394
Views
40
CrossRef citations to date
0
Altmetric
Review Article

1,3-Butadiene: II. Genotoxicity profile

, , &
Pages 12-73 | Received 03 Feb 2010, Accepted 05 Jul 2010, Published online: 24 Sep 2010

References

  • Abdel-Rahman SZ, Ammenheuser MM, Ward JB Jr. (2001). Human sensitivity to 1,3-butadiene: Role of microsomal epoxide hydrolase polymorphisms. Carcinogenesis 22:415–423.
  • Abdel-Rahman SZ, El Zein RA, Ammenheuser MM, Yang Z, Stock TH, Morandi M, Ward JB Jr. (2003). Variability in human sensitivity to 1,3-butadiene: Influence of the allelic variants of the microsomal epoxide hydrolase gene. Environ Mol Mutagen 41:140–146.
  • Abdel-Rahman SZ, Ammenheuser MM, Omiecinski CJ, Wickliffe JK, Rosenblatt JI, Ward JB Jr. (2005). Variability in human sensitivity to 1,3-butadiene: Influence of polymorphisms in the 5′-flanking region of the microsomal epoxide hydrolase gene (EPHX1). Toxicol Sci 85:624–631.
  • Abrahamson S, Wurgler FE, DeJongh C, Meyer HU. (1980). How many loci on the X-chromosome of Drosophila melanogaster can mutate to recessive lethals? Environ Mutagen 2:447–453.
  • Adler ID, Anderson D. (1994). Dominant lethal effects after inhalation exposure to 1,3-butadiene. Mutat Res 309:295–297.
  • Adler ID, Cao J, Filser JG, Gassner P, Kessler W, Kliesch U, Neuhauser-Klaus A, Nusse M. (1994). Mutagenicity of 1,3-butadiene inhalation in somatic and germinal cells of mice. Mutat Res 309:307–314.
  • Adler ID, Kliesch U, Tiveron C, Pacchierotti F. (1995a). Clastogenicity of diepoxybutane in bone marrow cells and male germ cells of mice. Mutagenesis 10:535–541.
  • Adler ID, Filser JG, Gassner P, Kessler W, Schoneich J, Schriever-Schwemmer G. (1995b). Heritable translocations induced by inhalation exposure of male mice to 1,3-butadiene. Mutat Res 347:121–127.
  • Adler ID, Kliesch U, Nylund L, Peltonen K. (1997). In vitro and in vivo mutagenicity of the butadiene metabolites butadiene diolepoxide, butadiene monoepoxide and diepoxybutane. Mutagenesis 12:339–345.
  • Adler ID, Filser J, Gonda H, Schriever-Schwemmer G. (1998). Dose response study for 1,3-butadiene-induced dominant lethal mutations and heritable translocations in germs cells of male mice. Mutat Res 397:85–92.
  • Albertini RJ, Sram RJ, Vacek PM, Lynch J, Wright M, Nicklas JA, Boogaard PJ, Henderson RF, Swenberg JA, Tates AD, Ward JB Jr. (2001). Biomarkers for assessing occupational exposures to 1,3-butadiene. Chem Biol Interact 135–136:429–453.
  • Albertini RJ, Sram RJ, Vacek PM, Lynch J, Nicklas JA, van Sittert NJ, Boogaard PJ, Henderson RF, Swenberg JA, Tates AD, Ward JB Jr, Wright M, et al. (2003). Biomarkers in Czech workers exposed to 1,3-butadiene: A transitional epidemiologic study. HEI Res Rep 116:1–141.
  • Albertini RJ, Sram RJ, Vacek PM, Lynch J, Rossner P, Nicklas JA, McDonald JD, Boysen G, Georgieva N, Swenberg JA. (2007). Molecular epidemiological studies in 1,3-butadiene exposed Czech workers: Female-male comparisons. Chem Biol Interact (166):63–77.
  • Alderson T, Hartley MJ. (1969). Specificity for spontaneous and induced forward mutation at several gene loci in Aspergillus nidulans. Mutat Res 8:255–264.
  • Ammenheuser MM, Ward JB Jr, Whorton EB Jr, Killian JM, Legator MS. (1988). Elevated frequencies of 6-thioguanine-resistant lymphocytes in multiple sclerosis patients treated with cyclophosphamide: A prospective study. Mutat Res 204:509–520.
  • Ammenheuser MM, Au WW, Whorton EB Jr, Belli JA, Ward JB Jr. (1991). Comparison of hprt variant frequencies and chromosome aberration frequencies in lymphocytes from radiotherapy and chemotherapy patients: A prospective study. Environ Mol Mutagen 18:126–135.
  • Ammenheuser MM, Bechtold WE, Abdel-Rahman SZ, Rosenblatt JI, Hastings-Smith DA, Ward JB Jr. (2001). Assessment of 1,3-butadiene exposure in polymer production workers using HPRT mutations in lymphocytes as a biomarker. Environ Health Perspect 109:1249–1255.
  • Anderson D, Edwards AJ, Brinkworth MH. (1993). Male-mediated F1 effects in mice exposed to 1,3-butadiene. IARC Sci Publ (issue 127):171–181.
  • Anderson D, Edwards AJ, Brinkworth MH, Hughes JA. (1996). Male-mediated F1 effects in mice exposed to 1,3-butadiene. Toxicology 113:120–127.
  • Anderson D, Dobrzynka MM, Jackson LI, Yu TW, Brinkworth MH. (1997). Somatic and germ cell effects in rats and mice after treatment with 1,3-butadiene and its metabolites, 1,2-epoxybutene and 1,2,3,4-diepoxybutane. Mutat Res 391:233–242.
  • Anderson D, Hughes JA, Edwards AJ, Brinkworth MH. (1998). A comparison of male-mediated effects in rats and mice exposed to 1,3-butadiene. Mutat Res 397:77–84.
  • Araki A, Noguchi T, Kato F, Matsushima T. (1994). Improved method for mutagenicity testing of gaseous compounds by using a gas sampling bag. Mutat Res 307:335–344.
  • Arce GT, Vincent DR, Cunningham MJ, Choy WN, Sarrif AM. (1990). In vitro and in vivo genotoxicity of 1,3-butadiene and metabolites. Environ Health Perspect 86:75–78.
  • Armstrong MJ, Galloway SM. (1997). Mismatch repair provokes chromosome aberrations in hamster cells treated with methylating agents or 6-thioguanine, but not with ethylating agents. Mutat Res 373:167–178.
  • Au WW, Bechtold WE, Whorton EB Jr, Legator MS. (1995). Chromosome aberrations and response to gamma-ray challenge in lymphocytes of workers exposed to 1,3-butadiene. Mutat Res 334:125–130.
  • Au WW, Wilkinson GS, Tyring SK, Legator MS, El Zein R, Hallberg L, Heo MY. (1996). Monitoring populations for DNA repair deficienc and for cancer susceptibility. Environ Health Perspect 104(Suppl 3):579–584.
  • Auerbach C, Ramsay D. (1968). Analysis of a case of mutagen specificity in Neurospora crassa. I. Dose-response curves. Mol Gen Genet 103:72–104.
  • Auerbach AD, Wolman SR. (1978). Carcinogen-induced chromosome breakage in Fanconi’s anaemia heterozygous cells. Nature 271:69–71.
  • Autio K, Renzi L, Catalan J, Albrecht OE, Sorsa M. (1994). Induction of micronuclei in peripheral blood and bone marrow erythrocytes of rats and mice exposed to 1,3-butadiene by inhalation. Mutat Res 309:315–320.
  • Barnes DJ, Melo JV. (2002). Cytogenetic and molecular genetic aspects of chronic myeloid leukaemia. Acta Haematol 108:180–202.
  • Bechtold WE, Strunk MR, Chang IY, Ward JB Jr, Henderson RF. (1994). Species differences in urinary butadiene metabolites: Comparisons of metabolite ratios between mice rats and humans. Toxicol Appl Pharmacol 127:44–49.
  • Bernardini S, Pelin K, Peltonen K, Jarventaus H, Hirvonen A, Neagu C, Sorsa M, Norppa H. (1996). Induction of sister chromatid exchange by 3,4-expoxybutane-1,2-diol in cultured human lymphocytes of different GSTT1 and GSTM1 genotypes. Mutat Res 361:121–127.
  • Bernardini S, Hirvonen A, Pelin K, Norppa H. (1998). Induction of sister chromatid exchange by 1,2-epoxy-3-butene in cultured human lymphocytes: Influence of GSTT1 genotype. Carcinogenesis 19:377–380.
  • Bevan C, Keller DA, Panepinto AS, Bentley KS. (2001). Effect of 4-vinylcyclohexene on micronucleus formation in the bone marrow of rats and mice. Drug Chem Toxicol 24:273–285.
  • Bianchi A, Contin M. (1962). Mutagenic activity of isomeric forms of diepoxybutane in maize. J Hered 53:277–281.
  • Bird MJ, Fahmy OG. (1953). Cytogenetic analysis of the action of carcinogens and tumour inhibitors in Drosophila melanogaster. I. 1:2,3:4-diepoxybutane. Proc R Soc Lond B Biol Sci 140:556–578.
  • Bolt HM, Jelitto B. (1996). Biological formation of the 1,3-butadiene DNA adducts 7-N-(2-hydroxy-3-buten-1-yl)guanine, 7-N-(1-hydroxy-3-buten-2-yl)guanine, and 7-N-(2,3,4-trihydroxy-butyl)guanine. Toxicology 113:328–330.
  • Boogaard PJ, de Kloe KP, Richardson KA, Peters MM, Watson WP, van Sittert NJ. (1998). DNA adduct profiles differ after 1,3-butadiene or 1,2-epoxy-3-butene and between rats and mice. Toxicologist 42:83.
  • Boogaard PJ, van Sittert NJ, Watson WP, de Kloe KP. (2001). A novel DNA adduct originating from 1,2-epoxy-3,4-butanediol is the major DNA adduct after exposure to [2,3-14C]-1,3-butadiene, but not after exposure to [4-14C]-1,2-epoxy-3-butene. Chem Biol Interact 135–136:687–693.
