1,079
Views
26
CrossRef citations to date
0
Altmetric
Review article

Microbial degradation of 2,4-dichlorophenoxyacetic acid: Insight into the enzymes and catabolic genes involved, their regulation and biotechnological implications

, &
Pages 194-208 | Received 29 Jan 2014, Accepted 30 Mar 2014, Published online: 24 Jul 2014

References

  • Abbott MT, Udenfriend S. (1974). α-Ketoglutarate-coupled dioxygenase. In: Hayaishi O, ed. Molecular mechanisms of oxygen activation. New York: Academic Press, 167–214
  • Akkermans ADL. (1994). Application of bacteria in soils: problems and pitfalls. FEMS Microbiol Rev 15:185–94
  • Alexander M. (1969). Soil biology, reviews of research. Natural resources research. UNESCO 9:209–40
  • Alexander M. (1994). Inoculation. In: Alexander M, ed. Biodegradation and bioremediation. San Diego, CA: Academic Press, 226–47
  • Amy PS, Schulke JW, Frazier LM, Seidler RJ. (1985). Characterization of aquatic bacteria and cloning of genes specifying partial degradation of 2,4-dichlorophenoxyacetic acid. Appl Environ Microbiol 1237–45
  • Arensdorf JJ, Focht DD. (1995). A meta cleavage pathway for 4-chlorobenzoate, an intermediate in the metabolism of 4-chlorobiphenyl by Pseudomonas cepacia P166. Appl Environ Microbiol 61:443–7
  • Armengaud J, Timmis KN, Wittich RM. (1999). A functional 4-hydroxysalicylate/hydroxyquinol degradative pathway gene cluster is linked to the initial dibenzo-p-dioxin pathway genes in Sphingomonas sp. strain RW1. J Bacteriol 181:3452–61
  • Audus LJ. (1949). Biological detoxification of 2,4-dichlorophenoxyacetic acid in soil. Plant Soil 2:31–6
  • Audus LJ. (1951). The biological detoxification of hormone herbicides in soil. Plant Soil 3:170–92
  • Baelum J, Jacobsen CS, Holben WE. (2010). Comparison of 16SrRNA gene phylogeny and functional tfdA gene distribution in thirty-one different 2,4-dichlorophenoxyaceticacid and 4-chloro-2-methylphenoxyaceticacid degraders. Syst Appl Microbiol 33:67–70
  • Balajee S, Mahadevan A. (1990). Dissimilation of 2,4-dichlorophenoxyacetic acid by Azotobacter chroococcum. Xenobiotica 20:607–17
  • Barles RW, Daughton CG, Hsieh PH. (1979). Accelerated parathion degradation in soil inoculated with acclimated bacteria under field conditions. Arch Environ Contam Toxicol 8:647–60
  • Bartels I, Knackmuss HJ, Reineke W. (1984). Suicide inactivation of catechol 2,3-dioxygenase from Pseudomonas putida MR-2 by 3-halocatechols. Appl Environ Microbiol 147:500–5
  • Beadle CA, Smith AR. (1982). The purification and properties of 2,4-dichlorophenol hydroxylase from a strain of AcinetoBacter sp. Eur J Biochem 123:323–32
  • Bell GR. (1957). Some morphological and biochemical characteristics of a soil bacterium which decomposes 2,4-dichlorophenoxyacetic acid. Can J Microbiol 3:821–40
  • Bhat MA, Tsuda M, Horiike K, et al. (1994). Identification and characterization of a new plasmid carrying genes for degradation of 2,4-dichlorophenoxyacetate from Pseudomonas cepacia CSV90. Appl Environ Microbiol 60:307–12
  • Bhat MA, Tsuda M, Horiike K, et al. (1993). Purification of 3,5-dichlorocatechol 1,2-dioxygenase, a nonheme iron dioxygenase and a key enzyme in the biodegradation of a herbicide, 2,4-dichlorophenoxyacetic acid (2,4-D), from Pseudomonas cepacia CSV90. Arch Biochem Biophys 300:738–46
  • Bollag JM, Briggs GG, Dawson JE, Alexander M. (1968a). 2,4-D metabolism: enzymatic degradation of chlorocatechols. J Agric Food Chem 16:829–33
  • Bollag JM, Helling CS, Alexander M. (1968b). 2,4-D metabolism: enzymatic hydroxylation of chlorinated phenols. J Agric Food Chem 16:826–8
  • Bortolozzi AA, Evangelista-de-Duffard AM, Duffard RO, Antonelli MC. (2004). Effects of 2,4-dichlorophenoxyacetic acid exposure on dopamine D2-like receptors in rat brain. Neurotoxicol Terato 26:599–605
  • Brokamp A, Schmidt FRJ. (1991). Survival of Alcaligenes xylosoxidans degrading 2,2-dichloropropionate and horizontal transfer of its halidohydrolase gene in a soil microcosm. Curr Microbiol 22:299–306
  • Bruckmann M, Blasco R, Timmis KN, Pieper DH. (1998). Detoxification of protoanemonin by dienelactone hydrolase. J Bacteriol 180:400–2
  • Camara B, Marin M, Schlomann M, et al. (2008). Trans-Dienelactone hydrolase from Pseudomonas reinekei MT1, a novel zinc-dependent hydrolase. Biochem Biophys Res Commun 376:423–8
  • Cavalca L, Alain H, Nadine R, Guy S. (1999). Diversity of tfdC genes: distribution and polymorphism among 2,4-dichlorophenoxyacetic acid degrading soil bacteria. FEMS Microbiol Ecol 29:45–58
  • Chakrabarty AM. (1976). Plasmids in Pseudomonas. Annu Rev Genet 10:7–30
  • Charles JM, Hanley TR, Wilson RD, et al. (2001). Development toxicity studies in rats and rabbits on 2,4-dichlorophenoxyacetic acid and its forms. Toxicol Sci 60:121–31
  • Chaudhary GR, Huang GH. (1988). Isolation and characterization of a new plasmid from a Flavobacterium sp. which carries the genes for degradation of 2,4-dichlorophenoxyacetate. J Bacteriol 170:3897–902
