723
Views
29
CrossRef citations to date
0
Altmetric
Review Article

Antibiotrophs: The complexity of antibiotic-subsisting and antibiotic-resistant microorganisms

, , &
Pages 17-30 | Received 01 Oct 2013, Accepted 12 Dec 2013, Published online: 04 Feb 2014

References

  • Allen HK, Donato J, Wang HH, et al. (2010). Call of the wild: antibiotic resistance genes in natural environments. Nat Rev Microbiol 8:251–9
  • Aminov RI, Mackie RI. (2007). Evolution and ecology of antibiotic resistance genes. FEMS Microbiol Lett 271:147–61
  • Anderson RM. (1999). The pandemic of antibiotic resistance. Nat Med 5: 147–9
  • Arias CA, Murray BE. (2012). The rise of the Enterococcus: beyond vancomycin resistance. Nat Rev Microbiol 10:266–78
  • Baquero F, Tedim AP, Coque TM. (2013). Antibiotic resistance shaping multi-level population biology of bacteria. Front Microbiol 4:15. doi: 10.3389/fmicb.2013.00015
  • Barbe V, Vallenet D, Fonknechten N, et al. (2004). Unique features revealed by the genome sequence of Acinetobacter sp. ADP1, a versatile and naturally transformation competent bacterium. Nucl Acids Res 32:5766–79
  • Barr J. (2011). A short history of dapsone, or an alternative model of drug development. J Hist Med Allied Sci 66:425–67
  • Barlow M, Hall BG. (2002). Phylogenetic analysis shows that the OXA beta-lactamase genes have been on plasmids for millions of years. J Mol Evol 55:314–21
  • Barnhill AE, Weeks KE, Xiong N, et al. (2010). Identification of multiresistant Salmonella isolates capable of subsisting on antibiotics. Appl Environ Microbiol 76: 2678–80
  • Bergstrom CT, Lo M, Lipsitch M. (2004). Ecological theory suggests that antimicrobial cycling will not reduce antimicrobial resistance in hospitals. Proc Nat Acad Sci USA 101:13285–90
  • Besier S, Smaczny C, von Mallinckrodt C, et al. (2007). Prevalence and clinical significance of Staphylococcus aureus small-colony variants in cystic fibrosis lung disease. J Clin Microbiol 45:168–72
  • Besier S, Zander J, Kahl BC, et al. (2008). The thymidine-dependent small-colony-variant phenotype is associated with hypermutability and antibiotic resistance in clinical Staphylococcus aureus isolates. Antimicrob Agents Chemother 52:2183–9
  • Borgia S, Lastovetska O, Richardson D, et al. (2012). Outbreak of carbapenem-resistant Enterobacteriaceae containing blaNDM-1, Ontario, Canada. Clin Inf Dis 55:e109–17
  • Brahmachary M, Krishnan SP, Koh JL, et al. (2004). ANTIMIC: a database of antimicrobial sequences. Nucl Acids Res 32:D586–9
  • Brown MH, Paulsen IT, Skurray RA. (1999). The multidrug efflux protein NorM is a prototype of a new family of transporters. Mol Microbiol 31:394–5
  • Cantas L, Midtlyng PJ, Sorum H. (2012). Impact of antibiotic treatments on the expression of the R plasmid tra genes and on the host innate immune activity during pRAS1 bearing Aeromonas hydrophila infection in zebrafish (Danio rerio). BMC Microbiol 12:37
  • Canton R, Morosini MI. (2011). Emergence and spread of antibiotic resistance following exposure to antibiotics. FEMS Microbiol Rev 35:977–91
  • Canton R, Ruiz-Garbajosam P. (2011). Co-resistance: an opportunity for the bacteria and resistance genes. Curr Opin Pharmacol 11:477–85
  • Chopra I, O'Neill AJ, Miller K. (2003). The role of mutators in the emergence of antibiotic-resistant bacteria. Drug Resist Updat 6:137–45
