529
Views
28
CrossRef citations to date
0
Altmetric
Review Article

Escherichia coli O157: Insights into the adaptive stress physiology and the influence of stressors on epidemiology and ecology of this human pathogen

&
Pages 83-93 | Received 15 Nov 2013, Accepted 28 Jan 2014, Published online: 07 Mar 2014

References

  • Abee T, Wouters JA. (1999). Microbial stress response in minimal processing. Int J Food Microbiol 50:65–91
  • Ackers ML, Mahon BE, Leahy E, et al. (1998). An outbreak of Escherichia coli O157:H7 infections associated with leaf lettuce consumption. J Infect Dis 177:1588–93
  • Alekshun MN, Levy SB. (1997). Regulation of chromosomally mediated multiple antibiotic resistance: the mar regulon. Antimicrob Agents Chemother 10:2067–75
  • Alekshun MN, Levy SB. (1999). The man regulon: multiple resistance to antibiotics and other toxic chemicals. Trends Microbiol 7:410–13
  • Altuvia S, Weinstein-Fischer D, Zhang A, et al. (1997). A small, stable RNA induced by oxidative stress: role as a pleiotropic regulator and antimutator. Cell 90:43–53
  • Amabile-Cuevas CF, Demple B. (1991). Molecular characterization of the soxRS genes of Escherichia coli: two genes control a superoxide stress regulon. Nucleic Acids Res 19:4479–84
  • Arnold KW, Kaspar CW. (1995). Starvation and stationary phase induced acid tolerance in Escherichia coli O157:H7. Appl Environ Microbiol 61:2037–9
  • Aslund F, Zheng M, Beckwith J, Storz G. (1999). Regulation of the OxyR transcription factor by hydrogen peroxide and the cellular thiol-disulfide status. Proc Natl Acad Sci USA 96:6161–5
  • Bearson S, Bearson B, Foster JW. (1997). Acid stress response in enterobacteria. FEMS Microbiol Lett 147:173–80
  • Bijoy KM, Kushner SR. (2000). Polynucleotide phosphorylase functions both as a 3’-5’ exonuclease and a poly (A) polymerase in Escherichia coli. Proc Natl Acad Sci USA 97:11966–71
  • Blaser MJ, Newman LS. (1982). A review of human salmonellosis: I. Infective doses. Rev Infect Dis 4:1096–106
  • Breuer T, Benkel DH, Shapiro RL, et al. (2001). A multistate outbreak of Escherichia coli O157:H7 infections linked to alfalfa sprouts grown from contaminated seeds. Emerging Infect Dis 7:977–82
  • Canadian Food Safety Alliance Newsletter. (2012). Preventing E. coli at the source. Available from: http://canadianfoodsafetyalliance.ca/resources/
  • Castanie-Cornet MP, Penfound TA, Smith D, et al. (1999). Control of acid resistance in Escherichia coli. J Bacteriol 181:3525–35
  • Centers for Disease Control and Prevention. (2006). Ongoing multistate outbreak of Escherichia coli O157:H7 infection associated with consumption of fresh spinach-United States, September, 2006. MMWR Morb Mortal Weekly Rep 55:1045–6
  • Chen J, Lee SM, Mao Y. (2004). Protective effect of exopolysaccharide colonic acid of Escherichia coli O157:H7 to osmotic and oxidative stress. Int J Food Microbiol 93:281–6
  • Cheong YH, Chang HS, Gupta R, et al. (2002). Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiol 129:661–77
  • Choi SH, Baumler DJ, Kasper CW. (2000). Contribution of dps to acid stress tolerance and oxidative stress tolerance in Escherichia coli O157:H7. Appl Environ Microbiol 66:3911–16
  • Clawson ML, Keen JE, Smith TPL, et al. (2009). Phylogenetic classification of Escherichia coli O157:H7 strains of human and bovine origin using a novel set of nucleotide polymorphisms. Genome Biol 10:R56–R56.12. doi:10.1186/gb-2009-10-5-r56
  • Clements MO, Eriksson S, Thompson A, et al. (2002). Polynucleotide phosphorylase is a global regulator of virulence and persistency in Salmonella enterica. Proc Natl Acad Sci USA 99:8784–9
  • Cooley MB, Chao D, Mandrell RE. (2006). Escherichia coli O157:H7 survival and growth on lettuce is altered by the presence of epiphytic bacteria. J Food Protection 69:2329–35
  • Demple B, Halbrook J. (1983). Inducible repair of oxidative DNA damage in Escherichia coli. Nature 304:446–8
