (1971). Mechanism of the initial events in the sorption of marine bacteria to surfaces. J Gen Microbiol 68:337–48
  • Matsumoto M, Minami T, Sasaki H, et al. (1999). Inhibitory effects of oolong tea extract on caries-inducing properties of mutans streptococci. Caries Res 33:441–5
  • Mcallister EW, Carey LC, Brady PG, et al. (1993). The role of polymeric surface smoothness of biliary stents in bacterial adherence, biofilm deposition, and stent occlusion. Gastrointest Endosc 39:422–5
  • Medilanski E, Kaufmann K, Wick LY, et al. (2002). Influence of the surface topography of stainless steel on bacterial adhesion. Biofouling 18:193–203
  • Morra M, Cassinelli C. (1996). Staphylococcus epidermidis adhesion to films deposited from hydroxyethylmethacrylate plasma. J Biomed Mater Res 31:149–55
  • Morris CM, George A, Wilson WW, Champlin FR. (1995). Effect of polymyxin B nonapeptide on daptomycin permeability and cell surface properties in Pseudomonas aeruginosa, Escherichia coli, and Pasteurella multocida. J Antibiotics 48:67–72
  • Mozes, N, Rouxhet PG. (1986). Methods for measuring hydrophobicity of microorganisms. J Microbiol Meth 6:99–112
  • Mueller RF, Characklis WG, Jones WL, Sears JT. (1992). Characterization of initial events in bacterial surface colonization by two Pseudomonas species using image analysis. Biotechnol Bioeng 39:1161–70
  • Nakasono S, Burgess JG, Takahashi K, et al. (1993). Electrochemical prevention of marine biofouling with a carbonchloroprene sheet. Appl Environ Microbiol 59:3757–62
  • Nakayama T, Wake H, Ozawa K, et al. (1998). Use of a titanium nitride for electrochemical inactivation of marine bacteria. Environ Sci Technol 32:798–801
  • Nejadnik MR, van der Mei HC, Busscher HJ, Norde W. (2008). Determination of the shear force at the balance between bacterial attachment and detachment in weak-adherence systems, using a flow displacement chamber. Appl Environ Microbiol 74:916–9
  • Nguyen VT, Chia TWR, Turner MS, et al. (2011a). Quantification of acid–base interactions based on contact angle measurement allows XDLVO predictions to attachment of Campylobacter jejuni but not Salmonella. J Microbiol Meth 86:89–96
  • Nguyen VT, Turner MS, Dykes GA. (2010). Effect of temperature and contact time on Campylobacter jejuni attachment to, and probability of detachment from, stainless steel. J Food Prot 73:832–8
  • Nguyen VT, Turner MS, Dykes GA. (2011b). Influence of cell surface hydrophobicity on attachment of Campylobacter to abiotic surfaces. Food Microbiol 28:942–50
  • Norhana MNW, Goulter RM, Poole SE, et al. (2009). Relationship between the physicochemical properties of nonchitinolytic Listeria and Salmonella and their attachment to shrimp carapace. J Food Prot 72:1181–9
  • Nostro A, Cannatelli MA, Crisafi G, et al. (2004). Modifications of hydrophobicity, in vitro adherence and cellular aggregation of Streptococcus mutans by Helichrysum italicum extract. Lett Appl Microbiol 38:423–7
  • Ohshima H, Kondo T. (1989). Approximate analytic expression for the electrophoretic mobility of colloidal particles with surface-charge layers. J Colloid Interf Sci 130:281–2
  • Ohshima H, Kondo T. (1991). On the electrophoretic mobility of biological cells. Biophys Chem 39:191–8
  • Oliveira K, Oliveira T, Teixeira P, et al. (2006). Comparison of the adhesion ability of different Salmonella enteritidis serotypes to materials used in kitchens. J Food Prot 69:2352–6
  • Ong YL, Razatos A, Georgiou G, Sharma MM. (1999). Adhesion forces between E. coli bacteria and biomaterial surfaces. Langmuir 15:2719–25
  • Ortega MP, Hagiwara T, Watanable H, Sakiyama T, et al. (1998). Adhesion behavior and removability of Escherichia coli on stainless steel surface. Food Control 21:573–8
  • Park KD, Kim YS, Han DK, et al. (1998). Bacterial adhesion on PEG modified polyurethane surfaces. Biomaterials 19:851–9
  • Pedersen K. (1981). Electrostatic interaction chromatography, a method for assaying the relative surface charges of bacteria. FEMS Microbiol Lett 12:365–7
  • Poortinga AT, Bos R, Busscher HJ. (2001). Electrostatic interactions in the adhesion of an ion-penetrable and ion-impenetrable bacterial strain to glass. Colloids Surf B 20:105–17