  • Chowdhury G, Pazhani GP, Nair GB, et al. (2011). Transferable plasmid-mediated quinolone resistance in association with extended-spectrum beta-lactamases and fluoroquinolone-acetylating aminoglycoside-6'-N-acetyltransferase in clinical isolates of Vibrio fluvialis. Int J Antimicrob Agents 38:169–73
  • D'Costa VM, King CE, Kalan L, et al. (2011). Antibiotic resistance is ancient. Nature 477:457–61
  • Danishuddin M, Kaushal L, Hassan Baig M, Khan AU. (2012). AMDD: antimicrobial drug database. Genomics Proteomics. Bioinformatics 10:360–3
  • Dantas G, Sommer MO, Oluwasegun RD, Church GM. (2008). Bacteria subsisting on antibiotics. Science 320:100–3
  • Davies J, Davies D. (2010). Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 74:417–33
  • Denap JC, Thomas JR, Musk DJ, Hergenrother PJ. (2004). Combating drug-resistant bacteria: small molecule mimics of plasmid incompatibility as antiplasmid compounds. J Am Chem Soc 126:15402–4
  • Dhar N, McKinney JD. (2007). Microbial phenotypic heterogeneity and antibiotic tolerance. Curr Opin Microbiol 10:30–8
  • Effmert U, Kalderas J, Warnke R, Piechulla B. (2012). Volatile mediated interactions between bacteria and fungi in the soil. J Chem Ecol 38:665–703
  • Falagas ME, Bliziotis IA. (2007). Pandrug-resistant Gram-negative bacteria: the dawn of the post-antibiotic era? Int J Antimicrob Agents 29:630–6
  • Falagas ME, Karveli EA. (2006). World Wide Web resources on antimicrobial resistance. Clin Infect Dis 43:630–3
  • Foster JW, Woodruff HB. (2010). Antibiotic substances produced by bacteria. Ann NY Acad Sci 1213:125–36
  • Frank-Petersise N, Peekate L, Oriakpono O. (2011). Degradation of antibiotics by bacteria and fungi from the aquatic environment. J Toxicol Environ Health Sci 3:275–85
  • Gabani P, Prakash D, Singh OV. (2012). Emergence of antibiotic-resistant extremophiles (AREs). Extremophiles 16:697–713
  • Gillings MR. (2013). Evolutionary consequences of antibiotic use for the resistome, mobilome and microbial pangenome. Front Microbiol 4:4. doi: 10.3389/fmicb.2013.00004
  • Goldberg M, Pribyl T, Juhnke S, Nies DH. (1999). Energetics and topology of CzcA, a cation/proton antiporter of the resistance-nodulation-cell division protein family. J Biol Chem 274:26065–70
  • Hammami R, Ben Hamida J, Vergoten G, Fliss I. (2009). PhytAMP: a database dedicated to antimicrobial plant peptides. Nucl Acid Res 37:D963–8
  • Hawkey PM, Jones AM. (2009). The changing epidemiology of resistance. J Antimicrob Chemo 64:i3–10
  • Helling RB, Janes BK, Kimball H, et al. (2002). Toxic waste disposal in Escherichia coli. J Bacteriol 184:3699–703
  • Islam MR, Jeong YT, Lee YS, Song CH. (2012). Isolation and identification of antifungal compounds from Bacillus subtilis C9 inhibiting the growth of plant pathogenic fungi. Mycobiol 40:59–66
  • Jariyawat S, Sekine T, Takeda M, et al. (1999). The interaction and transport of beta-lactam antibiotics with the cloned rat renal organic anion transporter 1. J Pharmacol Exp Ther 290:672–7
  • Jin J, Guffanti AA, Bechhofer DH, Krulwich TA. (2002). Tet(L) and tet(K) tetracycline-divalent metal/H+ antiporters: characterization of multiple catalytic modes and a mutagenesis approach to differences. J Bacteriol 184:4722–32
  • Kajander EO, Ciftcioglu N. (1999). Nanobacteria as extremophiles. Proc SPIE Int Soc Opt Eng 3755:106–12
  • Kang H, Gross DC. (2005). Characterization of a resistance-nodulation-cell division transporter system associated with the syr-syp genomic island of Pseudomonas syringae pv. syringae. Appl Environ Microbiol 71:5056–65