  • Fayet O, Ziegelhoffer T. Georgopoulos C. (1989). The groES and groEL heat shock gene products of Escherichia coli are essential for bacterial growth at all temperatures. J Bacteriol 171:1379–85
  • Fink RC, Black EP, Hou Z, et al. (2012). Transcriptional responses of Escherichia coli K12 and O157:H7 in association with lettuce leaves. Appl Environ Microbiol 78:1752–64
  • Florova G, Kazanina G, Reynolds KA. (2002). Enzymes involved in fatty acid and polyketide biosynthesis in Streptomyces glaucescens: role of FabH and FabD and their acyl carrier protein specificity. Biochemistry 41:10462–71
  • Foster JW. (2004). Escherichia coli acid resistance: tales of an amateur acidophile. Nat Rev Microbiol 2:898–907
  • Franz E, van Bruggen AHC. (2008). Ecology of E. coli O157:H7 and Salmonella enterica in the sprimary vegetable production chain. Crit Rev Microbiol 34:143–61
  • Franz E, van Hoek AH, Bouw E, Aarts HJ. (2011). Variability of Escherichia coli O157 strain survival in manure-amended soil in relation to strain origin, virulence profile, and carbon nutrition profile. Appl Environ Microbiol 77:8088–96
  • Franz E, van Hoek AHAM, van der Wal FJ, et al. (2012). Genetic features differentiating bovine, food, and human isolates of Shiga toxin-producing Escherichia coli O157 in the Netherlands. J Clin Microbiol 50:772–80
  • Fukushima H, Hashizume T, Kitani T. (1997). The massive outbreak of enterohemorrhagic Escherichia coli O157 infections by food poisoning among the elementary school children in Sakai, Japan, in abstract V6/VII, p. 111. 3rd 134 International Symposium and Work shop on Shiga Toxin (Vero-toxin)-Producing Escherichia coli Infections, Melville, NY
  • Gajiwala KS, Burley SK. (2000). HDEA, a periplasmic protein that supports acid resistance in pathogenic enteric bacteria. J Mol Biol 295:605–12
  • Golding SS, Matthews KR. (2004). Intrinsic mechanism decreases susceptibility of Escherichia coli O157:H7 to multiple antibiotics. J Food Protect 67:34–9
  • Goldstain J, Pollitt NS, Inouye M. (1990). Major cold shock protein of Escherichia coli. Proc Natl Acad Sci USA 87:283–87
  • Gorden J, Small PLC. (1993). Acid resistance in enteric bacteria. Infect Immun 61:364–7
  • Grant J, Wendelboe AM, Wendel A, et al. (2008). Spinach-associated Escherichia coli O157:H7 Outbreak, Utah and New Mexico, 2006. Emerg Infect Dis 14:1633–6
  • Grant WD, Sutherland IW, Wilkinson JF. (1969). Exopolysaccharide colonic acid and its occurrence in the Enterobacteriaceae. J Bacteriol 100:1187–93
  • Griffin PM, Bell BP, Cieslak PR, et al. (1994). Large outbreak of Escherichia coli O157:H7 infections in the western United States. In: Karmali MA, Goglio AG, eds. Recent advances in verocytotoxin-producing Escherichia coli infections. Amsterdam, The Netherlands: Elsevier Science B.V, 7–12
  • Grogan DW, Cronan JE. (1984). Cloning and manipulation of the Escherichia coli cyclopropane fatty acid synthase gene: physiological aspects of enzyme overproduction. J Bacteriol 158:286–95
  • Grogan DW, Cronan JE. (1997). Cyclopropane ring formation in membrane lipids of bacteria. Microbiol Mol Biol Rev 61:429–41
  • Gunasekera TS, Csonka LN, Paliy O. (2008). Genome-wide transcriptional responses of Escherichia coli K-12 to continuous osmotic and heat stresses. J Bacteriol 190:3712–20
  • Hagiwara D, Sugiura M, Oshima T, et al. (2003). Genome-wide analysis revealing a signaling network of the RcsC-YojN-RcsB phosphorelay system in Escherichia coli. J Bacteriol 187:5735–46
  • Hansen AM, Qiu Y, Yeh N, et al. (2005). SspA is required for acid resistance in stationary phase by downregulation of H-NS in Escherichia coli. Mol Microbiol 56:719–34
  • Harris LJ, Farber JN, Beuchat LR, et al. (2003). Outbreaks associated with fresh produce: incidence, growth and survival of pathogens in fresh and fresh-cut produce. Comp Rev Food Sci Food Safety 2:78–141