  • Boogaard PJ, de Kloe KP, Booth ED, Watson WP. (2004). DNA adducts in rats and mice following exposure to [4-14C]-1,2-epoxy-3-butene and to [2,3-14C]-1,3-butadiene. Chem Biol Interact 148:69–92.
  • Boysen G, Georgieva NI, Upton PB, Jayaraj K, Li Y, Walker VE, Swenberg JA. (2004). Analysis of diepoxide-specific cyclic N-terminal globin adducts in mice and rats after inhalation exposure to 1,3-butadiene. Cancer Res 64:8517–8520.
  • Boysen G, Georgieva NI, Upton PB, Walker VE, Swenberg JA. (2007). N-terminal globin adducts as biomarkers for formation of butadiene derived epoxides. Chem Biol Interact 166:84–92.
  • Brinkworth MH, Anderson D, Hughes JA, Jackson LI, Yu TW, Nieschlag E. (1998). Genetic effects of 1,3-butadiene on the mouse testis. Mutat Res 397:67–75.
  • Brookes P, Lawley PD. (1961). The alkylation of guanosine and guanylic acid. J Chem Soc :3923–2938.
  • Butterworth BE, Ashby J, Bermudez E, Casciano D, Mirsalis J, Probst G, Williams G. (1987). A protocol and guide for the in vivo rat hepatocyte DNA-repair assay. Mutat Res 189:123–133.
  • Carmical JR, Nechev LV, Harris CM, Harris TM, Lloyd RS. (2000a). Mutagenic potential of adenine N6 adducts of monoepoxide and diolepoxide derivatives of butadiene. Environ Mol Mutagen 35:48–56.
  • Carmical JR, Kowalczyk A, Zou Y, Van Houten B, Nechev LV, Harris CM, Harris TM, Lloyd RS. (2000b). Butadiene-induced intrastrand DNA cross-links: A possible role in deletion mutagenesis. J Biol Chem 275:19482–19489
  • Carmical JR, Zhang M, Nechev L, Harris CM, Harris TM, Lloyd RS. (2000c). Mutagenic potential of guanine N2 adducts of butadiene mono- and diolepoxide. Chem Res Toxicol 13:18–25.
  • Catallo WJ, Kennedy CH, Henk W, Barker SA, Grace SC, Penn A. (2001). Combustion products of 1,3-butadiene are cytotoxic and genotoxic to human bronchial epithelial cells. Environ Health Perspect 109:965–971.
  • Cemeli E, Mirkova E, Chiuchiarelli G, Alexandrova E, Anderson D. (2009). Invesigation on the mechanisms of genotoxicity of butadiene, styrene and their combination in human lymphocytes using the Comet assay. Mutat Res 664:69–76.
  • Chen Z, Sandberg AA. (2002). Molecular cytogenetic aspects of hematological malignancies: Clinical implications. Am J Med Genet 115:130–141.
  • Cheng H, Sathiakumar N, Graff J, Matthews R, Delzell E. (2007). 1,3-Butadiene and leukemia among synthetic rubber industry workers: Exposure-response relationships. Chem Biol Interact 166:15–24.
  • Cifone MA, Myhr B, Eiche A, Bolcsfoldi G. (1987). Effect of pH shifts on the mutant frequency at the thymidine kinase locus in mouse lymphoma L5178Y TK+/− cells. Mutat Res 189:39–46.
  • Citti L, Gervasi PG, Turchi G, Bellucci G, Bianchini R. (1984). The reaction of 34-epoxy-1-butene with deoxyguanosine and DNA in vitro: Synthesis and characterization of the main adducts. Carcinogenesis 5:47–52.
  • Clapp RW, Jacobs MM, Loechler EL. (2008). Environmental and occupational causes of cancer: New evidence 2005–2007. Rev Environ Health 23:1–37.
  • Clarke CH, Lopriano N. (1965). The influence of genetic background on the induction of methionine reversions by diepoxybutane in Schizosaccharomyces pombe. Microb Genet Bull 22:11–12.
  • Clarke CH. (1969). Chemical mutagenesis in E. coli B-R; the influence of repair systems for UV damage. Mutat Res 8:35–41.
  • Cochrane JE, Skopek TR. (1993). Mutagenicity of 1,3-butadiene and its epoxide metabolites in human TK6 cells and in splenic T cells isolated from exposed B6C3F1 mice. IARC Sci Publ (xx):195–204.
  • Cochrane JE, Skopek TR. (1994). Mutagenicity of butadiene and its epoxide metabolites: II. Mutational spectra of butadiene 12-epoxybutene and diepoxybutane at the hprt locus in splenic T cells from exposed B6C3F1 mice. Carcinogenesis 15:719–723.
  • Cohen MM, Fruchtman CE, Simpson SJ, Martin AO. (1982). The cytogenetic response of Fanconi’s anemia lymphoblastoid cell lines to various clastogens. Cytogenet Cell Genet 34:230–240.
  • Cohn NS. (1961). Production of chromatid aberrations by diepoxybutane and an iron chelator. Nature 192:1093–1094.
  • Cole P, Delzell E, Acquavella J. (1993). Exposure to butadiene and lymphatic and hematopoietic cancer. Epidemiology 4:96–103.
  • Conner MK, Luo JE, Gutierrez DG. (1983). Induction and rapid repair of sister-chromatid exchanges in multiple murine tissues in vivo by diepoxybutane. Mutat Res 108:251–263.
  • Cunningham MJ, Choy WN, Arce GT, Rickard LB, Vlachos DA, Kinney LA, Sarrif AM. (1986). In vivo sister chromatid exchange and micronucleus induction studies with 1,3-butadiene in B6C3F1 mice and Sprague-Dawley rats. Mutagenesis 1:449–452.
  • de Meester C, Poncelet F, Roberfroid M, Mercier M. (1978). Mutagenicity of butadiene and butadiene monoxide. Biochem Biophys Res Commun 80:298–305.
  • de Meester C, Poncelet F, Roberfroid M, Mercier M. (1980). The mutagenicity of butadiene towards Salmonella typhimurium. Toxicol Lett. 6:125–130.
  • Dean BJ, Hodson-Walker G. (1979). An in vitro chromosome assay using cultured rat-liver cells. Mutat Res 64:329–337.
  • Delzell E, Sathiakumar N, Graff J, Macaluso M, Maldonado G, Matthew R. (2006). An Updated Study of Mortality Among North American Synthetic Rubber Industry Workers. Research Report 132. Boston, MA: Health Effects Institute.
  • Denell RE, Lim MC, Auerbach C. (1978). Diepoxybutane-induced male-transmissible X-autosome translocations in Drosophila melanogaster: A test of the supporting evidence for the Lifschytz-Lindsley model of spermatogenesis. Mutat Res 49:219–224.
  • Divine BJ, Hartman CM. (2001). A cohort mortality study among workers at a 1,3-butadiene facility. Chem Biol Interact 135–136:535–553.
  • Dunkel VC, Zeiger E, Brusick D, McCoy E, McGregor D, Mortelmans K, Rosenkranz HS, Simmon VF. (1984). Reproducibility of microbial mutagenicity assays: I. Tests with Salmonella typhimurium and Escherichia coli using a standardized protocol. Environ Mutagen 6(Suppl 2):1–251.
  • Epstein SS, Shafner H. (1968). Chemical mutagens in the human environment. Nature 219:385–387.
  • Epstein SS, Arnold E, Andrea J, Bass W, Bishop Y. (1972). Detection of chemical mutagens by the dominant lethal assay in the mouse. Toxicol Appl Pharmacol 23:288–325.
  • Erexson GL, Tindall KR. (2000a). Reduction of diepoxybutane-induced sister chromatid exchanges by glutathione peroxidase and erythrocytes in transgenic Big Blue mouse and rat fibroblasts. Mutat Res 447:267–274.
  • Erexson GL, Tindall KR. (2000b). Micronuclei and gene mutations in transgenic big Blue((R)). mouse and rat fibroblasts after exposure to the epoxide metabolites of 1,3-butadiene. Mutat Res 472:105–117.
  • Fahmy OG, Bird MJ. (1952). Chromosome breaks among recessive lethals induced by chemical mutagens in Drosophila melanogaster. Heredity 6:(Suppl 6):149–159.
  • Fahmy OG, Fahmy MJ. (1956). Cytogenetic analysis of the action of carcinogens and tumor inhibitors in Drosophila melanogaster. V. Differential genetic response to the alkylating mutagens and x-radiation. J Genet 54:146–164.
  • Fahmy OG, Fahmy MJ. (1970). Gene elimination in carcinogenesis: Reinterpretation of the somatic mutation theory. Cancer Res 30:195–205.
  • Fernandes PH, Hackfeld LC, Kozekov ID, Hodge RP, Lloyd RS. (2006). Synthesis and mutagenesis of the butadiene-derived N3 2′-deoxyuridine adducts. Chem Res Toxicol 19:968–976.
  • Foureman P, Mason JM, Valencia R, Zimmering S. (1994). Chemical mutagenesis testing in Drosophila. IX. Results of 50 coded compounds tested for the National Toxicology Program. Environ Mol Mutagen 23:51–63.
  • Fred C, Grawe J, Tornqvist M. (2005). Hemoglobin adducts and micronuclei in rodents after treatment with isoprene monoxide or butadiene monoxide. Mutat Res 585:21–32.
  • Fred C, Tornqvist M, Granath F. (2008). Evaluation of cancer tests of 1,3-butadiene using internal dose, genotoxic potency, and a multiplicative risk model. Cancer Res 68:8014–8021.
  • Fustinoni S, Soleo L, Warholm M, Begemann P, Rannug A, Neumann HG, Swenberg JA, Vimercati L, Colombi A. (2002). Influence of metabolic genotypes on biomarkers of exposure to 1,3-butadiene in humans. Cancer Epidemiol Biomarkers Prev 11:1082–1090.
  • Fustinoni S, Perbellini L, Soleo L, Manno M, Foa V. (2004). Biological monitoring in occupational exposure to low levels of 1,3-butadiene. Toxicol Lett 149:353–360.
  • Galloway SM, Deasy DA, Bean CL, Kraynak AR, Armstrong MJ, Bradley MO. (1987). Effects of high osmotic strength on chromosome aberrations, sister-chromatid exchanges and DNA strand breaks, and the relation to toxicity. Mutat Res 189:15–25.