  • Cheah E, Austin C, Ashley GW, Ollis D. (1993a). Catalysis by dienelactone hydrolase: a variation on the protease mechanism. Proteins Struct Funct Genet 16:64–78
  • Cheah E, Austin C, Ashley GW, Ollis D. (1993b). Substrate-induced activation of dienelactone hydrolase: an enzyme with a naturally occurring Cys–His–Asp triad. Protein Eng 6:575–83
  • Cheney MA, Fiorillo R, Criddle RS. (1997). Herbicide and estrogen effects on the metabolic activity of Elliptio complanata measured by calorespirometry. Comp Biochem Physiol 118C:159–64
  • Chinalia FA, Regali-Seleghin MH, Correa EM. (2007). 2,4-D toxicity: cause, effect and control. Terrest Aqua Environ Toxicol 1:24–33
  • Clark CG, Wright SJL. (1970). Detoxification of isopropyl-N-phenylcarbamate (IPC) and isopropyl-N-3-chlorophenylcarbamate (CIPC) in soil, and isolation of IPC-metabolizing bacteria. Soil Biol Biochem 2:19–27
  • Coco WM, Rothmel RK, Henikoff S, Chakrabarty AM. (1993). Nucleotide sequence and initial functional characterization of the clcR gene encoding a LysR family activator of the clcABD chlorocatechol operon in Pseudomonas putida. J Bacteriol 175:417–27
  • Crowley DE, Brennerova MV, Irwin C, et al. (1996). Rhizosphere effects on biodegradation of 2,5-dichlorobenzoate by a bioluminescent strain of root-colonizing Pseudomonas fluorescens. FEMS Microbiol Ecol 20:79–89
  • Daane LL, Haggblom MM. (1999). Earthworm egg capsules as vectors for the environmental introduction of biodegradative bacteria. Appl Environ Microbiol 65:2376–81
  • Daubaras DL, Saido K, Chakrabarty AM. (1996). Purification of hydroxyquinol 1,2-dioxygenase and maleylacetate reductase: the lower pathway of 2,4,5-trichlorophenoxyacetic acid metabolism by Burkholderia cepacia AC1100. Appl Environ Microbiol 62:4276–9
  • Dejonghe W, Goris J, El Fantroussi S, et al. (2000). Effect of dissemination of 2,4-dichlorophenoxyacetic acid (2,4-D) degradation plasmids on 2,4-D degradation and on bacterial community structure in two different soil horizons. Appl Environ Microbiol 66:3297–304
  • Denis JN, Greene AE, Serra AA, Luche MJ. (1986). An efficient, enantioselective synthesis of the taxol side chain. J Org Chem 51:46–50
  • DeRore H, Demolder K, De Wilde K, et al. (1994). Transfer of the catabolic plasmid RP4::Tn4371 to indigenous soil bacteria and its effect on respiration and biphenyl breakdown. FEMS Microbiol Ecol 15:71–8
  • Dietmar HP, Reineke W, Engesser KH, Knackmuss HJ. (1988). Metabolism of 2,4-dichlorophenoxyacetic acid, 4-chloro-2-methylphenoxyacetic acid and 2-methylphenoxyacetic acid by Alcaligenes eutrophus JMP 134. Arch Microbiol 150:95–102
  • DiGiovanni GD, Neilson JW, Pepper IL, Sinclair NA. (1996). Gene transfer of Alcaligenes eutrophus JMP134 plasmid pJP4 to indigenous soil recipients. Appl Environ Microbiol 62:2521–6
  • Ditzelmuller G, Loid M, Streichsbier F. (1989). Isolation and characterization of a 2,4-dichlorophenoxyacetic acid-degrading soil bacterium. Appl Microbiol Biotechnol 31:93–6
  • Don RG. (1983). Isolation and genetic and physical analysis of sixbacterial plasmids: encoding degradation of the herbicide 2,4-dichlorophenoxyacetic acid. [Ph.D. thesis]. Brisbane, Australia: University of Queensland
  • Don RH, Pemberton JM. (1981). Properties of six pesticide degradation plasmids isolated from Alcaligenes paradoxus and Alcaligenes eutrophus. J Bacteriol 145:681–6
  • Don RH, Pemberton JM. (1985). Genetic and physical map of the 2,4-dichlorophenoxyacetic acid degradative plasmid pJP4. J Bacteriol 161:466–8
  • Don RH, Weightman AJ, Knackmuss HJ, Timmis KN. (1985). Transposon mutagenesis and cloning analysis of the pathways for degradation of 2,4-dichlorophenoxyacetic acid and 3-chlorobenzoate in Alcaligenes eutrophus JMP134 (pJP4). J Bacteriol 161:85–90
  • Dong FM, Want LL, Wang CM, et al. (1992). Molecular cloning and mapping of phenol degradation genes from Bacillus stearothermophilus FDTP-3 and their expression in Escherichia coli. Appl Environ Microbiol 58:2531–5
  • Droge M, Puhler A, Selbitschka W. (1999). Horizontal gene transfer among bacteria in terrestrial and aquatic habitats as assessed by microcosm and field studies. Biol Fertil Soils 29:221–45
  • Duffard R, Garcıa G, Rosso S, et al. (1996). Central nervous system myelin deficit in rats exposed to 2,4-dichlorophenoxyacetic acid throughout lactation. Neurotoxicol Teratol 18:691–6
  • Duxbury JM, Tiedje JM, Alexander M, Dawson JE. (1970). 2,4-D metabolism: enzymatic conversion of chloromaleylacetic acid to succinic acid. J Agric Food Chem 18:199–201
  • Elkins JM, Ryle MJ, Clifton IJ, et al. (2002). X-ray crystal structure of Escherichia coli taurine/α-ketoglutarate dioxygenase complexed to ferrous iron and substrates. Biochemistry 41:5185–92
  • Endo R, Kamakura M, Miyauchi K, et al. (2005). Identification and characterization of genes involved in the downstream degradation pathway of γ-hexachlorocyclohexane in Sphingomonas paucimobilis UT26. J Bacteriol 187:847–53