  • Hartl FU, Bracher A, Hayer-Hartl M. (2011). Molecular chaperones in protein folding and proteostasis. Nature 475:324–32
  • Hasan CMM, Shimizu K. (2008). Effect of temperature up-shift on fermentation and metabolic characteristics in view of gene expressions in Escherichia coli. Microb Cell Fact 7:35. doi: 10.1186/1475-2859-7-35
  • Hayashi T, Makino K, Ohnishi M, et al. (2001). Complete genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain K-12. DNA Res 8:11–22
  • Hazel JR. (1995). Thermal adaptation in biological membranes: is homeoviscous adaptation the explanation? Ann Rev Physiol 57:19–42
  • Hersh BM, Farooq FT, Barstad DN, et al. (1996). A glutamate -dependent acid resistance gene in Escherichia coli. J Bacteriol 178:3978–81
  • Hilborn ED, Mshar PA, Fiorentino TR, et al. (2000). An outbreak of Escherichia coli O157:H7 infections and hemolytic uremic syndrome associated with consumption of unpasteurized apple cider. Epidemiol Infect 124:31–6
  • Hlodan R, Tempst PF, Hartl FU. (1995). Binding of defined regions of a polypeptide to GroEL and its implications for chaperone-mediated protein folding. Nature Struct Biol 2:587–95
  • Holt RD, Gomulkiewicz R, Barfield M. (2003). The phenomenology of niche evolution via quantitative traits in a ‘black-hole’ sink. Proc Biol Sci 270:215–24
  • Horwich AL, Low KB, Fenton WA, et al. (1993). Folding in vivo of bacterial cytoplasmic proteins: role of GroEL. Cell 74:909–17
  • Houry WA, Frishman D, Eckerskorn C, et al. (1999). Identification of in vivo substrates of the chaperonin GroEL. Nature 402:147–54
  • Infectious Disease Surveillance Center. (1997). National Institute of Infectious Diseases and Infectious Diseases Control Division, Ministry of Health and Welfare, Japan. 1997. Verocytotoxin-producing Escherichia coli (enterohemorrhagic E. coli) infectious, Japan, 1996-June. Infect Agents Surveill Rep 18:153–4
  • Janda MJ, Abbott LS. (1998). Escherichia coli. In: The Enterobacteria. Philadelphia: Lippincott-Raven, 13–51
  • Jeong KC, Hung KF, Baumler DJ, et al. (2008). Acid stress damage of DNA is prevented by Dps binding in Escherichia coli O157:H7. BMC Microbiol 8:181
  • Jozefczuk S, Klie S, Catchpole G, et al. (2010). Metabolomic and transcriptomic stress response of Escherichia coli. Mol Syst Biol 6:364–80
  • Kassenborg HD, Hedberg CW, Hoekstra M, et al. (2004). Farm visits and undercooked hamburgers as major risk factors for sporadic Escherichia coli O157:H7 infection: data from a case-control study in 5 foodnet sites. Clin Infect Dis 38 (Suppl 3):S271–8
  • Keene WE, Hedberg K, Herriott DE, et al. (1997). A prolonged outbreak of Escherichia coli O157:H7 infections caused by commercially distributed raw milk. J Infect Dis 176:815–18
  • Keskin O, Bahar I, Flatow D, et al. (2002). Molecular mechanism of chaperonin GroEL-GroES function. Biochemistry 41:491–501
  • King T, Lucchini S, Hinton JCD, Gobius K. (2010). Transcriptomic analysis of Escherichia coli O157:H7 and K-12 cultures exposed to inorganic and organic acids in stationary phase reveals acidulant- and strain-specific acid tolerance responses. Appl Environ Microbiol 76:6514–28
  • Kocharunchitt C, King T, Gobius K, et al. (2012). Integrated transcriptomic and proteomic analysis of the physiological response of Escherichia coli O157:H7 Sakai to steady-state conditions of cold and water activity stress. Mol Cell Proteomics 11:1–16. doi: 10.1074/mcp.M111.009019
  • Kyle JL, Parker CT, Goudeau D, Brandl MT. (2010). Transcriptome analysis of Escherichia coli O157:H7 exposed to lysates of lettuce leaves. Appl Environ Microbiol 76:1375–87
  • Lee K, French NP, Jones G, et al. (2011). Multivariate analysis revealed distinctive features differentiating human and cattle isolates of Shiga toxin-producing Escherichia coli O157 in Japan. J Clin Microbiol 49:1495–500