  • Galloway SM, Greenwood SK, Hill RB, Bradt CI, Bean CL. (1995). A role for mismatch repair in production of chromosome aberrations by methylating agents in human cells. Mutat Res 346:231–245.
  • Georgieva NI, Boysen G, Bordeerat N, Walker VE, Swenberg JA. (2010). Exposure-response of 1,2,3,4-diepoxybutane-specific N-terminal valine adducts in mice and rats after inhalation exposure to 1,3-butadiene. Toxicol Sci 115:322–329.
  • Gervasi PG, Citti L, Del Monte M, Longo V, Benetti D. (1985). Mutagenicity and chemical reactivity of epoxidic intermediates of the isoprene metabolism and other structurally related compounds. Mutat Res 156:77–82.
  • Glover SW. (1956). A comparative study of induced reversions in Escherichia coli. In: Genetic Studies with Bacteria. Washington DC: Carnegie Institution of Washington, issue 612:121–135.
  • Goggin M, Loeber R, Park S, Walker V, Wickliffe J, Tretyakova N. (2007). HPLC-ESI+-MS/MS analysis of N7-guanine-N7-guanine DNA cross-links in tissues of mice exposed to 1,3-butadiene. Chem Res Toxicol 20:839–847.
  • Goggin M, Anderson C, Park S, Swenberg J, Walker V, Tretyakova N. (2008). Quantitative high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry analysis of the adenine-guanine cross-links of 1,2,3,4-diepoxybutane in tissues of butadiene-exposed B6C3F1 mice. Chem Res Toxicol 21:1163–1170.
  • Goggin M, Swenberg JA, Walker VE, Tretyakova N. (2009). Molecular dosimetry of 1,2,3,4-diepoxybutane-induced DNA-DNA cross-links in B6C3F1 mice and F344 rats exposed to 1,3-butadiene by inhalation. Cancer Res 69:2479–2486.
  • Goodrow T, Reynolds S, Maronpot R, Anderson M. (1990). Activation of K-ras by codon 13 mutations in C57BL/6 × C3H F1 mouse tumors induced by exposure to 1,3-butadiene. Cancer Res 50:4818–4823.
  • Goodrow TL, Nichols WW, Storer RD, Anderson MW, Maronpot RR. (1994). Activation of H-ras is prevalent in 1,3-butadiene-induced and spontaneously occurring murine Harderian gland tumors. Carcinogenesis 15:2665–2667.
  • Graf U, Juon H, Katz AJ, Frei HJ, Wurgler FE. (1983). A pilot study on a new Drosophila spot test. Mutat Res 120:233–239.
  • Graff JJ, Sathiakumar N, Macaluso M, Maldonado G, Matthews R, Delzell E. (2005). Chemical exposures in the synthetic rubber industry and lymphohematopoietic cancer mortality. J. Occup Environ Med 47:916–932.
  • Hallberg LM, Bechtold WE, Grady J, Legator MS, Au WW. (1997). Abnormal DNA repair activities in lymphocytes of workers exposed to 1,3-butadiene. Mutat Res 383:213–221.
  • Hartman A, Agurell E, Beevers C, Brendler-Schwaab S, Burlinson B, Clay P, Collins A, Smith A, Speit G, Thybaud V, Tice RR. (2003). Recommendations for conducting the in vivo alkaline Comet assay. Mutagenesis 18:45–51.
  • Hayes RB, Xi L, Bechtold WE, Rothman N, Yao M, Henderson R, Zhang L, Smith MT, Zhang D, Wiemels J, Dosemeci M, Yin S, O’Neill JP. (1996). hprt mutation frequency among workers exposed to 1,3-butadiene in China. Toxicology 113:100–105.
  • Hayes RB, Zhang L, Yin S, Swenberg JA, Xi L, Wiencke J, Bechtold WE, Yao M, Rothman N, Haas R, O’Neill JP, Zhang D, Wiemels J, Dosemeci M, Li G, Smith MT. (2000). Genotoxic markers among butadiene polymer workers in China. Carcinogenesis 21:55–62.
  • Hayes RB, Zhang L, Swenberg JA, Yin SN, Xi L, Wiencke J, Bechtold WE, Yao M, Rothman N, Haas R, O’Neill JP, Wiemels J, Dosemeci M, Li G, Smith MT. (2001). Markers for carcinogenicity among butadiene-polymer workers in China. Chem Biol Interact 135–136:455–464.
  • Health Effects Institute (HEI). (2000). 1,3-Butadiene: Cancer, Mutations, and Adducts. HEI Research Report 92. Boston, MA: Health Effects Institute.
  • Hemminki K, Falck K, Vainio H. (1980). Comparison of alkylation rates and mutagenicity of directly acting industrial and laboratory chemicals: Epoxides, glycidyl ethers, methylating and ethylating agents, halogenated hydrocarbons, hydrazine derivatives, aldehydes, thiuram and dithiocarbamate derivatives. Arch Toxicol 46:277–285.
  • Henderson RF, Barr EB, Belinsky SA, Benson JM, Hahn FF, Menache MG. (2000). 1,3-butadiene: Cancer, mutations, and adducts. Part I: Carcinogenicity of 1,2,3,4-diepoxybutane. Res Rep Health Eff Inst (92):11–43.
  • Himmelstein MW, Gladnick NL, Donner EM, Snyder RD, Valentine R. (2001). In vitro genotoxicity testing of (1-chloroethenyl)oxirane, a metabolite of beta-chloroprene. Chem Biol Interact 135–136:703–713.
  • Heinemann B, Howard AJ. (1964). Induction of lambda-bacteriophage in Escherichia coli as a screening test for potential antitumor agents. Appl Microbiol 12:234–239.
  • Hong HH, Devereux TR, Melnick RL, Moomaw CR, Boorman GA, Sills RC. (2000). Mutations of ras protooncogenes and p53 tumor suppressor gene in cardiac hemangiosarcomas from B6C3F1 mice exposed to 1,3-butadiene for 2 years. Toxicol Pathol 28:529–534.
  • Huff JE, Melnick RL, Solleveld HA, Haseman JK, Powers M, Miller RA. (1985). Multiple organ carcinogenicity of 1,3-butadiene in B6C3F1 mice after 60 weeks of inhalation exposure. Science 227:548–549.
  • International Agency for Research on Cancer (IARC). (2008). Occupational exposures to mists and vapours from strong inorganic acids; and other industrial chemicals: 1,3-Butadiene. IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans 97:1–510.
  • Irons RD, Oshimura M, Barrett JC. (1987). Chromosome aberrations in mouse bone marrow cells following in vivo exposure to 1,3-butadiene. Carcinogenesis 8:1711–1714.
  • Irons RD, Cathro HP, Stillman WS, Steinhagen WH, Shah RS. (1989). Susceptibility to 1,3-butadiene-induced leukemogenesis correlates with endogenous ecotropic retroviral background in the mouse. Toxicol Appl Pharmacol 101:170–176.
  • Jackson TE, Lilly PD, Recio L, Schlosser PM, Medinsky MA. (2000). Inhibition of cytochrome P450 2E1 decreases, but does not eliminate, genotoxicity mediated by 1,3-butadiene. Toxicol Sci 55:266–273.
  • Jauhar PP, Henika PR, MacGregor JT, Wehr CM, Shelby MD, Murphy SA, Margolin BH. (1988). 1,3-Butadiene: Induction of micronucleated erythrocytes in the peripheral blood of B6C3F1 mice exposed by inhalation for 13 weeks. Mutat Res 209:171–176.
  • Jelitto B, Vangala RR, Laib RJ. (1989). Species differences in DNA damage by butadiene: Role of diepoxybutane. Arch Toxicol Suppl 13:246–249.
  • Kalapila AG, Loktionova NA, Pegg AE. (2008). Alkyltransferase-mediated toxicity of 1,3-butadiene diepoxide. Chem Res Toxicol 21:1851–1861.
  • Kanuri M, Nechev LV, Tamura PJ, Harris CM, Harris TM, Lloyd RS. (2002). Mutagenic spectrum of butadiene-derived N1-deoxyinosine adducts and N6,N6-deoxyadenosine intrastrand cross-links in mammalian cells. Chem Res Toxicol 15:1572–1580.
  • Kelsey KT, Christiani DC, Wiencke JK. (1991). Bimodal distribution of sensitivity to SCE induction by diepoxybutane in human lymphocytes. II. Relationship to baseline SCE frequency. Mutat Res 248:27–33.
  • Kim Y, Hong HH, Lachat Y, Clayton NP, Devereux TR, Melnick RL, Hegi ME, Sills RC. (2005). Genetic alterations in brain tumors following 1,3-butadiene exposure in B6C3F1 mice. Toxicol Pathol 33:307–312.
  • Kirman CR, Albertini RJ, Sweeney LM, Gargas ML. (2010a). 1,3-Butadiene: I. Review of metabolism and the implications to human health risk assessment. Crit Rev Toxicol 40(Suppl 1): this issue.
  • Kirman CR, Albertini RJ, Gargas ML. (2010b). 1,3-Butadiene: III. Assessing carcinogenic modes of action. Crit Rev Toxicol 40(Suppl 1): this issue.
  • Kim MY, Tretyakova N, Wogan GN. (2007). Mutagenesis of the supF gene by stereoisomers of 1234-diepoxybutane. Chem Res Toxicol 20:790–797.
  • Kligerman AD, Doerr CL, Milholland VS, Tennant AH. (1996). Cytogenetic effects of butadiene metabolites in rat and mouse splenocytes following in vitro exposures. Toxicology 113:336–340.
  • Kligerman AD, DeMarini DM, Doerr CL, Hanley NM, Milholland VS, Tennant AH. (1999a). Comparison of cytogenetic effects of 3,4-epoxy-1-butene and 1,2:3,4-diepoxybutane in mouse, rat and human lymphocytes following in vitro G0 exposures. Mutat Res 439:13–23.
  • Kligerman AD, Doerr CL, Tennant AH. (1999b). Cell cycle specificity of cytogenetic damage induced by 3,4-epoxy-1- butene. Mutat Res 444:151–158.
  • Kligerman AD, Hu Y. (2007). Some insights into the mode of action of butadiene by examining the genotoxicity of its metabolites. Chem Biol Interact 166:132–139.