  • Kazuya S, Hideaki M, Kunihiro O, Norio S. (2011). How microcystin-degrading bacteria express microcystin degradation activity. Lakes Reserv 16:169–78
  • Kenna DT, Doherty CJ, Foweraker J, et al. (2007). Hypermutability in environmental Pseudomonas aeruginosa and in populations causing pulmonary infection in individuals with cystic fibrosis. Microbiol 153:1852–9
  • Kim J, Bae IK, Jeong SH, et al. (2011). Characterization of IncF plasmids carrying the blaCTX-M-14 gene in clinical isolates of Escherichia coli from Korea. J Antimicrob Chemother 66:1263–8
  • Kopmann C, Jechalke S, Rosendahl I, et al. (2013). Abundance and transferability of antibiotic resistance as related to the fate of sulfadiazine in maize rhizosphere and bulk soil. FEMS Microbiol Ecol 83:125–34
  • Kormas KA, Lymperopoulou DS. (2013). Cyanobacterial toxin degrading bacteria: who are they? BioMed Res Int 2013:463894. Available from: http://dx.doi.org/10.1155/2013/463894
  • Kumarasamy KK, Toleman MA, Walsh TR, et al. (2010). Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Inf Dis 10:597–602
  • Kurihara Y, Hitomi S, Oishi T, et al. (2013). Characteristics of bacteremia caused by extended-spectrum beta-lactamase-producing Proteus mirabilis. J Infect Chemother 19:799–805
  • Lee HH, Collins JC. (2012). Microbial environments confound antibiotic efficacy. Nat Chem Biol 8:6–9
  • Lee LY, Hupfield T, Nicholson RL, et al. (2008). 2-Methoxycyclopentyl analogues of a Pseudomonas aeruginosa quorum sensing modulator. Mol BioSystems 4:505–7
  • Liang R, Fei YJ, Prasad PD, et al. (1995). Human intestinal H+/peptide cotransporter. Cloning, functional expression, and chromosomal localization. J Biol Chem 270:6456–63
  • Liebert CA, Hall RM, Summers AO. (1999). Transposon Tn21, flagship of the floating genome. Microbiol Mol Biol Rev 63:507–22
  • Lima TB, Pinto MF, Ribeiro SM, et al. (2013). Bacterial resistance mechanism: what proteomics can elucidate. FASEB J 27:1291–303
  • Liu B, Pop M. (2009). ARDB – antibiotic resistance genes database. Nucl Acids Res 37:D443–7
  • Maal-Bared R, Bartlett KH, Bowie WR, Hall ER. (2013). Phenotypic antibiotic resistance of Escherichia coli and E. coli O157 isolated from water, sediment and biofilms in an agricultural watershed in British Columbia. Sci Total Env 443:315–23
  • Magiorakos AP, Srinivasan A, Carey RB, et al. (2012). Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18:268–81
  • Marger MD, Saier MH Jr. (1993). A major superfamily of transmembrane facilitators that catalyse uniport, symport and antiport. Trends Biochem Sci 18:13–20
  • Marshall MB, Ochieng DJ. (2009). Commensals: Underappreciated reservoir of Antibiotic Resistance. Microbe 4:231–8
  • Martin JF, Casqueiro J, Liras P. (2005). Secretion systems for secondary metabolites: how producer cells send out messages of intercellular communication. Curr Opin Microbiol 8:282–93
  • Martinez JL. (2006). Antibiotics as intermicrobial signaling agents instead of weapons. Proc Natl Acad Sci USA 103:19484–9
  • Martinez JL. (2012). Natural antibiotic resistance and contamination by antibiotic resistance determinants: The two ages in the evolution of resistance to antimicrobials. Front Microbiol 3: 1, doi: 10.3389/fmicb.2012.00001
  • Martinez JL, Rojo F. (2011). Metabolic regulation of antibiotic resistance. FEMS Immun Med Microbiol 35:768–89
  • Maruyama T, Park HD, Ozawa K, et al. (2006). Sphingosinicella microcystinivorans gen. nov., sp. nov., a microcystin-degrading bacterium. Int J Sys Evol Microbiol 56:85–9