  • Lee K, French NP, Jones G, et al. (2012). Variation in stress resistance patterns among stx genotypes and genetic lineages of Shiga toxin-producing Escherichia coli O157. Appl Environ Microbiol 78:3361–8
  • Lin J, Lee IS, Frey J, et al. (1995). Comparative analysis of extreme acid survival in Salmonella typhimurium, Shigella flexneri, and Escherichia coli. J Bacteriol 177:4097–104
  • Lin J, Smith MP, Chapin KC, et al. (1996). Mechanisms of acid resistance in enterohemorrhagic Escherichia coli. Appl Environ Microbiol 62:3094–100
  • Mao Y, Doyle MP, Chen J. (2006). Role of colonic acid exopolysaccharide in the survival of enterohaemorrhagic Escherichia coli O157:H7 in simulated gastrointestinal fluids. Lett Appl Microbiol 42:642–47
  • Marger MD, Saier MH. (1993). A major superfamily of transmembrane facilitators that catalyse uniport, symport and antiport. Trends Biochem Sci 18:13–20
  • Mehdy MC. (1994). Active oxygen species in plant defense against pathogens. Plant Physiol 105:467–72
  • Merrell DS, Camilli A. (2002). Acid tolerance of gastrointestinal pathogens. Curr Opin Microbiol 5:51–5
  • Mujacic M, Bader MW, Baneyx F. (2004). Escherichia coli Hsp31 functions as a holding chaperone that cooperates with the DnaK-DnaJ-GreE system in the management of protein misfolding under severe stress conditions. Mol Microbiol 51:849–59
  • Mujacic M, Baneyx F. (2006). Regulation of Escherichia coli hchA, a stress-inducible gene encoding molecular chaperone Hsp31. Mol Microbiol 60:1576–89
  • Neuhaus K, Rapposch S, Francis KP, Scherer S. (2000). Restart of exponential growth of cold-shocked Yersinia enterocolitica occurs after down-regulation of cspA1/A2 mRNA. J Bacteriol 182:3285–8
  • Nikaido H. (1996). Multidrug efflux pumps of Gram-negative bacteria. J Bacteriol 178:5853–9
  • Nonaka G, Blankschien M, Herman C, et al. (2006). Regulon and promoter analysis of the E. coli heat-shock factor, σ32, reveals a multifaceted cellular response to heat stress. Genes Dev 20:1776–89
  • O’Brien AD, Melton AR, Schmitt CK, et al. (1993). Profile of Escherichia coli O157:H7 pathogen responsible for hamburger-borne outbreak of hemorrhagic colitis and hemolytic uremic syndrome in Washington. J Clin Microbiol 31:2799–801
  • Osbourn AE. (1996). Preformed antimicrobial compounds and plant defense against fungal attack. Plant Cell 8:1821–31
  • Paek KH, Walker GC. (1987). Escherichia coli dnaK null mutants are inviable at high temperature. J Bacteriol 169:283–90
  • Paton AW, Ratcliff R, Doyle RM, et al. (1996). Molecular microbiological investigation of an outbreak of hemolytic uremic syndrome caused by dry fermented sausage contaminated with Shiga-like toxin producing Escherichia coli. J Clin Microbiol 34:1622–7
  • Perna NT, Plunket G III, Burland V, et al. (2001). Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 409:529–33
  • Pomposiello PJ, Demple B. (2001). Redox-operated genetic switches: the SoxR and OxyR transcription factors. TRENDS Biotechnol 19:109–14
  • Rangel JM, Sparling PH, Crowe C, et al. (2005). Epidemiology of Escherichia coli O157:H7 outbreaks, United States, 1982-2002. Emerg Infect Dis 11:603–9
  • Riley LW, Remis RS, Helgerson SD, et al. (1983). Hemorrhagic colitis associated with a rare Escherichia coli serotype. N Engl J Med 308:681–5
  • Salvucci ME, Hendrix DL, Wolfe GR. (1999). Effect of high temperature on the metabolic processes affecting sorbitol synthesis in silverleaf whitefly, Bemisia argentifolii. J Insect Physiol 45:21–7
  • Sastry MSR, Korotkov K, Brodsky Y, Baneyx F. (2002). Hsp31, the Escherichia coli yedU gene product, is a molecular chaperone whose activity is inhibited by ATP at high temperatures. J Biol Chem 277:46026–34
  • Scallan E, Hoekstra RM, Angulo FJ, et al. (2011). Foodborne illness acquired in the United States-major pathogens. Emerg Infect Dis 17:7–15