  • Klimczuk J. (1970). Spontaneous and induced reversions of Meth-1 mutant of Aspergillus nidulane. Genet Pol 11:313–319.
  • Koc H, Tretyakova NY, Walker VE, Henderson RF, Swenberg JA. (1999). Molecular dosimetry of N-7 guanine adduct formation in mice and rats exposed to 1,3-butadiene. Chem Res Toxicol 12:566–574.
  • Koivisto P, Kostiainen R, Kilpelainen I, Steinby K, Peltonen K. (1995). Preparation, characterization and 32P-postlabeling of butadiene monoepoxide N6-adenine adducts. Carcinogenesis 16:2999–3007.
  • Koivisto P, Adler ID, Sorsa M, Peltonen K. (1996). Inhalation exposure of rats and mice to 1,3-butadiene induces N6-adenine adducts of epoxybutene detected by 32P-postlabeling and HPLC. Environ Health Perspect 104(Suppl 3):655–657.
  • Koivisto P, Sorsa M, Pacchierotti F, Peltonen K. (1997). 32P-postlabelling/HPLC assay reveals an enantioselective adduct formation in N7 guanine residues in vivo after 1,3-butadiene inhalation exposure. Carcinogenesis 18:439–443.
  • Koivisto P, Adler ID, Pacchierotti F, Peltonen K. (1998b). DNA adducts in mouse testis and lung after inhalation exposure to 1,3-butadiene. Mutat Res 397:3–10.
  • Koivisto P, Adler ID, Pacchierotti F, Peltonen K. (1998a). Regio- and stereospecific DNA adduct formation in mouse lung at N6 and N7 position of adenine and after 1,3-butadiene inhalation exposure. Biomarkers 3:385–397.
  • Koivisto P, Kilpelainen I, Rasanen I, Adler ID, Pacchierotti F, Peltonen K. (1999). Butadiene diolepoxide- and diepoxybutane-derived DNA adducts at N7-guanine: A high occurrence of diolepoxide-derived adducts in mouse lung after 1,3-butadiene exposure. Carcinogenesis 20:1253–1259.
  • Koivisto P, Peltonen K. (2001). N7-guanine adducts of the epoxy metabolites of 1,3-butadiene in mice lung. Chem Biol Interact 135–136:363–372.
  • Kolmark G, Westergaard M. (1953). Further studies on chemically induced reversions at the adenine locus of neurospora. Hereditas 39:209–224.
  • Kornbrust DJ, Barfknecht TR. (1984). Comparison of rat and hamster hepatocyte primary culture/DNA repair assays. Environ Mutagen 6:1–11.
  • Krause RJ, Elfarra AA. (1997). Oxidation of butadiene monoxide to meso- and (+/−)-diepoxybutane by cDNA-expressed human cytochrome P450s and by mouse rat and human liver microsomes: Evidence for preferential hydration of meso-diepoxybutane in rat and human liver microsomes. Arch Biochem Biophys 337:176–184.
  • Kreiling R, Laib RJ, Bolt HM. (1986). Alkylation of nuclear proteins and DNA after exposure of rats and mice to [1,4-14C]1,3-butadiene. Toxicol Lett 30:131–136.
  • Kreizinger JD. (1960). Diepoxybutane as a chemical mutagen in Zea mays. Genetics 45:143–154.
  • Lahdetie J, Grawe J. (1997). Flow cytometric analysis of micronucleus induction in rat bone marrow polychromatic erythrocytes by 1,2;3,4-diepoxybutane, 3,4-epoxy-1-butene and 1,2-epoxybutane-3,4-diol. Cytometry 28:228–235.
  • Lahdetie J, Peltonen K, Sjoblom T. (1997). Germ cell mutagenicity of three metabolites of 1,3-butadiene in the rat: Induction of spermatid micronuclei by butadiene mono-, di-, and diolepoxides in vivo. Environ Mol Mutagen 29:230–239.
  • Lambert IB, Singer TM, Boucher SE, Douglas GR. (2005). Detailed review of transgenic rodent mutation assays. Mutat Res 590:1–280.
  • Landi S, Ponzanelli I, Barale R. (1995). Effect of red cells and plasma blood in determining individual lymphocytes sensitivity to diepoxybutane assessed by in vitro induced sister chromatid exchanges. Mutat Res 348:117–123.
  • Landi S, Ponzanelli I, Hirvonen A, Norppa H, Barale R. (1996a). Repeated analysis of sister chromatid exchange induction by diepoxybutane in cultured human lymphocytes: Effect of glutathione S-transferase T1 and M1 genotype. Mutat Res 351:79–85.
  • Landi S, Frenzilli G, Sbrana I, Barale R. (1996b). Modulating factors of individual sensitivity to diepoxybutane: Sister chromatid exchanges induced in vitro in human lymphocytes. Mutat Res 357:75–82.
  • Lawley PD, Brookes P. (1967). Interstrand cross-linking of DNA by difunctional alkylating agents. J Mol Biol 25:143–160.
  • Lee DH, Kim TH, Lee SY, Kim HJ, Rhee SK, Yoon B, Pfeifer GP, Lee CS. (2002). Mutations induced by 1,3-butadiene metabolites, butadiene diolepoxide, and 1,2,3,4-diepoxybutane at the Hprt locus in CHO-K1 cells. Mol Cells 14:411–419.
  • Legator MS, Au WW, Ammenheuser M, Ward JB Jr. (1993). Elevated somatic cell mutant frequencies and altered DNA repair responses in nonsmoking workers exposed to 1,3-butadiene. IARC Sci Publ (xx):253–263.
  • Leuratti C, Jones NJ, Marafante E, Peltonen K, Kostiainen R, Waters R. (1993). Biomonitoring of exposure to 1,3-butadiene: Detection by high-performance liquid chromatography and 32P-postlabelling of an adenine adduct formed by diepoxybutane. IARC Sci Publ (xx):143–150.
  • Leuratti C, Jones NJ, Marafante E, Kostiainen R, Peltonen K, Waters R. (1994). DNA damage induced by the environmental carcinogen butadiene: Identification of a diepoxybutane-adenine adduct and its detection by 32P-postlabelling. Carcinogenesis 15:1903–1910.
  • Liu L, Hachey DL, Valadez G, Willams KM, Guengerich FP, Loktionova NA, Kanugula S, Pegg AE. (2004). Characterization of a mutaenic DNA adduct formed from 1,2-dibomoethane by O6-alkylguanine-DNA alkyltransferase. J Biol Chem 279:4250–4259.
  • Liu S, Ao L, Du B, Zhou Y, Yuan J, Bai Y, Zhou Z, Cao J. (2008). HPRT mutations in lymphocytes from 1,3-butadiene-exposed workers in China. Environ Health Perspect 116:203–208.
  • Loveless A. (1951). Qualitative aspects of the chemistry and biology of radiomimetic (mutagenic) substances. Nature 167:338–342.
  • Lovreglio P, Bukvic N, Fustinoni S, Ballini A, Drago I, Foa V, Guanti G, Soleo L. (2006). Lack of genotoxic effect in workers exposed to very low doses of 1,3-butadiene. Arch Toxicol 80:378–381.
  • Lwoff A. (1953). Lysogeny. Bacteriol Rev 17:269–337.
  • Ma H, Wood TG, Ammenheuser MM, Rosenblatt JI, Ward JB Jr. (2000). Molecular analysis of hprt mutant lymphocytes from 1,3-butadiene-exposed workers. Environ Mol Mutagen 36:59–71.
  • Mabon N, Moorthy B, Randerath E, Randerath K. (1996). Monophosphate 32P-postlabeling assay of DNA adducts from 1,2:3,4-diepoxybutane, the most genotoxic metabolite of 1,3-butadiene: In vitro methodological studies and in vivo dosimetry. Mutat Res 371:87–104.
  • Mabon N, Randerath K. (1996). 32P-postlabeling of 1,3-butadiene and 4-vinyl-1-cyclohexene metabolite-DNA adducts: In vitro and in vivo applications. Toxicology 113:341–344.
  • Madhusree B, Goto S, Ohkubo T, Tian H, Ando F, Fukuhara M, Tohkin M, Watanabe T. (2002). Mutagenicity testing of 1,3-butadiene, 1,4-pentadiene-3-ol, isoprene, 2,4-hexadiene, cis- and trans-piperlylene. J Health Sci 48:73–78.
  • Madle S, Dean SW, Andrae U, Brambilla G, Burlinson B, Doolittle DJ, Furihata C, Hertner T, McQueen CA, Mori H. (1994). Recommendations for the performance of UDS tests in vitro and in vivo. Mutat Res 312:263–285.
  • Marx MP, Dawson B, Heyns AD. (1982). Prenatal diagnosis of Fanconi’s anemia. S Afr Med J 62:348.
  • Marx MP, Smith S, Heyns AD, van Tonder IZ. (1983). Fanconi’s anemia: A cytogenetic study on lymphocyte and bone marrow cultures utilizing 1,2:3,4-diepoxybutane. Cancer Genet Cytogenet 9:51–59.
  • Matange R. (1968). Chromosomal aberations induced by dialkylating agents in Allium cepo root-tips and their relation to the mitotic cycle and DNA synthetis. Radiat Bot 8:489–497.
  • Matanoski GM, Santos-Burgoa C, Schwartz L. (1990). Mortality of a cohort of workers in the styrene-butadiene polymer manufacturing industry (1943–1982). Environ Health Perspect 86:107–117.
  • McCann J, Choi E, Yamasaki E, Ames BN. (1975). Detection of carcinogens as mutagens in the Salmonella/microsome test: Assay of 300 chemicals. Proc Natl Acad Sci U S A 72:5135–5139.
  • McGregor DB, Brown A, Cattanach P, Edwards I, McBride D, Caspary WJ. (1988). Responses of the L5178Y tk+/tk− mouse lymphoma cell forward mutation assay. II: 18 coded chemicals. Environ Mol Mutagen 11:91–118.
  • McGregor D, Brown AG, Cattanach P, Edwards I, McBride D, Riach C, Shepherd W, Caspary WJ. (1991). Responses of the L5178Y mouse lymphoma forward mutation assay: V. Gases and vapors. Environ Mol Mutagen 17:122–129.