  • Evangelista-de-Duffard AM, Bortolozzi A, Duffard RO. (1995). Altered behavioural responses in 2,4-dichlorophenoxyacetic acid treated and amphetamine challenged rats. Neurotoxicology 16:3479–84
  • Evans WC, Smith BSW, Fernley HN, Davies JI. (1971). Bacterial metabolism of 2,4-dichlorophenoxyacetate. Biochem J 122:543–52
  • Fantroussi El, Belkacemi SM, Top EM, et al. (1999). Bioaugmentation of a soil bioreactor designed for pilot-scale anaerobic bioremediation studies. Environ Sci Technol 33:2992–3001
  • Faulkner JK, Woodcock D. (1961). Fungal detoxication. Part V. Metabolism of 0- and p-chlorophenoxyacetic acids by Aspergillus niger. J Chem Soc Part IV 5397–400
  • Faulkner JK, Woodcock D. (1965). Fungal detoxication. Part VII. Metabolism of 2,4-dichlorophenoxyacetic and 4-chloro-2-methylphenoxyacetic acids by Aspergillus niger. J Chem Soc Part I 1187–91
  • Filer K, Harker AR. (1997). Identification of the inducing agent of the 2,4-dichlorophenoxyacetic acid pathway encoded by plasmid pJP4. Appl Environ Microbiol 63:317–20
  • Fisher PR, Appleton J, Pemberton JM. (1978). Isolation and characterization of the pesticide-degrading plasmid pJPI from Alcaligenes paradoxsis. J Bacteriol 135:798–804
  • Fletcher WW. (1978). The pest war. Oxford: Basil Blackwell
  • Friedrich B, Meyer M, Schlegel HG. (1983). Transfer and expression of the herbicide-degrading plasmid pJP4 in aerobic autotrophic bacteria. Arch Microbiol 134:92–7
  • Fukumori F, Hausinger RP. (1993a). Purification and characterization of 2,4-dichlorophenoxyacetate/α-ketoglutarate dioxygenase. J Biol Chem 268:24311–7
  • Fukumori F, Hausinger RP. (1993b). Alcaligenes eutrophus JMP134 “2,4-dichlorophenoxyacetate monooxygenase” is an α-ketoglutarate-dependent dioxygenase, J Bacteriol 176:2083–6
  • Gaal AB, Neujahr HY. (1980). Maleylacetate reductase from Trichosporon cutaneum. Biochem J 185:783–6
  • Gamar Y, Gaunt JK. (1971). Bacterial metabolism of 4-chloro-2-methylphenoxyacetate (MCPA): formation of glyoxylate by side-chain cleavage. Biochem J 122:527–31
  • Gamar Y. (1967). Studies on the bacterial metabolism of 4-chloro-2-methyl-phenoxyacetic acid. [Ph.D. thesis]. Bangor: University of Wales
  • Gaunt JK. (1962). Studies on the bacterial metabolism of 4-chloro-2-methylphenoxyacetate. [Ph.D. thesis]. Bangor: University of Wales
  • Gentile A, Giordano C, Fuganti C, et al. (1992). The enzymatic preparation of (2R, 3S)-phenyl glycidic acid esters. J Org Chem 57:6635–7
  • Ghoshal D, You IS, Chatterjee DK, Chakrabarty AM. (1985). Genes specifying degradation of 3-chlorobenzoic acid in plasmid pAC27 and pJP4. Proc Natl Acad Sci USA 82:1638–42
  • Ghoshal D, You IS. (1989). Operon structure and nucleotide homology of the chlorocatechol oxidation genes of plasmids pJP4 and pAC27. Gene 83:225–32
  • Goldstein RM, Mallory LM, Alexander M. (1985). Reasons for possible failure of inoculation to enhance biodegradation. Appl Environ Microbiol 50:977–83
  • Gotz A, Smalla K. (1997). Manure enhances plasmid mobilization and survival of Pseudomonas putida introduced into field soil. Appl Environ Microbiol 63:1980–6
  • Gu Y, Knaebel DB, Korus RA, Crawford RL. (1995). 2,4-Dichlorophenoxyacetic acid detection using 2,4-dichlorophenoxyacetic acid (2,4-D) α-ketoglutarate dioxygenase. Environ Sci Technol 29:1622–7
  • Haggblom MM. (1992). Microbial breakdown of halogenated aromatic pesticides and related compounds. FEMS Microbiol Rev 103:29–72
  • Harker AR, Olsen RH, Seidler RJ. (1989). Phenoxyacetic acid degradation by the 2,4-dichlorophenoxyacetic acid (TFD) pathway of plasmid pJP4: mapping and characterization of the TFD regulatory gene tfdR. J Bacteriol 171:314–20
  • Hattori T, Mitsui H, Haga H, et al. (1997). Advances in soil microbial ecology and the biodiversity. Antonie Van Leeuwenhoek 72:21–8
  • Hausinger RP, Fukumori F. (1995). Characterization of the first enzyme in 2,4-dichiorophenoxyacetic acid metabolism. Environ Health Perspect 103:37–9
  • Henikoff S, Haughn GW, Calvo JM, Wallace JC. (1988). A large family of bacterial activator proteins. Proc Natl Acad Sci USA 85:6602–6
  • Hesp B, Calvin M, Hosokawa K. (1969). Studies on p-hydroxybenzoate hydroxylase from Pseudomonas putida. J Biol Chem 244:5644–55
  • Hill KE, Top EM. (1998). Gene transfer in soil systems using microcosms. FEMS Microbiol Ecol 25:319–29
  • Hogan DA, Buckley DH, Nakatsu CH, et al. (1997). Distribution of the tfdA gene in soil bacteria that do not degrade 2,4-dichlorophenoxyacetic acid (2,4-D). Microbiol Ecol 34:90–6
  • Horvath RS. (1970). Co-metabolism of methyl- and chloro-substituted catechols by an Achromobaeter sp. possessing a new meta-cleaving oxygenase. Biochem J 119:871–6
  • Hosokawa K, Stanier RY. (1966). Crystallization and properties of p-hydroxybenzoate hydroxylase from Pseudomonas putida. J Biol Chem 241:2453–60