  • Poortinga AT, Bos R, Norde W, Busscher HJ. (2002). Electric double layer interactions in bacterial adhesion to surfaces. Surf Sci Rep 47:1–32
  • Quirynen M, Marechal M, Busscher HJ, et al. (1990). The influence of surface free energy and surface roughness on early plaque formation. An in vivo study in man. J Clin Periodontol 17:138–44
  • Quirynen M, van der Mei HC, Bollen CML, et al. (1993). An in vivo study of the influence of the surface roughness of implants on the microbiology of supra- and subgingival plaque. J Dent Res 72:1304–9
  • Rad AY, Ayhan H, Piskin E. (1998). Adhesion of different bacterial strains to low temperature plasma treated sutures. J Biomed Mater Res 41:349–58
  • Razak FA, Othman RY, Rahim ZHA. (2006). The effect of Piper betle and Psidium guajava extracts on the cell-surface hydrophobicity of selected early settlers of dental plaque. J Oral Sci 48:71–5
  • Rijnaarts HHM, Norde W, Bouwer EJ, et al. (1995). Reversibility and mechanism of bacterial adhesion. Colloids Surf B 4:5–22
  • Rivas L, Fegan N, Dykes GA. (2005). Physicochemical properties of Shiga toxigenic Escherichia coli. J Appl Microbiol 99:716–27
  • Rivas L, Fegan N, Dykes GA. (2007). Attachment of Shiga toxigenic Escherichia coli to stainless steel. Int J Food Microbiol 115:89–94
  • Rodríguez VV, Busscher HJ, Norde W, van der Mei HC. (2002). Softness of the bacterial cell wall of Streptococcus mitis as probed by microelectrophoresis. Electrophoresis 23:2007–11
  • Roosjen A, Busscher HJ, Norde W, van der Mei HC. (2006). Bacterial factors influencing adhesion of Pseudomonas aeruginosa strains to a poly(ethylene oxide) brush. Microbiology 152:2673–82
  • Roosjen A, Kaper HJ, van der Mei HC, et al. (2003). Inhibition of adhesion of yeasts and bacteria by poly(ethylene oxide)-brushes on glass in a parallel plate flow chamber. Microbiology 149:3239–46
  • Rosenberg M, Gutnick D, Rosenberg E. (1980). Adherence of bacteria to hydrocarbons: a simple method for measuring cell surface hydrophobicity. FEMS Microbiol Lett 9:29–33
  • Rosenberg M, Rosenberg E, Judes H, Weiss E. (1983). Bacterial adherence to hydrocarbons and to surfaces in the oral cavity. FEMS Microbiol Lett 20:1–5
  • Salerno MB, Logan BE, Velegol D. (2009). Importance of molecular details in predicting bacterial adhesion to hydrophobic surfaces. Langmuir 38:10625–9
  • Seaver AE. (1995). Analysis of electrostatic measurements on non-conducting webs. J Electrostat 35:231–43
  • Sjollema J, Busscher HJ, Weerkamp AH. (1989). Real-time enumeration of adhering microorganisms in a parallel plate flow cell using automated image analysis. J Microbiol Meth 9:73–8
  • Sherbet GV, Lakshmi MS, Rao KV. (1972). Characterisation of ionogenic groups and estimation of the net negative electric charge on the surface of cells using natural pH gradients. Exp Cell Res 70:113–23
  • Simões LC, Simões M, Oliveira R, Vieira MJ. (2007). Potential of the adhesion of bacteria isolated from drinking water to materials. J Basic Microbiol 47:174–83
  • Simoni SF, Harms H, Bosma TNP, Zehnder AJB. (1998). Population heterogeneity affects transport of bacteria through sand columns at low flow rates. Environ Sci Technol 32:2100–5
  • Smith WE, Rungis J. (1975). Twin adhering conducting spheres in an electric field – an alternative geometry for an electrostatic voltmeter. J Phys E Sci Instrum 8:379–82
  • Staat RH, Langley SD, Doyle RJ. (1980). Streptococcus mutans adherence: presumptive evidence for protein-mediated attachment followed by glucan-dependent cellular accumulation. Infect Immun 27:675–81
  • Tang H, Cao T, Liang X, et al. (2009). Influence of silicone surface roughness and hydrophobicity on adhesion and colonization of Staphylococcus epidermidis. J Biomed Mater Res A 88:454–63
  • Tiller JC, Liao CJ, Lewis K, Klibanov AM. (2001). Designing surfaces that kill bacteria on contact. Proc Natl Acad Sci USA 98:5981–5
  • Ukuku DO, Fett WF. (2002). Relationship of cell surface charge and hydrophobicity to strength of attachment of bacteria to cantaloupe rind. J Food Prot 65:1093–9
  • van der Borden AJ, van der Mei HC, Busscher HJ. (2004a). Electric-current-induced detachment of Staphylococcus epidermidis strains from surgical stainless steel. J Biomed Mater Res 68B:160–4