  • Melnick RL, Huff J, Chou BJ, Miller RA. (1990). Carcinogenicity of 1,3-butadiene in C57BL/6 × C3H F1 mice at low exposure concentrations. Cancer Res 50:6592–6599.
  • Melzer MS. (1967a). Effect of carcinogens and other compounds on deoxyribonuclease. Biochim Biophys Acta 138:613–616.
  • Melzer MS. (1967b). The effect of a carcinogenic peroxide on DNA. Biochim Biophys Acta 142:538–541.
  • Mendelson D. (1976). The improved “bithorax method” for the detection of rearrangements in Drosophila melanogaster. Mutat Res 41:269–276.
  • Meng Q, Recio L, Reilly AA, Wong BA, Bauer M, Walker VE. (1998). Comparison of the mutagenic potency of 1,3-butadiene at the hprt locus of T-lymphocytes following inhalation exposure of female B6C3F1 mice and F344 rats. Carcinogenesis 19:1019–1027.
  • Meng Q, Henderson RF, Chen T, Heflich RH, Walker DM, Bauer MJ, Reilly AA, Walker VE. (1999a). Mutagenicity of 1,3-butadiene at the Hprt locus of T-lymphocytes following inhalation exposures of female mice and rats. Mutat Res 429:107–125.
  • Meng Q, Henderson RF, Walker DM, Bauer MJ, Reilly AA, Walker VE. (1999b). Mutagenicity of the racemic mixtures of butadiene monoepoxide and butadiene diepoxide at the Hprt locus of T-lymphocytes following inhalation exposures of female mice and rats. Mutat Res 429:127–140.
  • Meng Q, Singh N, Heflich RH, Bauer MJ, Walker VE. (2000). Comparison of the mutations at Hprt exon 3 of T-lymphocytes from B6C3F1 mice and F344 rats exposed by inhalation to 1,3-butadiene or the racemic mixture of 1,2:3,4-diepoxybutane. Mutat Res 464:169–184.
  • Meng Q, Henderson RF, Long L, Blair L, Walker DM, Upton PB, Swenberg JA, Walker VE. (2001). Mutagenicity at the Hprt locus in T cells of female mice following inhalation exposures to low levels of 1,3-butadiene. Chem Biol Interact 135–136:343–361.
  • Meng Q, Walker DM, Scott BR, Seilkop SK, Aden JK, Walker VE. (2004). Characterization of Hprt mutations in cDNA and genomic DNA of T-cell mutants from control and 1,3-butadiene-exposed male B6C3F1 mice and F344 rats. Environ Mol Mutagen 43:75–92.
  • Meng Q, Redetzke DL, Hackfeld LC, Hodge RP, Walker DM, Walker VE. (2007a). Mutagenicity of stereochemical configurations of 1,2-epoxybutene and 1,2:3,4-diepoxybutane in human lymphblastoid cells. Chem Biol Interact 166:207–218.
  • Meng Q, Walker DM, McDonald JD, Henderson RF, Carter MM, Cook DL Jr, McCash CL, Torres SM, Bauer MJ, Seilkop SK, Upton PB, Georgieva NI, Boysen G, Swenberg JA, Walker VE. (2007b). Age-, gender-, and species-dependent mutagenicity in T cells in mice and rats exposed by inhalation to 1,3-butadiene. Chem Biol Interact 166:121–131.
  • Minko IG, Washington MT, Prakash L, Prakash S, Lloyd RS. (2001). Translesion DNA synthesis by yeast DNA polymerase eta on templates containing N2-guanine adducts of 1,3-butadiene metabolites. J Biol Chem 276:2517–2522.
  • Morpurgo G. (1963). Induction of mitotic crossing-over in Aspergillus nidulans by bifunctional alkylating agents. Genetics 48:1259–1263.
  • Morrissey RE, Schwetz BA, Hackett PL, Sikov MR, Hardin BD, McClanahan BJ, Decker JR, Mast TJ. (1990). Overview of reproductive and developmental toxicity studies of 1,3-butadiene in rodents. Environ Health Perspect 86:79–84.
  • Moutschen-Dahmen J, Moutschen-Dahmen M, Loppes R. (1963). Differential mutagenic activity of l(+) and d(−) diepoxybutane. Nature 199:406–407.
  • Moutschen J. (1961). Differential sensitivity of mouse spermatogenesis to alkylating agents. Genetics 46:291–299.
  • Murg M, Schuler M, Eastmond DA. (1999a). Evaluation of micronuclei and chromosomal breakage in the 1cen-q12 region by the butadiene metabolites epoxybutene and diepoxybutane in cultured human lymphocytes. Mutagenesis 14:541–546.
  • Murg MN, Schuler M, Eastmond DA. (1999b). Persistence of chromosomal alterations affecting the 1cen-q12 region in a human lymphoblastoid cell line exposed to diepoxybutane and mitomycin C. Mutat Res 446:193–203.
  • Nakao Y, Auerbach C. (1961). Test of a possible correlation between cross-linking and chromosome breaking abilities of chemical mutagens. Z Vererbungsl 92:457–461.
  • National Toxicology Program (NTP). (1993). Toxicology and Carcinogenesis Studies of 1,3-Butadiene in B6C3F1 Mice (Inhalation Studies). NTP Technical Reports 434. Washington, DC: National Toxicology Program.
  • Neagu I, Koivisto P, Neagu C, Kostiainen R, Stenby K, Peltonen K. (1995). Butadiene monoxide and deoxyguanosine alkylation products at the N7-position. Carcinogenesis 16:1809–1813.
  • Nemenzo J, Hine CH. (1969). Chromosome aberrations of lympocytes caused by diepoxy butane. Toxicol Appl Pharmacol 14:653–654.
  • Nieusma JL, Claffey DJ, Maniglier-Poulet C, Imiolczyk T, Ross D, Ruth JA. (1997). Stereochemical aspects of 1,3-butadiene metabolism and toxicity in rat and mouse liver microsomes and freshly isolated rat hepatocytes. Chem Res Toxicol 10:450–456.
  • Nieusma JL, Claffey DJ, Ruth JA, Ross D. (1998). Stereochemical aspects of the conjugation of epoxide metabolites of butadiene with glutathione in rat liver cytosol and freshly isolated rat hepatocytes. Toxicol Sci 43:102–109.
  • Nishi Y, Hasegawa MM, Taketomi M, Ohkawa Y, Inui N. (1984). Comparison of 6-thioguanine-resistant mutation and sister chromatid exchanges in Chinese hamster V79 cells with forty chemical and physical agents. Cancer Res 44:3270–3279.
  • Norppa H, Hirvonen A, Jarventaus H, Uuskula M, Tasa G, Ojajarvi A, Sorsa M. (1995). Role of GSTT1 and GSTM1 genotypes in determining individual sensitivity to sister chromatid exchange induction by diepoxybutane in cultured human lymphocytes. Carcinogenesis 16:1261–1264.
  • Oakberg EF. (1984). Germ cell toxicity: Significance in genetic and fertility effects of radiation and chemicals. Environ Sci Res 31:549–590.
  • Oe T, Kambouris SJ, Walker VE, Meng Q, Recio L, Wherli S, Chaudhary AK, Blair IA. (1999). Persistence of N7-(2,3,4-trihydroxybutyl)guanine adducts in the livers of mice and rats exposed to 1,3-butadiene. Chem Res Toxicol 12:247–257.
  • Olsen OA, Green MM. (1982). The mutagenic effects of diepoxybutane in wild-type and mutagen-sensitive mutants of Drosophila melanogaster. Mutat Res 92:107–115.
  • Osterman-Golkar S, Kautiainen A, Bergmark E, Hakansson K, Maki-Paakkanen J. (1991). Hemoglobin adducts and urinary mercapturic acids in rats as biological indicators of butadiene exposure. Chem Biol Interact 80:291–302.
  • Osterman-Golkar S, Bond JA, Ward JB Jr, Legator MS. (1993). Use of haemoglobin adducts for biomonitoring exposure to 1,3-butadiene. IARC Sci Publ (127):127–134.
  • Osterman-Golkar S, Peltonen K, Anttinen-Klemetti T, Landin HH, Zorcec V, Sorsa M. (1996). Haemoglobin adducts as biomarkers of occupational exposure to 1,3-butadiene. Mutagenesis 11:145–149.
  • Osterman-Golkar SM, Moss O, James A, Bryant MS, Turner M, Bond JA. (1998). Epoxybutene-hemoglobin adducts in rats and mice: Dose response for formation and persistence during and following long-term low-level exposure to butadiene. Toxicol Appl Pharmacol 150:166–173.
  • Osterman-Golkar S, Czene K, Lee MS, Faller TH, Csanady GA, Kessler W, Perez HL, Filser JG, Segerback D. (2003). Dosimetry by means of DNA and hemoglobin adducts in propylene oxide-exposed rats. Toxicol Appl Pharmacol 191:245–254.
  • Owen PE, Glaister JR, Gaunt IF, Pullinger DH. (1987). Inhalation toxicity studies with 1,3-butadiene. 3. Two year toxicity/carcinogenicity study in rats. Am Ind Hyg Assoc J 48:407–413.
  • Pacchierotti F, Tiveron C, Ranaldi R, Bassani B, Cordelli E, Leter G, Spano M. (1998). Reproductive toxicity of 1,3-butadiene in the mouse: Cytogenetic analysis of chromosome aberrations in first-cleavage embryos and flow cytometric evaluation of spermatogonial cell killing. Mutat Res 397:55–66.
  • Park S, Tretyakova N. (2004). Structural characterization of the major DNA-DNA cross-link of 1,2,3,4-diepoxybutane. Chem Res Toxicol 17:129–136.
  • Park S, Hodge J, Anderson C, Tretyakova N. (2004). Guanine-adenine DNA cross-linking by 1,2,3,4-diepoxybutane: Potential basis for biological activity. Chem Res Toxicol 17:1638–1651.
  • Park S, Anderson C, Loeber R, Seetharaman M, Jones R, Tretyakova N. (2005). Interstrand and intrastrand DNA-DNA cross-linking by 1,2,3,4-diepoxybutane: Role of stereochemistry. J Am Chem Soc 127:14355–14365.