  • Hotopp JCD, Hausinger RP. (2001). Alternative substrates of 2,4-dichlorophenoxyacetate α-ketoglutarate dioxygenase. J Mol Catal B: Enzym 15:155–62
  • Hotopp JCD, Hausinger RP. (2002). Probing the 2,4-dichlorophenoxyacetate α-ketoglutarate dioxygenase substrate-binding site by site-directed mutagenesis and mechanism-based inactivation. Biochemistry 41:9787–94
  • Huang Y, Zhao KX, Shen XH, et al. (2006). Genetic characterization of the resorcinol catabolic pathway in Corynebacterium glutamicum. Appl Environ Microbiol 72:7238–45
  • Huong NL, Kazuhito I, Miyamoto M, et al. (2007). Chlorophenol hydroxylase activity encoded by TfdB from 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading Bradyrhizobium sp. strain RD5-C2. Biosci Biotechnol Biochem 71:1691–6
  • Igbinosa OE, Ajisebutu OS, Okoh IA. (2007a). Studies on aerobic biodegradation activities of 2,4-dichlorophenoxyacetic acid by bacteria species isolated from petroleum polluted site. Afr J Biotechnol 6:1426–31
  • Igbinosa OE, Ajisebutu OS, Okoh IA. (2007b). Aerobic dehalogenation activities of two petroleum degrading bacteria. Afr J Biotechnol 6:897–901
  • Jensen HL, Petersen HI. (1952). Decomposition of hormone herbicides by bacteria. Acta Agric Scand 2:215–31
  • Jing-yun M, Quan X, Yang Z, Li A. (2012). Biodegradation of a mixture of 2,4-dichlorophenoxyacetic acid and multiple chlorophenols by aerobic granules cultivated through plasmid pJP4 mediated bioaugmentation. Chem Eng J 181–2:144–51
  • Jones KH, Trudgill PW, Hopper DJ. (1995). Evidence of two pathways for the metabolism of phenol by Aspergillus fumigatus. Arch Microbiol 163:176–81
  • Kamagata Y, Fulthorpe RR, Tamura K, et al. (1997). Pristine environments harbour a new group of oligotrophic 2,4-dichlorophenoxyacetic acid-degrading bacteria. Appl Environ Microbiol 63:2266–72
  • Kaminski U, Janke D, Prauser H, Fritsche W. (1983). Degradation of aniline and monochloroanilines by Rhodococcus sp. AN 117 and a Pseudomonad: a comparative study. Z Allg Microbiol 22:235–46
  • Kaphammer B, Kukor JJ, Olsen RH. (1990). Regulation of tfdCDEF by tfdR of the 2,4-dichlorophenoxyacetic acid degradative plasmid pJP4. J Bacteriol 172:2280–6
  • Kaphammer B, Olsen RH. (1990). Cloning and characterization of the tfdS, the repressor-activator gene of tfdB, from the 2,4-dichlorophenoxyacetic acid catabolic plasmid pJP4. J Bacteriol 172:5856–62
  • Kaschabek SR, Reineke W. (1992). Maleylacetate reductase of Pseudomonas sp. strain B13: dechlorination of chloromaleylacetates, metabolites in the degradation of chloroaromatic compounds. Arch Microbiol 158:412–7
  • Kaschabek SR, Reineke W. (1995). Maleylacetate reductase of Pseudomonas sp. strain B13: specificity of substrate conversion and halide elimination. J Bacteriol 177:320–5
  • Kazuhito I, Kanda R, Momoda Y, et al. (2000). Presence of 2,4-D-catabolizing bacteria in a Japanese arable soil that belong to BANA (Bradyrhizobium-Agromonas-Nitrobacter-Afipia) cluster in α-Proteobacteria. Microbiol Environ 15:113–7
  • Kazuhito I, Kanda R, Sumita Y, et al. (2002). tfdA-Like genes in 2,4-dichlorophenoxyacetic acid-degrading bacteria belonging to the Bradyrhizobium-Agromonas-Nitrobacter-Afipia cluster in α-Proteobacteria. Appl Environ Microbiol 68:3449–54
  • Khalil A. (2003). Isolation and characterization of 2,4-D degrading organisms from soil in Jordan Valley. Biotechnology 2:73–85
  • Kilbane JJ, Chatterjee DK, Chakrabarty AM. (1983). Detoxification of 2,4,5-trichlorophenoxyacetic acid from contaminated soil by Pseudomonas cepacia. Appl Environ Microbiol 45:1697–700
  • Kilpi S, Backstr6m V, Korhola M. (1983). Degradation of catechol, methylcatechols and chlorocatechols by Pseudomonas sp. HV3. FEMS Microbiol Lett 18:1–5
  • Kim HK, Liu JW, Carr PD, Ollis DL. (2005). Following directed evolution with crystallography: structural changes observed in changing the substrate specificity of dienelactone hydrolase. Acta Cryst D61:920–31
  • Klecka GM, Gibson DT. (1981). Inhibition of catechol 2,3-dioxygenase from Pseudomonas putida by 3-chlorocatechol. Appl Environ Microbiol 41:1159–65
  • Koiv V, Marits R, Heinaru A. (1996). Sequence analysis of the 2,4-dichlorophenol hydroxylase gene tfdB and 3,5-dichlorocatechol 1,2-dioxygenase gene tfdC of 2,4-dichlorophenoxyacetic acid degrading plasmid pEST4011. Gene 174:293–7
  • Kuhm AE, Schlomann M, Knackmuss HJ, Pieper DH. (1990). Purification and characterization of dichloromuconate cycloisomerase from Alcaligenes eutrophus JMP134. Biochem J 266:877–83
  • Laemmli CM, Leveau JHJ, Zehnder AJB, van der Meer JR. (2000). Characterization of a second tfd gene cluster for chlorophenol and chlorocatechol metabolism on plasmid pJP4 in Ralstonia eutropha JMP134 (pJP4). J Bacteriol 182:4165–72
  • Laemmli CM, Schonenberger R, Suter MJ-F, et al. (2002). TfdDII, one of the two chloromuconate cycloisomerases of Ralstonia eutropha JMP134 (pJP4), cannot efficiently convert 2-chloro-cis,cis-muconate to trans-dienelactone to allow growth on 3-chlorobenzoate. Arch Microbiol 178:13–25