  • van der Borden AJ, van der Werf H, van der Mei HC, Busscher HJ. (2004b). Electric current-induced detachment of Staphylococcus epidermidis biofilms from surgical stainless steel. Appl Environ Microbiol 70:6871–4
  • van der Mei HC, Roseberg M, Busscher HJ. (1991). Assessment of microbial cell surface hydrophobicity. In: Mozes N, Handley PS, Busscher HJ, Rouxhet PG, eds. Microbial cell surface analysis: structural and physicochemical methods. New York: VCH Publishers, 265–89
  • van der Mei HC, Weerkamp AH, Busscher HJ. (1987). A comparison of various methods to determine hydrophobic properties of streptococcal cell surfaces. J Microbiol Meth 6:277–87
  • van der Mei HC, van de Belt-Gritter B, Reid G, et al. (1997). Adhesion of coagulase-negative staphylococci grouped according to physicochemical surface properties. Microbiology 143:3861–70
  • van Hoogmoed, CG, van der Mei HC, Busscher HJ. (1997). The influence of calcium on the initial adhesion of S. thermophilus to stainless steel under flow studied by metallurgical microscopy. Biofouling 11:167–76
  • van Oss CJ. (1989). Energetics of cell-cell and cell-biopolymer interactions. Cell Biophys 14:1–16
  • van Oss CJ. (1993). Acid-base interfacial interactions in aqueous media. Colloids Surf A 78:1–49
  • van Oss CJ. (2003). Long-range and short-range mechanisms of hydrophobic attraction and hydrophilic repulsion in specific and aspecific interactions. J Mol Recognit 16:177–90
  • van Oss CJ, Good RJ, Chaudhury MK. (1986). The role of van der Waals forces and hydrogen bonds in ‘hydrophobic interactions’ between biopolymers and low energy surfaces. J Colloid Interface Sci 111:378–90
  • Verran J, Packer A, Kelly P, Whitehead KA. (2010). The retention of bacteria on hygienic surfaces presenting scratches of microbial dimensions. Lett Appl Microbiol 50:258–63
  • Voravuthikunchai SP, Limsuwan S. (2006). Medicinal plant extracts as anti–Escherichia coli O157:H7 agents and their effects on bacterial cell aggregation. J Food Prot 69:2336–41
  • Voravuthikunchai SP, Limsuwan S, Mitchell H. (2006). Effect of Punica granatum pericarp and Quercus infectoria nutgalls on cell surface hydrophobicity and cell survival of Helicobacter pylori. J Health Sci 52:154–69
  • Voravuthikunchai SP, Suwalak S. (2009). Changes in cell surface properties of Shiga toxigenic Escherichia coli by Quercus infectoria G. Olivier. J Food Prot 72:1699–704
  • Wagner VE, Koberstein JT, Bryers JD. (2004). Protein and bacterial fouling characteristics of peptide and antibody decorated surfaces of PEG-poly(acrylic acid) co-polymers. Biomaterials 25:2247–63
  • Wake H, Takahashi H, Takimoto T, et al. (2006). Development of an electrochemical antifouling system for seawater cooling pipelines of power plants using titanium. Biotechnol Bioeng 95:468–73
  • Wang H, Feng H, Liang W, et al. (2009). Effect of surface roughness on retention and removal of Escherichia coli O157:H7 on surfaces of selected fruits. J Food Sci 74:E8–15
  • Wang Y, Lee SM, Dykes GA. (2013a). Potential mechanisms for the effects of tea extracts on the attachment, biofilm formation and cell size of Streptococcus mutans. Biofouling 29:307–18
  • Wang Y, Chung FFL, Lee SM, Dykes GA. (2013b). Inhibition of attachment of oral bacteria to immortalized human gingival fibroblasts (HGF-1) by tea extracts and tea components. BMC Res Notes 6:143–7
  • Warning A, Datta AK. (2013). Interdisciplinary engineering approaches to study how pathogenic bacteria interact with fresh produce. J Food Eng 114:426–48
  • Wassall MA, Embery G, Bagg J. (1995). The role of hydrophobicity in Streptococcus sanguis and Streptococcus salivarius adhesion to salivary fraction-coated hydroxyapatite. Colloids Surf B 5:143–52
  • Wilson WW, Wadeb MM, Holmana SC, Champlinb FR. (2001). Status of methods for assessing bacterial cell surface charge properties based on zeta potential measurements. J Microbiol Meth 43:153–64
  • Zita A, Hermansson M. (1997). Effects of bacterial cell surface structures and hydrophobicity on attachment to activated sludge flocs. Appl Environ Microbiol 63:1168–70

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.