  • Sivapalasingam S, Friedman CR, Cohen L, Tauxe RV. (2004). Fresh produce: a growing cause of outbreaks of foodborne illness in the United States, 1973 through 1997. J Food Prot 67:2342–53
  • Smith DK, Kassam T, Singh B, Elliott JF. (1992). Escherichia coli has two homologous glutamate decarboxylase genes that map to distinct loci. J Bacteriol 174:5820–6
  • Soini J, Falschlehner C, Mayer C, et al. (2005). Transient increase of ATP as a response to temperature up-shift in Escherichia coli. Microb Cell Fact 4:9–17
  • Stabler SL, Fagerberg DJ, Quarles CL. (1982). Effects of oral and injectable tetracyclines on bacterial drug resistance in feedlot cattle. Am J Vet Res 43:1763–6
  • Stewart PJ, Desormeaux W, Chene J. (1983). Hemorrhagic colitis in a home for the aged-Ontario. Canada Diseases Weekly Rep 9:29–32
  • Su C, Brandt LJ. (1995). Escherichia coli O157:H7 infection in humans. Ann Int Med 123:698–714
  • Tilden J, Young W, McNamara AM, et al. (1996). A new route of transmission for Escherichia coli: infection from dry fermented salami. Am J Public Health 86:1142–5
  • van de Waterbeemd B, Zomer G, van den IJssel J, et al. (2013). Cysteine depletion causes oxidative stress and triggers outer membrane vesicle release by Neisseria meningitidis; implications for vaccine development. PLoS ONE 8:e54314. doi:10.1371/journal.pone.0054314
  • Vidovic S, Mangalappalli-Illathu AK, Korber DR. (2011). Prolonged cold stress response of Escherichia coli O157 and the role of rpoS. Int J Food Microbiol 146:163–9
  • Vidovic S, Mangalappalli-Illathu AK, Xiong H, Korber DR. (2012). Heat acclimation and the role of RpoS in prolonged heat shock of Escherichia coli O157. Food Microbiol 30:457–64
  • Vidovic S, Tsoi S, Medihala P, et al. (2013). Molecular and antimicrobial susceptibility analyses distinguish clinical from bovine Escherichia coli O157 strains. J Clin Microbiol 51:2082–8
  • Walkup LKB, Kogoma T. (1989). Escherichia coli proteins inducible by oxidative stress mediated by the superoxide radical. J Bacteriol 171:1476–84
  • Wang AY, Grogan DW, Cronan JE. (1992). Cyclopropane fatty acid synthase of Escherichia coli: deduced amino acid sequence, purification, and studies of the enzyme active site. Biochemistry 31:11020–8
  • Wang S, Deng K, Zaremba S, et al. (2009). Transcriptomic response of Escherichia coli O157:H7 to oxidative stress. Appl Environ Microbiol 75:6110–23
  • Weber A, Kogl SA, Jung K. (2006). Time-dependent proteome alterations under osmotic stress during aerobic and anaerobic growth in Escherichia coli. J Bacteriol 188:7165–75
  • Welinder-Olsson C, Stenqvist K, Badenfors M, et al. (2004). EHEC outbreak among staff at a children’s hospital-Use of PCR for verocytotoxin detection and PFGE for epidemiological investigation. Epidemiol Infect 132:43–9
  • Wells JE, Berry ED, Varel VH. (2005). Effects of common forage phenolic acids of Escherichia coli O157:H7 viability in bovine faces. Appl Environ Microbiol 71:7974–9
  • Whitworth J, Zhang Y, Bono J, et al. (2010). Diverse genetic markers concordantly identify bovine origin Escherichia coli O157 genotypes underrepresented in human diseases. Appl Environ Microbiol 76:361–5
  • Wu J, Weiss B. (1991). Two divergently transcribed genes, soxR and soxS, control a superoxide response regulon in Escherichia coli. J Bacteriol 173:2864–71
  • Ye Y, Zhang L, Hao F, et al. (2012). Global metabolomics responses of Escherichia coli to heat stress. J Proteome Res 11:2559–66
  • Zheng M, Wang X, Templeton LJ, et al. (2001). DNA microarray-mediated transcriptional profiling of the Escherichia coli response to hydrogen peroxide. J Bacteriol 183:4562–70
  • Zhou P, Florova G, Reynolds KA. (1999). Polyketide synthase acyl carrier protein (ACP) as a substrate and a catalyst for malonyl ACP biosynthesis. Chem Biol 6:577–84

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.