  • Laemmli CM, Werlen C, van der Meer JR. (2004). Mutation analysis of the different tfd genes for degradation of chloroaromatic compounds in Ralstonia eutropha JMP134. Arch Microbiol 181:112–21
  • Ledger T, Pieper DH, Gonzalez B. (2006). Chlorophenol hydroxylases encoded by pJP4 plasmid differentially contribute to chlorophenoxyacetic acid degradation. Appl Environ Microbiol 72:2783–92
  • Lee K, Johnson VJ, Blakley BR. (2001). The effect of exposure to a commercial 2,4-D formulation during gestation on the immune response in CD-1 mice. Toxicology 165:39–49
  • Leveau JHJ, Konig F, Fuchslin H, et al. (1999). Dynamics of multigene expression during catabolic adaptation to Ralstonia eutropha JMP134 (pJP4) to the herbicide 2,4-dichlorophenoxyacetate. Mol Microbiol 33:396–406
  • Leveau JHJ, van der Meer JR. (1996). The tfdR gene product can successfully take over the role of the insertion element-inactivated TfdT protein as a transcriptional activator of the tfdCDEF gene cluster, which encodes chlorocatechol degradation in Ralstonia eutropha JMP134 (pJP4). J Bacteriol 178:6824–32
  • Liu T, Chapman PJ. (1984). Purification and properties of a plasmid-encoded 2,4-dichlorophenol hydroxylase. FEBS Lett 173:314–8
  • Loos MA, Roberts RN, Alexander M. (1967a). Phenols as intermediates in the decomposition of phenoxyacetates by an Arthrobacter sp. Can J Microbiol 13:679–90
  • Loos MA, Roberts RN, Alexander M. (1967b). Formation of 2,4-dichlorophenol and 2,4-dichloroanisole from 2,4-dichlorophen-oxyacetate by Arthrobacter sp. Can J Microbiol 13:691–9
  • Loos MA, Bollag JM, Alexander M. (1967c). Phenoxyacetate herbicide detoxication by bacterial enzymes. J Agric Food Chem 15:858–60
  • Lorraine L, Clipson N, Doyle E. (2010). Quantification of catechol dioxygenase gene expression in soil during degradation of 2,4-dichlorophenol. FEMS Microbiol Ecol 73:363–9
  • Macrae IC, Alexander M, Rovira AD. (1963). The decomposition of 4-(2,4-dichlorophenoxy)butyric acid by Flavobacterium sp. J Gen Microbiol 32:69–76
  • Mae AA, Marits RO, Ausmees NR, et al. (1993). Characterization of a new 2,4-dichlorophenoxyacetic-acid degrading plasmid pEST4011: physical map and localization of catabolic genes. J Gen Microbiol 139:3165–70
  • Marin M, Pieper DH. (2009). Novel metal-binding site of Pseudomonas reinekei MT1 trans-dienelactone hydrolase. Biochem Biophys Res Commun 390:1345–8
  • Markusheva TV, Zhurenko EY, Galkin EG, et al. (2004). Identification and characterization of a plasmid in strain Aeronomas hydrophila IBRB-36 4CPA carrying genes for catabolism of chlorophenoxyacetic acids. Russ J Genet 40:1210–4. Translated from Genetika 40:1469–74
  • Matrubutham U, Harker AR. (1994). Analysis of duplicated gene sequences associated with tfdR and tfdS in Alcaligenes eutrophus JMP134. J Bacteriol 176:2348–53
  • Mattsson J, Charles J, Yano B, et al. (1997). Single-dose and chronic dietary neurotoxicity screening studies on 2,4-dichlorophenoxyacetic acid in rats. Fund Appl Toxicol 40:11–119
  • Mattsson JL, Eisenbrandt DL. (1990). The improbable association between the herbicide 2,4-D and polyneuropathy. Biomed Environ Sci 3:43–51
  • Moiseeva OV, Solanikova IP, Kaschabek SR, et al. (2002). A new modified ortho cleavage pathway of 3-chlorocatechol degradation by Rhodococcus opacus 1CP: genetic and biochemical evidence. J Bacteriol 184:5282–92
  • Moonen MJ, Kamerbeek NM, Westphal AH, et al. (2008). Elucidation of the 4-hydroxyacetophenone catabolic pathway in Pseudomonas fluorescens ACB. J Bacteriol 190:5190–8
  • Neilson AH. (1990). The biodegradation of halogenated organic compounds. J Appl Bacteriol 69:445–70
  • Newby DT, Josephson KL, Pepper IL. (2000). Detection and characterization of plasmid pJP4 transfer to indigenous soil bacteria. Appl Environ Microbiol 66:290–6
  • Newman AS, Thomas JR. (1949). Decomposition of 2,4-dichlorophenoxyacetic acid in soil and liquid media. Soil Sci Soc Am Proc 14:160–4
  • Nikodem P, Hecht V, Schlomann M, Pieper DH. (2003). New bacterial pathway for 4- and 5-chlorosalicylate degradation via 4-chlorocatechol and maleylacetate in Pseudomonas sp. strain MT1. J Bacteriol 185:6790–800
  • Noh SJ, Kim Y, Min KH, et al. (2000). Cloning and nucleotide sequence analysis of xylE gene responsible for meta-cleavage of 4-chlorocatechol from Pseudomonas sp. S-47. Mol Cell 10:475–9
  • Norman AG. (1950). The fate of complex organic compounds in soil. In: Transactions of the Fourth International Congress on Soil Science, Amsterdam, vol. III, 100–2
  • Nutman PS, Thornton HG, Quastel JH. (1945). Plant-growth substances as selective weed-killers: inhibition of plant growth by 2,4-dichlorophenoxyacetic acid and other plant substances. Nature 155:498–500