  • Masterton RG. (2005). Antibiotic cycling: More than it might seem? J Antimicrob Chemother 55:1–5
  • McAdam PR, Templeton KE, Edwards GF, et al. (2012). Molecular tracing of the emergence, adaptation, and transmission of hospital-associated methicillin-resistant Staphylococcus aureus. Proc Natl Acad Sci USA 109:9107–12
  • Meroueh SO, Minasov G, Lee W, et al. (2003). Structural aspects for evolution of beta-lactamases from penicillin-binding proteins. J Am Chem Soc 125:9612–18
  • Nakata M, Tang W. (2008). Japan-China joint medical workshop on drug discoveries and therapeutics 2008: The need of Asian pharmaceutical researchers' cooperation. Drug Discov Therap 2:262–3
  • Nikaido H. (2009). Multidrug resistance in bacteria. Ann Rev Biochem 78:119–46
  • Nybom SM, Salminen SJ, Meriluoto JA. (2008). Specific strains of probiotic bacteria are efficient in removal of several different cyanobacterial toxins from solution. Toxicon 52:214–20
  • Okeke IN, Lamikanra A, Edelman R. (1999). Socioeconomic and behavioral factors leading to acquired bacterial resistance to antibiotics in developing countries. Emerg Infect Dis 5:18–27
  • Oliver A, Levin BR, Juan C, Baquero F, Blazquez J. (2004). Hypermutation and the preexistence of antibiotic-resistant Pseudomonas aeruginosa mutants: implications for susceptibility testing and treatment of chronic infections. Antimicrob Agents Chemother 48:4226–33
  • Palmer JM, Keller NP. (2010). Secondary metabolism in fungi: does chromosomal location matter? Curr Opin Microbiol 13:431–6
  • Paulsen IT, Skurray RA, Tam R, et al. (1996). The SMR family: a novel family of multidrug efflux proteins involved with the efflux of lipophilic drugs. Mol Microbiol 19:1167–75
  • Petkovic H, Cullum J, Hranueli D, et al. (2006). Genetics of Streptomyces rimosus, the oxytetracycline producer. Microbiol Mol Biol Rev 70:704–28
  • Poole K. (2005). Efflux-mediated antimicrobial resistance. J Antimicrob Chemother 56: 20–51
  • Qu Y, Spain JC. (2011). Catabolic pathway for 2-nitroimidazole involves a novel nitrohydrolase that also confers drug resistance. Environ Microbiol 13:1010–17
  • Rahmati S, Yang S, Davidson AL, Zechiedrich EL. (2002). Control of the AcrAB multidrug efflux pump by quorum-sensing regulator SdiA. Mol Microbiol 43:677–85
  • Rajgarhia VB, Strohl WR. (1997). Minimal Streptomyces sp. strain C5 daunorubicin polyketide biosynthesis genes required for aklanonic acid biosynthesis. J Bacteriol 179:2690–6
  • Rice LB. (2012). Mechanisms of resistance and clinical relevance of resistance to beta-lactams, glycopeptides, and fluoroquinolones. Mayo Clinic Proc 87:198–208
  • Robicsek A, Sahm DF, Strahilevitz J, et al. (2005). Broader distribution of plasmid-mediated quinolone resistance in the United States. Antimicrob Agents Chem 49:3001–3
  • Romero D, Traxler MF, Lopez D, Kolter R. (2011). Antibiotics as signal molecules. Chem Rev 111:5492–505
  • Sahoo KC, Tamhankar AJ, Johansson E, Lundborg CS. (2010). Antibiotic use, resistance development and environmental factors: a qualitative study among healthcare professionals in Orissa, India. BMC Pub Health 10:629. Doi: 10.1186/1471-2458-10-629
  • Saier MH, Jr. Tam R, Reizer A, Reizer J. (1994). Two novel families of bacterial membrane proteins concerned with nodulation, cell division and transport. Mol Microbiol 11:841–7
  • Sengupta S, Chattopadhyay MK, Grossart HP. (2013). The multifaceted roles of antibiotics and antibiotic resistance in nature. Front Microbiol 4:47. doi: 10.3389/fmicb.2013.00047