  • Pelin K, Hirvonen A, Norppa H. (1996). Influence of erythrocyte glutathione S-transferase T1 on sister chromatid exchanges induced by diepoxybutane in cultured human lymphocytes. Mutagenesis 11:213–215.
  • Perez HL, Lahdetie J, Landin H, Kilpelainen I, Koivisto P, Peltonen K, Osterman-Golkar S. (1997). Haemoglobin adducts of epoxybutanediol from exposure to 1,3-butadiene or butadiene epoxides. Chem Biol Interact 105:181–198.
  • Perry P, Evans HJ. (1975). Cytological detection of mutagen-carcinogen exposure by sister chromatid exchange. Nature 258:121–125.
  • Polakowska R, Putrament A. (1979). Mitochondrial mutagenesis in Saccharomyces cerevisiae. II. Methyl methanesulphonate and diepoxybutane. Mutat Res 61:207–213.
  • Pope S, Baker JM, Parish JH. (1984). Assay of cytotoxicity and mutagenicity of alkylating agents by using Neurospora spheroplasts. Mutat Res 125:43–53.
  • Porfirio B, Dallapiccola B, Mokini V, Alimena G, Gandini E. (1983). Failure of diepoxybutane to enhance sister chromatid exchange levels in Fanconi’s anemia patients and heterozygotes. Hum Genet 63:117–120.
  • Powley MW, Jayaraj K, Gold A, Ball LM, Swenberg JA. (2003). 1,N2-propanodeoxyguanosine adducts of the 1,3-butadiene metabolite, hydroxymethylvinyl ketone. Chem Res Toxicol 16:1448–1454.
  • Powley MW, Li Y, Upton PB, Walker VE, Swenberg JA. (2005). Quantification of DNA and hemoglobin adducts of 3,4-epoxy-1,2-butanediol in rodents exposed to 3-butene-1,2-diol. Carcinogenesis 26:1573–1580.
  • Powley MW, Walker VE, Li Y, Upton PB, Swenberg JA. (2007). The importance of 3,4-epoxy-1,2-butanediol and hydroxymethylvinyl ketone in 3-butene-1,2-diol associated mutagenicity. Chem Biol Interact 166:182–190.
  • Preston RJ. (2007). Cancer risk for 1,3-butadiene: Data integration opportunities. Chem Biol Interact 166:150–155.
  • Ranaldi R, Bassani B, Pacchierotti F. (2001). Genotoxic effects of butadiene in mouse lung cells detected by an ex vivo micronucleus test. Mutat Res 491:81–85.
  • Recio L, Bond JA, Pluta LJ, Sisk SC. (1993). Use of transgenic mice for assessing the mutagenicity of 1,3-butadiene in vivo. IARC Sci Publ (xx):235–243.
  • Recio L, Meyer KG. (1995). Increased frequency of mutations at A:T base pairs in the bone marrow of B6C3F1 lacI transgenic mice exposed to 1,3-butadiene. Environ Mol Mutagen. 26:1–8.
  • Recio L, Sisk S, Meyer K, Pluta L, Bond JA. (1996). Mutagenicity and mutational spectra of 1,3-butadiene in the bone marrow of B6C3F1 lacI transgenic mice. Toxicology 113:106–111.
  • Recio L, Pluta LJ, Meyer KG. (1998). The in vivo mutagenicity and mutational spectrum at the lacI transgene recovered from the spleens of B6C3F1 lacI transgenic mice following a 4-week inhalation exposure to 1,3-butadiene. Mutat Res 401:99–110.
  • Recio L, Saranko CJ, Steen A-M. (2000). 1,3-Butadiene: Cancer, mutations, and adducts. Part II. Roles of two metabolites of 1,3-butadiene in mediating its in vivo genotoxicity. Health Eff Inst Res Rep (92):49–87.
  • Recio L, Steen AM, Pluta LJ, Meyer KG, Saranko CJ. (2001). Mutational spectrum of 1,3-butadiene and metabolites 1,2-epoxybutene and 1,2,3,4-diepoxybutane to assess mutagenic mechanisms. Chem Biol Interact 135–136:325–341.
  • Reilly MS, Grogan DW. (2002). Biological effects of DNA damage in the hyperthermophilic archaeon Sulfolobus acidocaldarius. FEMS Microbiol Lett 208:29–34.
  • Rice GC, Hoy C, Schimke RT. (1986). Transient hypoxia enhances the frequency of dihydrofolate reductase gene amplification in Chinese hamster ovary cells. Proc Natl Acad Sci U S A 83:5978–5982.
  • Richardson KA, Megens HJ, Webb JD, van Sittert NJ. (1996). Biological monitoring of butadiene exposure by measurement of haemoglobin adducts. Toxicology 113:112–118.
  • Ristau C, Deutschmann S, Laib RJ, Ottenwalder H. (1990). Detection of diepoxybutane-induced DNA-DNA crosslinks by cesium trifluoracetate (CsTFA) density-gradient centrifugation. Arch Toxicol 64:343–344.
  • Rodriguez DA, Kowalczyk A, Ward JB Jr, Harris CM, Harris TM, Lloyd RS. (2001). Point mutations induced by 1,2-epoxy-3-butene N1 deoxyinosine adducts. Environ Mol Mutagen 38:292–296.
  • Rosenkranz HS, Poirier LA. (1979). Evaluation of the mutagenicity and DNA-modifying activity of carcinogens and noncarcinogens in microbial systems. J Natl Cancer Inst 62:873–892.
  • Ruchirawat M, Navasumrit P, Settachan D. (2009). Exposure to benzene in various susceptible populations: Co-exposures to 1,3-butadiene and PAHs and implications for carcinogenic risk. Chem Biol Interact 184:67–76.
  • Russell WL, Bangham JW, Russell LB. (1998). Differential response of mouse male germ-cell stages to radiation-induced specific-locus and dominant mutations. Genetics 148:1567–1578.
  • Russo A, Nogara C, Renzi L, Tommasi AM. (1997). Micronucleus induction in germ and somatic cells of the mouse after exposure to the butadiene metabolites diepoxybutane and epoxybutene. Mutat Res 390:129–139.
  • Sankaranarayanan K, Ferro W, Zijlistra JA. (1983). Studies on mutagen-sensitive strains of Drosophila melanogaster III. A comparison of the mutagenic sensitivies of the ebony (UV and x-ray sensitive) and Canton-S (wild-type) strains to MMS, ENU, DEB, DEN, 2,4,6-Cl2-PDMT. Mutat Res 110:59–70.
  • Saranko CJ, Pluta LJ, Recio L. (1998). Molecular analysis of lacI mutants from transgenic fibroblasts exposed to 1,2-epoxybutene. Carcinogenesis 19:1879–1887.
  • Saranko CJ, Meyer KG, Pluta LJ, Henderson RF, Recio L. (2001). Lung-specific mutagenicity and mutational spectrum in B6C3F1 lacI transgenic mice following inhalation exposure to 1,2-epoxybutene. Mutat Res 473:37–49.
  • Sasiadek M, Jarventaus H, Sorsa M. (1991a). Sister-chromatid exchanges induced by 1,3-butadiene and its epoxides in CHO cells. Mutat Res 263:47–50.
  • Sasiadek M, Norppa H, Sorsa M. (1991b). 1,3-Butadiene and its epoxides induce sister-chromatid exchanges in human lymphocytes in vitro. Mutat Res 261:117–121.
  • Sasiadek M, Hirvonen A, Noga L, Paprocka-Borowicz M, Norppa H. (1999). Glutathione S-transferase M1 genotype influences sister chromatid exchange induction but not adaptive response in human lymphocytes treated with 1,2-epoxy-3-butene. Mutat Res 439:207–212.
  • Sathiakumar N, Graff J, Macaluso M, Maldonado G, Matthews R, Delzell E. (2005). An updated study of mortality among North American synthetic rubber industry workers. Occup Environ Med 62:822–829.
  • Schlade-Bartusiak K, Sasiadek M, Kozlowska J. (2000). The influence of GSTM1 and GSTT1 genotypes on the induction of sister chromatid exchanges and chromosome aberrations by 1,2:3,4-diepoxybutane. Mutat Res 465:69–75.
  • Schlade-Bartusiak K, Rozik K, Laczmanska I, Ramsey D, Sasiadek M. (2004). Influence of GSTT1 mEH CYP2E1 and RAD51 polymorphisms on diepoxybutane-induced SCE frequency in cultured human lymphocytes. Mutat Res 558:121–130.
  • Schmiederer M, Knutson E, Muganda P, Albrecht T. (2005). Acute exposure of human lung cells to 1,3-butadiene diepoxide results in G1 and G2 cell cycle arrest. Environ Mol Mutagen 45:354–364.
  • Selzer RR, Elfarra AA. (1995). Characterization of adenosine and guanosine adducts of butadiene monoxide. Toxicologist 15:76.
  • Selzer RR, Elfarra AA. (1996a). Synthesis and biochemical characterization of N1-, N2-, and N7-guanosine adducts of butadiene monoxide. Chem Res Toxicol 9:126–132.
  • Selzer RR, Elfarra AA. (1996b). Characterization of N1- and N6-adenosine adducts and N1-inosine adducts formed by the reaction of butadiene monoxide with adenosine: Evidence for the N1-adenosine adducts as major initial products. Chem Res Toxicol 9:875–881.
  • Selzer RR, Elfarra AA. (1997a). Characterization of four N-3-thymidine adducts formed in vitro by the reaction of thymidine and butadiene monoxide. Carcinogenesis 18:1993–1998.
  • Selzer RR, Elfarra AA. (1997b). Chemical modification of deoxycytidine at different sites yields adducts of different stabilities: Characterization of N3- and O2-deoxycytidine and N3-deoxyuridine adducts of butadiene monoxide. Arch Biochem Biophys 343:63–72.
  • Selzer RR, Elfarra AA. (1999). In vitro reactions of butadiene monoxide with single- and double-stranded DNA: Characterization and quantitation of several purine and pyrimidine adducts. Carcinogenesis 20:285–292.