  • Oliveira GH, Palermo-Neto J. (1995). Toxicology of 2,4-dichlorophenoxyacetic acid (2,4-D) and its determination in serum and brain tissue using gas chromatography-electron-capture detection. J Anal Toxicol 19:251–5
  • Ollis D, Cheah E, Cygler M, et al. (1992). The α/β hydrolase fold. Protein Eng 5:197–211
  • Padilla L, Matus V, Zenteno P, Gonzalez B. (2000). Degradation of 2,4,6-trichlorophenol via chlorohydroxyquinol in Ralstonia eutropha JMP134 and JMP222. J Basic Microbiol 40:243–9
  • Parsek MR, Shinabarger DL, Rothmel RK, Chakrabarty AM. (1992). Role of CatR and cis,cis-muconate in activation of the catBC operon, which is involved in benzoate degradation in Pseudomonas putida. J Bacteriol 174:7798–806
  • Patel TR, Hameed N, Armstrong S. (1992). Metabolism of gallate in Penicillium simplicissimum. J Basic Microbiol 32:233–40
  • Pathak D, Ollis D. (1990). Refined structure of dienelactone hydrolase at 1.8 Å. J Mol Biol 214:497–525
  • Pemberton JM, Fisher PR. (1977). 2,4-D plasmids and persistence. Nature 268:732–3
  • Perez-Pantoja D, De la Iglesia R, Pieper DH, Gonzalez B. (2008). Metabolic reconstruction of aromatic compounds degradation from the genome of theamazing pollutant-degrading bacterium Cupriavidus necator JMP134. FEMS Microbiol Rev 32:736–94
  • Perez-Pantoja D, Guzman L, Manzano M, et al. (2000). Role of tfdCIDIEIFI and tfdDIICIIEIIFII gene modules in catabolism of 3-chlorobenzoate by Ralstonia eutropha JMP134 (pJP4). Appl Environ Microbiol 66:1602–8
  • Perez-Pantoja D, Ledger T, Pieper DH, Gonzalez B (2003). Efficient turnover of chlorocatechols is essential for growth of Ralstonia eutropha JMP134 (pJP4) in 3-chlorobenzoic acid. J Bacteriol 185:1534–42
  • Perkins EJ, Bolton GW, Gordon MP, Lurquin PF. (1988). Partial nucleotide sequence of the chlorocatechol degradative operon tfdCDEF of pJP4 and similarity to promoters of the chlorinated aromatic degradative operons tfdA and clcABD. Nucleic Acids Res 16:7200
  • Perkins EJ, Gordon MP, Bolton GW, Lurquin PF. (1990). Organization and sequence analysis of the 2,4-dichlorophenol hydroxylase and dichlorocatechol oxidative operons of plasmid pJP4. J Bacteriol 172:2351–9
  • Perkins EJ, Lurquin PF. (1988). Duplication of a 2,4-dichlorophenoxyacetic acid monooxygenase gene in Alcaligenes eutrophus JMP134 (pJP4). J Bacteriol 170:5669–72
  • Perry LL, Zylstra GJ. (2007). Cloning of a gene cluster involved in the catabolism of p-nitrophenol by Arthrobacter sp. strain JS443 and characterization of the p-nitrophenol monooxygenase. J Bacteriol 189:7563–72
  • Pieper DH, Reineke W, Engesser KH, Knackmuss HJ. (1988). Metabolism of 2,4-dichlorophenoxyacetic acid, 4-chloro-2-methylphenoxy-acetic acid and 2-methylphenoxyacetic acid by Alcaligenes eutrophus JMP134. Arch Microbiol 150:95–102
  • Plumeier I, Perez-Pantoja D, Heim S, et al. (2002). The importance of different tfd genes for the degradation of chloroaromatics by Ralstonia eutropha JMP134. J Bacteriol 184:4054–64
  • Poh R, Xia X, Bruce IJ, Smith AR. (2001). 2,4-dichlorophenoxyacetate/α-ketoglutarate dioxygenases from Burkholderia cepacia 2A and Ralstonia eutropha JMP134. Microbios 105:43–63
  • Que-Hee SS, Sutherland RG. (1981). The phenoxyalkanoic herbicides: chemistry analysis and environmental pollution, vol. I. Boca Raton, FL: CRC Press, Inc
  • Radjendirane V, Bhat MA, Vaidyanathan CS. (1991). Affinity purification and characterization of 2,4-dichlorophenol hydroxylase from Pseudomonas cepacia. Arch Biochem Biophys 288:169–76
  • Radjendirane V. (1990). Microbial degradation of herbicide, 2,4-dichlorophenoxyacetic acid: Studies on 2,4-dichlorophenol hydroxylase in Pseudomonas cepacia. [Ph.D. thesis]. Bangalore, India: Indian Institute of Science
  • Reineke W, Knackmuss HJ. (1980). Hybrid pathway for chlorobenzoate metabolism in Pseudomonas sp. B 13 derivatives. J Bacteriol 142:467–73
  • Robinson A, Edwards KJ, Carr PD, et al. (2000). Structure of the C123S mutant of dienelactone hydrolase (DLH) bound with the PMS moiety of the protease inhibitor phenylmethylsulfonyl fluoride (PMSF). Acta Cryst D56:1376–84
  • Rogoff MH. (1952). Some studies on the effects of weed control agents on nitrification [thesis]. Penna State University. USA
  • Rogoff MH, Reid JJ. (1956). Bacterial decomposition of 2,4-dichlorophenoxyacetic acid. J Bacteriol 71:303–7
  • Rosso SB, Di Paolo OA, Evangelista-de-Duffard AM, Duffard R. (1997). Effects of 2,4-dichlorophenoxyacetic acid on central nervous system of developmental rats. Associated changes in ganglioside pattern. Brain Res 769:163–7
  • Ruth SE, Hausinger RP. (1998). Ascorbic acid-dependent turnover and reactivation of 2,4-dichlorophenoxyacetic acid α-ketoglutarate dioxygenase using thiophenoxyacetic acid. Biochemistry 37:3035–42
  • Ryan TP, Bumpus IA. (1989). Biodegradation of 2,4,5-trichlorophenoxyacetic acid in liquid culture and in soil by the white rot fungus Phanerochaete chrysosporium. Appl Microbiol Biotechnol 31:302–7