  • Singh BK, Walker A. (2006). Microbial degradation of organophosphorus compounds. FEMS Microbiol Rev 30:428–71
  • Springman AC, Lacher DW, Wu G, et al. (2009). Selection, recombination, and virulence gene diversity among group B streptococcal genotypes. J Bacteriol 191:5419–27
  • Tenover FC. (2006). Mechanisms of antimicrobial resistance in bacteria. Am J Infect Conf 34:S3–10, discussion S64–73
  • Thomas S, Karnik S, Barai RS, et al. (2010). CAMP: a useful resource for research on antimicrobial peptides. Nucl Acids Res 38:D774–80
  • Thomson CJ, Amyes SG. (1992). TRC-1: emergence of a clavulanic acid-resistant TEM beta-lactamase in a clinical strain. FEMS Microbiol Letters 70:113–17
  • Torres-Cortes G, Millan V, Ramirez-Saad HC, et al. (2011). Characterization of novel antibiotic resistance genes identified by functional metagenomics on soil samples. Environ Microbiol 13:1101–14
  • Tsui HC, Keen SK, Sham LT, et al. (2011). Dynamic distribution of the SecA and SecY translocase subunits and septal localization of the HtrA surface chaperone/protease during Streptococcus pneumoniae D39 cell division. MBio 2:e00202–11
  • Turner PJ, Greenhalgh JM, Edwards JR, McKellar J. (1999). The MYSTIC (meropenem yearly susceptibility test information collection) programme. Int J Antimicrob Agents 13:117–25
  • Walsh F, Amyes SG, Duffy B. (2013). Challenging the concept of bacteria subsisting on antibiotics. Int J Antimicrob Agents 41:558–63
  • Wang G, Li X, Wang Z. (2009). APD2: the updated antimicrobial peptide database and its application in peptide design. Nucl Acids Res 37:D933–7
  • Wenzel M, Bandow JE. (2011). Proteomic signatures in antibiotic research. Proteomics 11:3256–68
  • Williams JJ, Halvorsen EM, Dwyer EM, et al. (2011). Toxin-antitoxin (TA) systems are prevalent and transcribed in clinical isolates of Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus. FEMS Microbiol Lett 322:41–50
  • Williams JJ, Hergenrother PJ. (2008). Exposing plasmids as the Achilles' heel of drug-resistant bacteria. Curr Opin Chem Biol 12:389–99
  • Woappi Y, Gabani P, Singh OV. (2013). Emergence of antibiotic-producing microorganisms in residential versus recreational microenvironments. Br Microbiol Res J 3:280–94
  • Wright GD. (2005). Bacterial resistance to antibiotics: enzymatic degradation and modification. Adv Drug Delivery Rev 57:1451–70
  • Xin Z, Gang W, Wei C. (2012). Isolation, identification and characterization of human intestinal bacteria with the ability to utilize chloramphenicol as the sole source of carbon and energy. FEMS Microbiol Ecol 82:703–12
  • Zaleski P, Piekarowicz A. (2004). Characterization of a dam mutant of Haemophilus influenzae Rd. Microbiol 150:3773–81
  • Zeibell K, Aguila S, Yan Shi V, et al. (2007). Mutagenesis and repair in Bacillus anthracis: the effect of mutators. J Bacteriol 189:2331–8
  • Zhang Q, Lambert G, Liao D, et al. (2011). Acceleration of emergence of bacterial antibiotic resistance in connected microenvironments. Science 333:1764–7
  • Zhao-Lai D, Xi-Long L, Peng-Bin X, et al. (2012). Regulatory role for l-arginine in the utilization of amino acids by pig small-intestinal bacteria. Amino Acids 43:233–44
  • Zhongli C, Shunpeng L, Guoping F. (2001). Isolation of methyl parathion-degrading strain M6 and cloning of the methyl parathion hydrolase gene. Appl Environ Microbiol 67:4922–5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.