  • Sharief Y, Brown AM, Backer LC, Campbell JA, Westbrook-Collins B, Stead AG, Allen JW. (1986). Sister chromatid exchange and chromosome aberration analyses in mice after in vivo exposure to acrylonitrile, styrene, or butadiene monoxide. Environ Mutagen 8:439–448.
  • Shukla PT, Auerbach C. (1980). Genetic tests for the detection of chemically induced small deletions in Drosophila chromosomes. Mutat Res 72:231–243.
  • Sielken RL Jr, Valdez-Flores C, Gargas ML, Kirman CR, Teta MJ, Delzell E. (2007). Cancer risk assessment for 1,3-butadiene: Dose-response modeling from an epidemiological perspective. Chem Biol Interact 166:140–149.
  • Sills RC, Hong HL, Melnick RL, Boorman GA, Devereux TR. (1999). High frequency of codon 61 K-ras A→T transversions in lung and Harderian gland neoplasms of B6C3F1 mice exposed to chloroprene (2-chloro-1,3-butadiene) for 2 years, and comparisons with the structurally related chemicals isoprene and 1,3-butadiene. Carcinogenesis 20:657–662.
  • Sills RC, Hong HL, Boorman GA, Devereux TR, Melnick RL. (2001). Point mutations of K-ras and H-ras genes in forestomach neoplasms from control B6C3F1 mice and following exposure to 1,3-butadiene, isoprene or chloroprene for up to 2-years. Chem Biol Interact 135–136:373–386.
  • Simmon VF. (1979). In vitro assays for recombinogenic activity of chemical carcinogens and related compounds with Saccharomyces cerevisiae D3. J Natl Cancer Inst 62:901–909.
  • Simmon VF, Rosenkranz HS, Zeiger E, Poirier LA. (1979). Mutagenic activity of chemical carcinogens and related compounds in the intraperitoneal host-mediated assay. J Natl Cancer Inst 62:911–918.
  • Singer B, Grunberger D. (1983). Molecular Biology of Mutagens and Carcinogens. New York: Plenum Publishing.
  • Sinha RP, Helgason SB. (1969). The action of actinomycin D and diepoxybutane on recombination of two closely linked loci in Hordeum. Can J Genet Cytol 11:745–751.
  • Sisk SC, Pluta LJ, Bond JA, Recio L. (1994). Molecular analysis of lacI mutants from bone marrow of B6C3F1 transgenic mice following inhalation exposure to 1,3-butadiene. Carcinogenesis 15:471–477.
  • Sjoblom T, Lahdetie J. (1996). Micronuclei are induced in rat spermatids in vitro by 1,2,3,4-diepoxybutane but not by 1,2-epoxy-3-butene and 1,2-dihydroxy-3,4-epoxybutane. Mutagenesis 11:525–528.
  • Sobels FH. (1972). The role of Drosophila in the field of mutation research. Arch Genet (Zur) 45:101–125.
  • Sorsa M, Autio K, Demopoulos NA, Jarventaus H, Rossner P, Sram RJ, Stephanou G, Vlachodimitropoulos D. (1994). Human cytogenetic biomonitoring of occupational exposure to 1,3-butadiene. Mutat Res 309:321–326.
  • Sorsa M, Osterman-Golkar S, Peltonen K, Saarikoski ST, Sram R. (1996). Assessment of exposure to butadiene in the process industry. Toxicology 113:77–83.
  • Sram RJ, Rossner P, Peltonen K, Podrazilova K, Mrackova G, Demopoulos NA, Stephanou G, Vlachodimitropoulos D, Darroudi F, Tates AD. (1998). Chromosomal aberrations, sister-chromatid exchanges, cells with high frequency of SCE micronuclei and comet assay parameters in 1,3-butadiene-exposed workers. Mutat Res 419:145–154.
  • Steen AM, Meyer KG, Recio L. (1997a). Analysis of hprt mutations occurring in human TK6 lymphoblastoid cells following exposure to 1,2,3,4-diepoxybutane. Mutagenesis 12:61–67.
  • Steen AM, Meyer KG, Recio L. (1997b). Characterization of hprt mutations following 1,2-epoxy-3-butene exposure of human TK6 cells. Mutagenesis 12:359–364.
  • Stephanou G, Andrianopoulos C, Vlastos D, Demopoulos NA, Russo A. (1997). Induction of micronuclei and sister chromatid exchange in mouse splenocytes after exposure to the butadiene metabolite 3,4-epoxy-1-butene. Mutagenesis 12:425–429.
  • Stephanou G, Russo A, Vlastos D, Andrianopoulos C, Demopoulos NA. (1998). Micronucleus induction in somatic cells of mice as evaluated after 1,3-butadiene inhalation. Mutat Res 397:11–20.
  • Straif K, Weiland SK, Werner B, Chambless L, Mundt KA, Keil U. (1998). Workplace risk factors for cancer in the German rubber industry: Part 2. Mortality from non-respiratory cancers. Occup Environ Med 55:325–332.
  • Swenberg JA, Christova-Gueorguieva NI, Upton PB, Ranasinghe A, Scheller N, Wu KY, Yen TY, Hayes R. (2000). 1,3-Butadiene: Cancer, mutations, and adducts. Part V: Hemoglobin adducts as biomarkers of 1,3-butadiene exposure and metabolism. Res Rep Health Eff Inst (92):191–210.
  • Swenberg JA, Koc H, Upton PB, Georguieva N, Ranasinghe A, Walker VE, Henderson R. (2001). Using DNA and hemoglobin adducts to improve the risk assessment of butadiene. Chem Biol Interact 135–136:387–403.
  • Swenberg JA, Boysen G, Georgieva N, Bird MG, Lewis RJ. (2007). Future directions in butadiene risk assessment and the role of cross-species internal dosimetry. Chem Biol Interact 166:78–83.
  • Swietlinska Z, Zuk J, Korzen M, Zbrzeska J. (1967). The effect of diepoxybutane on chromosomes of Vicia faba. Mol Gen Genet 99:322–332.
  • Swietlinska Z. (1971). High frequency of chromosomal aberrations induced by DEB and caffeine post-treatment in Vicia fab var minor. Mol Gen Genet 112:87–90.
  • Tates AD, van Dam FJ, de Zwart FA, van Teylingen CM, Natarajan AT. (1994). Development of a cloning assay with high cloning efficiency to detect induction of 6-thioguanine-resistant lymphocytes in spleen of adult mice following in vivo inhalation exposure to 1,3-butadiene. Mutat Res 309:299–306.
  • Tates AD, van Dam FJ, de Zwart FA, Darroudi F, Natarajan AT, Rossner P, Peterkova K, Peltonen K, Demopoulos NA, Stephanou G, Vlachodimitropoulos D, Sram RJ. (1996). Biological effect monitoring in industrial workers from the Czech Republic exposed to low levels of butadiene. Toxicology 113:91–99.
  • Tates AD, van Dam FJ, van Teylingen CM, de Zwart FA, Zwinderman AH. (1998). Comparison of induction of hprt mutations by 1,3-butadiene and/or its metabolites 1,2-epoxybutene and 1,2,3,4-diepoxybutane in lymphocytes from spleen of adult male mice and rats in vivo. Mutat Res 397:21–36.
  • Thielmann HW, Gersbach H. (1978). Carcinogen-induced DNA repair in nucleotide-permeable Escherichia coli cells. Analysis of DNA repair induced by carcinogenic K-region epoxides and 1,2,3,4-diepoxybutane. Z Krebsforsch Klin Onkol Cancer Res Clin Oncol 92:157–176.
  • Thier R, Muller M, Taylor JB, Pemble SE, Ketterer B, Guengerich FP. (1995). Enhancement of bacterial mutagenicity of bifunctional alkylating agents by expression of mammalian glutathione S-transferase. Chem Res Toxicol 8:465–472.
  • Thier R, Pemble SE, Kramer H, Taylor JB, Guengerich FP, Ketterer B. (1996). Human glutathione S-transferase T1-1 enhances mutagenicity of 1,2-dibromoethane, dibromomethane and 1,2,3,4-diepoxybutane in Salmonella typhimurium. Carcinogenesis 17:163–166.
  • Tice RR, Boucher R, Luke CA, Shelby MD. (1987). Comparative cytogenetic analysis of bone marrow damage induced in male B6C3F1 mice by multiple exposures to gaseous 1,3-butadiene. Environ Mutagen 9:235–250.
  • Tommasi AM, de Conti S, Dobrzynska MM, Russo A. (1998). Evaluation and characterization of micronuclei in early spermatids of mice exposed to 1,3-butadiene. Mutat Res 397:45–54.
  • Ton TV, Hong HH, Devereux TR, Melnick RL, Sills RC, Kim Y. (2007). Evaluation of genetic alterations in cancer-related genes in lung and brain tumors from B6C3F1 mice exposed to 1,3-butadiene or chloroprene. Chem Biol Interact 166:112–120.
  • Tretyakova NY, Lin YP, Upton PB, Sangaiah R, Swenberg JA. (1996). Macromolecular adducts of butadiene. Toxicology 113:70–76.
  • Tretyakova N, Sangaiah R, Yen TY, Gold A, Swenberg JA. (1997a). Adenine adducts with diepoxybutane: Isolation and analysis in exposed calf thymus DNA. Chem Res Toxicol 10:1171–1179.
  • Tretyakova N, Lin Y, Sangaiah R, Upton PB, Swenberg JA. (1997b). Identification and quantitation of DNA adducts from calf thymus DNA exposed to 34-epoxy-1-butene. Carcinogenesis 18:137–147.
  • Tretyakova NY, Sangaiah R, Yen TY, Swenberg JA. (1997c). Synthesis characterization and in vitro quantitation of N-7-guanine adducts of diepoxybutane. Chem Res Toxicol 10:779–785.
  • Tretyakova NY, Chiang SY, Walker VE, Swenberg JA. (1998). Quantitative analysis of 1,3-butadiene-induced DNA adducts in vivo and in vitro using liquid chromatography electrospray ionization tandem mass spectrometry. J. Mass. Spectrom. 33:363–376.
  • Tretyakova N, Livshits A, Park S, Bisht B, Goggin M. (2007). Structural elucidation of a novel DNA-DNA cross-link of 1,2,3,4-diepoxybutane. Chem Res Toxicol 20:284–289.