  • Sabine K, Muller RH, Babel W. (2001). Expression of the 2,4-D degradative pathway of pJP4 in an alkaliphilic, moderately halophilic soda lake isolates Halomonas sp. EF43. Extremophiles 5:375–84
  • Saito A, Mitsui H, Hattori R, et al. (1998). Slow-growing and oligotrophic bacteria phylogenetically close to Bradyrhizobium japonicum. FEMS Microbiol Ecol 25:277–86
  • Sanchez MA, Gonzalez B. (2007). Genetic characterization of 2,4,6-trichlorophenol degradation in Cupriavidus necator JMP134. Appl Environ Microbiol 73:2769–76
  • Sanders HO. (1969). Toxicity of pesticides to the crustacean Gammarus lacustris. Technical Papers of the Bureau of Sport Fisheries and Wildlife
  • Schell MA, Sukordhaman M. (1989). Evidence that the transcription activator encoded by the Pseudomonas putida nahR gene is evolutionarily related to the transcription activators encoded by the Rhizobium nodD genes. J Bacteriol 171:1952–9
  • Schlomann M, Fischer P, Schmidt E, Knackmuss HJ. (1990a). Enzymatic formation, stability, and spontaneous reactions of 4-fluoromuconolactone, a metabolite of the bacterial degradation of 4-fluorobenzoate. J Bacteriol 172:5119–29
  • Schlomann M, Schmidt E, Knackmuss HJ. (1990b). Different types of dienelactone hydrolase in 4-fluorobenzoateutilizing bacteria. J Bacteriol 172:5112–8
  • Schlomann M, Ngai KL, Ornston LN, Knackmuss HJ. (1993). Dienelactone hydrolase from Pseudomonas cepacia. J Bacteriol 175:2994–3001
  • Schmidt E, Knackmuss HJ. (1980). Chemical structure and biodegradability of halogenated aromatic compounds. Conversion of chlorinated muconic acids into maleoylacetic acid. Biochem J 192:339–47
  • Seibert V, Kourbatova EM, Golovleva LA, Schlomann M. (1998). Characterization of the maleylacetate reductase MacA of Rhodococcus opacus 1CP and evidence for the presence of an isofunctional enzyme. J Bacteriol 180:3503–8
  • Seibert V, Stadler-Fritzsche K, Schlomann M. (1993). Purification and characterization of maleylacetate reductase from Alcaligenes eutrophus JMP134 (pJP4). J Bacteriol 175:6745–54
  • Seibert V, Thiel M, Hinner IS, Schlomann M. (2004). Characterization of a gene cluster encoding the maleylacetate reductase from Ralstonia eutropha 335T, an enzyme recruited for growth with 4-fluorobenzoate. Microbiology 150:463–72
  • Sharpee KW, Duxbury JM, Alexander M. (1973). 2,4-Dichlorophenoxyacetate metabolism by Arthrobacter sp.: accumulation of a chlorobutenolide. Appl Microbiol 26:445–7
  • Silva TM, Maria IS, Andre MM, et al. (2007). Degradation of 2,4-D herbicide by microorganisms isolated from Brazilian contaminated soil. Braz J Microbiol 38:522–5
  • Smith BSW. (1954). Studies on the bacterial metabolism of 2,4-dichlorophenoxyacetic acid by Pseudomonas sp. 1. [Ph.D. thesis]. Bangor: University of Wales
  • Sparnins VL, Burbee DG, Dagley S. (1979). Catabolism of l-tyrosine in Trichosporon cutaneum. J Bacteriol 138:425–30
  • Statham CN, Lech JJ. (1976). Studies on the mechanism of potentiation of the acute toxicity of 2,4-D n-butyl ester and 20,5-dichloro-40-nitrosalicylanilide in rainbow trout by carbaryl. Toxicol Appl Pharmacol 36:281–96
  • Steenson TI, Walker N. (1957). The pathway of breakdown of 2,4-dichloro- and 4-chloro-2 methylphenoxyacetic acid by bacteria. J Gen Microbiol 16:146–55
  • Streber WR, Timmis KM, Zenk MH. (1987). Analysis, cloning, and high-level expression of 2,4-dichlorophenoxyacetate monooxygenase gene tfdA of Alcaligenes eutrophus JMP134. J Bacteriol 169:950–2955
  • Surovtseva EG, Volnova AI. (1981). 4-Chlorocatechol, and inhibitor of pyrocatechol 2,3-dioxygenase in Alcaligenes faecalis. Microbiologiya 50:386–8
  • Suwa Y, Wright AD, Fukimore F, et al. (1996). Characterization of a chromosomally encoded 2,4-dichlorophenoxyacetic acid α-ketoglutarate dioxygenase from Burkholderia sp. strain RASC. Appl Environ Microbiol 62:2462–9
  • Thiel M, Kaschabe SR, Groning J, et al. (2005). Two unusual chlorocatechol catabolic gene clusters in Sphingomonas sp. TFD44. Arch Microbiol 183:80–94
  • Tiedje JM, Alexander M. (1969). Enzymatic cleavage of the ether bond of 2.4-dichlorophenoxyacetate. J Agric Food Chem 17:1080–4
  • Tiedje JM, Duxbury JM, Alexander M, Dawson JE. (1969). 2,4-D metabolism: pathway of degradation of chlorocatechols by Arthrobacter sp. J Agric Food Chem 17:1021–6
  • Top EM, Maila MP, Clerinx M, et al. (1999). Methane oxidation as a method to evaluate the removal of 2,4-dichlorophenoxyacetic acid (2,4-D) from soil by plasmid mediated bioaugmentation. FEMS Microbiol Ecol 28:203–13
  • Top EM, Van Daele P, De Saeyer N, Forney LJ. (1998). Enhancement of 2,4-dichlorophenoxyacetic acid (2,4-D) degradation in soil by dissemination of catabolic plasmids. Antonie Leeuwenhoek Int J G73:87–94
  • Travkin VM, Linko EV, Golovleva LA. (1999). Purification and characterization of maleylacetate reductase from Nocardioides simplex 3E utilizing phenoxyalcanoic herbicides 2,4-D and 2,4,5-T. Biochemistry (Mosc) 64:625–30
  • Trefault N, De la Iglesia R, Molina AM, et al. (2004). Genetic organization of the catabolic plasmid pJP4 from Ralstonia eutropha JMP134 (pJP4) reveals mechanisms of adaptation to chloroaromatic pollutants and evolution of specialized chloroaromatic degradation pathways. Environ Microbiol 6:655–68
  • Trefault N, Guzman L, Perez H, et al. (2009). Involvement of several transcriptional regulators in the differential expression of tfd genes in Cupriavidus necator JMP134. Int Microbiol 12:97–106
  • Tyler JE, Finn RK. (1974). Growth rates of a Pseudomonad on 2,4-dichlorophenoxyacetic acid and 2,4-dichlorophenol. Appl Microbiol 28:181–4
  • U.S. Environmental Protection Agency. (2005). Reregistration eligibility decision for 2,4-D. Available from: http://www.epa.gov/oppsrrd1/REDs/24d_red.pdf [last accessed 9 May 2014]
  • Vallaeys T, Fulthorpe RR, Wright AM, Soulas G. (1996). The metabolic pathway of 2,4-dichlorophenoxyacetic acid degradation involves different families of tfdA and tjdB genes according to PCR-RFLP analysis. FEMS Microbiol Ecol 20:163–72
  • Van der Meer JR, de Vos WM, Harayama S, Zehnder AJB. (1992). Molecular mechanisms of genetic adaptation to xenobiotic compounds. Microbiol Rev 56:677–94
  • Van der Meer JR, Frijters ACJ, Leveau JHJ, et al. (1991). Characterization of the Pseudomonas sp. strain P51 gene tcbR, a LysR-type transcriptional activator of the tcbCDEF chlorocatechol oxidative operon, and analysis of the regulatory region. J Bacteriol 173:3700–8
  • Van der Meer JR. (1994). Genetic adaptation of bacteria to chlorinated aromatic compounds. FEMS Microbiol Rev 15:239–49
  • Van Elsas JD, Heijnen CE. (1990). Methods for the introduction of bacteria in soil. A review. Biol Fertil Soils 10:127–33
  • Van Veen JA, van Overbeek LS, van Elsas JD. (1997). Fate and activity of microorganisms introduced into soil. Microbiol Mol Biol Rev 61:121–35
  • Vedler E, Koiv V, Heinaru A. (2000). Analysis of the 2,4-dichlorophenoxyacetic acid-degradative plasmid pEST4011 of Achromobacter xylosoxidans subsp. denitrificans strain EST4002. Gene 255:281–8
  • Vedler E, Merle V, Heinaru A. (2004). The completely sequenced plasmid pEST4011 contains a novel IncP1 backbone and a catabolic transposon harbouring tfd genes for 2,4-dichlorophenoxyacetic acid degradation. J Bacteriol 186:7161–74
  • Villalobos AR, Dunnick CA, Pritchard JB. (1996). Mechanism mediating basolateral transport of 2,4-dichlorophenoxyacetic acid in rat kidney. J Pharmacol Exp Ther 278:582–9
  • Vollmer MD, Stadler-Fritzsche K, Schlomann M. (1993). Conversion of 2-chloromaleylacetate in Alcaligenes eutrophus JMP134. Arch Microbiol 159:182–8
  • Vroumsia T, Steiman R, Seigle-Murandi F, et al. (2005). Fungal bioconversion of 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4-dichlorophenol (2,4-DCP). Chemosphere 60:1471–80
  • Walker RL, Newman AS. (1956). Microbial decomposition of 2,4 dichlorophenoxyacetic acid. Appl Microbiol 4:201–6
  • Wataru K, Takami S, Miyauchi K, et al. (2002). Novel 2,4-dichlorophenoxyacetic acid degradation genes from oligotrophic Bradyrhizobium sp. strain HW13 isolated from a pristine environment. J Bacteriol 184:509–18
  • White-Stevens RH, Kamin H. (1972). Studies of a flavoprotein, salicylate hydroxylase. I. Preparation, properties, and the uncoupling of oxygen reduction from hydroxylation. J Biol Chem 247:2358–70
  • Yamamoto S, Katagiri M, Maeno H, Hayaishi O. (1965). Salicylate hydroxylase, a monooxygenase requiring flavin adenine dinucleotide. I. Purification and general properties. J Biol Chem 240:3408–13
  • Yang L, Yu Y, Zhou R, et al. (2011). Cloning and characterisation of a novel 2,4-dichlorophenol hydroxylase from a metagenomic library derived from polychlorinated biphenyl-contaminated soil. Biotechnol Lett 33:1159–67
  • Yoshida M, Oikawa T, Obata H, et al. (2007). Biochemical and genetic analysis of the γ-resorcylate (2,6-dihydroxybenzoate) catabolic pathway in Rhizobium sp. strain MTP-10005: identification and functional analysis of its gene cluster. J Bacteriol 189:1573–81
  • You IS, Ghosal D. (1995). Genetic and molecular analysis of a regulatory region of the herbicide 2,4-dichlorophenoxyacetate catabolic plasmid pJP4. Mol Microbiol 16:321–31
  • Young-Jun P, Yoon SJ, Lee HB. (2010). A novel dienelactone hydrolase from the thermoacidophilic archaeon Sulfolobus solfataricus P1: purification, characterization, and expression. Biochim Biophys Acta 1800:1164–72
  • Zabaloy MC, Garland JL, Gomez MA. (2010). Assessment of the impact of 2,4-dichlorophenoxyacetic acid (2,4-D) on indigenous herbicide-degrading bacteria and microbial community function in an agricultural soil. Appl Soil Ecol 46:240–6
  • Zhou H, Hana J, Baig SA, Xu X. (2011). Dechlorination of 2,4-dichlorophenoxyacetic acid by sodium carboxymethyl cellulose-stabilized Pd/Fe nanoparticles. J Hazard Mater 198:7–12

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.