  • US Environmental Protection Agency (US EPA). (1994). Locating and estimating air emissions from sources of 1,3-butadiene. Draft. Research Triangle Park, NC: US EPA.
  • Uuskula M, Jarventaus H, Hirvonen A, Sorsa M, Norppa H. (1995). Influence of GSTM1 genotype on sister chromatid exchange induction by styrene-78-oxide and 12-epoxy-3-butene in cultured human lymphocytes. Carcinogenesis 16:947–950.
  • Valadez JG, Liu L, Loktionova NA, Pegg AE, Guengerich FP. (2004). Activation of bis-electrophiles to mutagenic conjugates by human O6-alkylguanine-DNA alkyltransferase. Chem Res Toxicol 17:972–982.
  • Van Duuren BL, Nelson N, Orris L, Palmes ED, Schmitt FL. (1963). Carcinogenicity of epoxides, lactones, and peroxy compounds. J Natl Cancer Inst 31:41–55.
  • Van Duuren BL, Orris L, Nelson N. (1965). Carcinogenicity of epoxides, lactones, and peroxy compounds. II. J Natl Cancer Inst 35:707–717.
  • Van Duuren BL, Langseth L, Orris L, Teebor G, Nelson N, Kuschner M. (1966). Carcinogenicity of epoxides, lactones, and peroxy compounds. IV. Tumor response in epithelial and connective tissue in mice and rats. J Natl Cancer Inst 37:825–838.
  • van Houten B, Albertini RJ. (1995). DNA damage and repair. In: Craighead JE, ed. Pathology of Environmental and Occupational Disease. Philadelphia: Mosby–Year Book, St Louis, 311–327.
  • van Sittert NJ, van Vliet EW. (1994). Monitoring occupational exposure to some industrial chemicals by determining hemoglobin adducts. Clin Chem 40:1472–1475.
  • Vangala RR, Laib RJ, Bolt HM. (1993). Evaluation of DNA damage by alkaline elution technique after inhalation exposure of rats and mice to 1,3-butadiene. Arch Toxicol 67:34–38.
  • Verly WG, Brakier L. (1969). The letal action of monofunctional and bifunctional alkylating agents on T7 coliphage. Biochim Biophys Acta 174:674–685.
  • Verly WG, Brakier L, Feit PW. (1971). Inactivation of the T7 coliphage by the diepoxybutane stereoisomers. Biochim Biophys Acta 228:400–406
  • Vesely DL, Levey GS. (1978). Butadiene diepoxide activation of guanylate cyclase. Enzyme 23:140–143.
  • Victorin K, Busk L, Cederberg H, Magnusson J. (1990). Genotoxic activity of 1,3-butadiene and nitrogen dioxide and their photochemical reaction products in Drosophila and in the mouse bone marrow micronucleus assay. Mutat Res 228:203–209.
  • Viezzer C, Norppa H, Clonfero E, Gabbani G, Mastrangelo G, Hirvonen A, Celotti L. (1999). Influence of GSTM1, GSTT1, GSTP1, and EPHX gene polymorphisms on DNA adduct level and HPRT mutant frequency in coke-oven workers. Mutat Res 431:259–269.
  • Vlachodimitropoulos D, Norppa H, Autio K, Catalan J, Hirvonen A Tasa G, Uuskula M, Demopoulos NA, Sorsa M. (1997). GST-T1-dependent induction of centromere-negative and -positive micronuclei by 1,2,3,4-diepoxybutane in cultured human lymphocytes. Mutagenesis 12:397–403.
  • Vodicka P, Kumar R, Stetina R, Musak L, Soucek P, Haufroid V, Sasiadek M, Vodickova L, Naccarati A, Sedikova J, Sanyal S, Kuricova M, Brsiak V, Norppa H, Buchancova J, Hemminki K. (2004). Markers of individual susceptibility and DNA repair rate in workers exposed to xenobiotics in a tire plant. Environ Mol Mutagen 44:283–292.
  • Vodicka P, Stetina R, Smerak P, Vodickova L, Naccarati A, Barta I, Hemminki K. (2006). Micronuclei DNA single-strand breaks and DNA-repair activity in mice exposed to 1,3-butadiene by inhalation. Mutat Res 608:49–57.
  • Vogel EW, Nivard MJ. (1998). Genotoxic effects if inhaled ethylene oxide propylene oxide and butylenes oxide on germ cells: Sensitivity of genetic endpoints in relation to dose and repair status. Mutat Res 405:259–271
  • Vogel EW, Barbin A, Nivard MJ, Stack HF, Waters MD, Lohman PH. (1998). Heritable and cancer risks of exposures to anti-cancer drugs: Inter-species comparisons of covalent deoxyribonucleic acid-binging agents. Mutat Res 400:509–540.
  • Voogd CE. (1973). Mutagenic action of epoxy compounds and several alcohols. Mutat Res 21:52–53.
  • Voogd CE, van der Stel JJ, Jacobs JJ. (1981). The mutagenic action of aliphatic epoxides. Mutat Res 89:269–282.
  • Walk RA, Jenderny J, Rohrborn G, Hackenberg U. (1987). Chromosomal abnormalities and sister-chromatid exchange in bone marrow cells of mice and Chinese hamsters after inhalation and intraperitoneal administration: I. Diepoxybutane. Mutat Res 182:333–342.
  • Walker VE, Meng Q. (2000). 1,3-Butadiene: Cancer mutations and adducts. Part III: In vivo mutation of the endogenous hprt genes of mice and rats by 1,3-butadiene and its metabolites. Res Rep Health Eff Inst (92):89–139.
  • Walles SA, Victorin K, Lundborg M. (1995). DNA damage in lung cells in vivo and in vitro by 1,3-butadiene and nitrogen dioxide and their photochemical reaction products. Mutat Res 328:11–19.
  • Wang Q, Wang A-h Tan, H-s, Feng N-n Ye, Y-j, Feng X-q Liu, G, Zheng Y-x Xia, Z-l. (2010). Genetic polymorphisms of DNA repair genes and chromosome damage in workers exposed to 1,3-butadiene. Carcinogenesis 31:858–863.
  • Ward JB Jr, Ammenheuser MM, Bechtold WE, Whorton EB Jr, Legator MS. (1994). hprt mutant lymphocyte frequencies in workers at a 1,3-butadiene production plant. Environ Health Perspect 102(Suppl 9):79–85.
  • Ward JB Jr, Ammenheuser MM, Whorton EB Jr, Bechtold WE, Kelsey KT, Legator MS. (1996). Biological monitoring for mutagenic effects of occupational exposure to butadiene. Toxicology 113:84–90.
  • Ward JB Jr, Ammenheuser MM, Bechtold WE, Hastings DA, Legator MS. (1997). Biological monitoring of occupational exposures to 1,3-butadiene. Toxicologist 36:305.
  • Ward JB Jr, Abdel-Rahman SZ, Henderson RF, Stock TH, Morandi M, Rosenblatt JI, Ammenheuser MM. (2001a). Assessment of butadiene exposure in synthetic rubber manufacturing workers in Texas using frequencies of hprt mutant lymphocytes as a biomarker. Chem Biol Interact 135–136:465–483.
  • Ward JB Jr, Abdel-Rahman SZ, Barker PJ, Stock TH, Morandi M, Ammenheuser MM. (2001b). Possible influence of chronic exposure on the frequencies of hprt mutant lymphocytes in workers exposed to low levels of butadiene. Environ Mol Mutagen 37:239.
  • Watson WA. (1966). Further evidence of an essential difference between the genetical effects of mono- and bifunctional alkylating agents. Mutat Res 3:455–457.
  • Watson WA. (1972). Studies on a recombinant-deficient mutant of Drosophila. II. Response to x-rays and alkylating agents. Mutat Res 14:299–307.
  • Whitworth KW, Symanski E, Coker AL. (2008). Childhood lymphohematopoietic cancer incidence and hazardous air pollutants in southeast Texas, 1995–2004. Environ Health Perspect 116:1576–1580.
  • Whorton EB Jr, Ammenheuser MM, Ward JB Jr, Morris DL. (1990). Estimation and analysis considerations for the 6-thioguanine-resistant somatic cell mutation assay. Environ Mol Mutagen 15:64.
  • Wickliffe JK, Ammenheuser MM, Salazar JJ, Abdel-Rahman SZ, Hastings-Smith DA, Postlethwait EM, Lloyd RS, Ward JB Jr. (2003). A model of sensitivity: 1,3-Butadiene increases mutant frequencies and genomic damage in mice lacking a functional microsomal epoxide hydrolase gene. Environ Mol Mutagen 42:106–110.
  • Wickliffe JK, Galbert LA, Ammenheuser MM, Herring SM, Xie J, Masters OE III, Friedberg EC, Lloyd RS, Ward JB Jr. (2006). 3,4-Epoxy-1-butene, a reactive metabolite of 1,3-butadiene, induces somatic mutations in Xpc-null mice. Environ Mol Mutagen 47:67–70.
  • Wickliffe JK, Herring SM, Hallberg LM, Galbert LA, Masters OE III, Ammenheuser MM, Xie J, Friedberg EC, Lloyd RS, Abdel-Rahman SZ, Ward JB Jr. (2007). Detoxification of olefinic epoxides and nucleotide excision repair of epoxide-mediated DNA damage: Insights from animal models examining human sensitivity to 1,3-butadiene. Chem Biol Interact 166:226–231.
  • Wickliffe JK, Ammenheuser MM, Adler PJ, Abdel-Rahman SZ, Ward JB Jr. (2009). Evaluation of frequencies of HPRT mutant lymphocytes in butadiene polymer workers in a Southeast Texas facility. Environ Mol Mutagen 50:82–87.
  • Wiencke JK, Vosika J, Johnson P, Wang N, Garry VF. (1982). Differential induction of sister chromatid exchange by chemical carcinogens in lymphocytes cultured from patients with solid tumors. Pharmacology 24:67–73.
  • Wiencke JK, Christiani DC, Kelsey KT. (1991). Bimodal distribution of sensitivity to SCE induction by diepoxybutane in human lymphocytes. I. Correlation with chromosomal aberrations. Mutat Res 248:17–26.
  • Wiencke JK, Kelsey KT. (1993). Susceptibility to induction of chromosomal damage by metabolites of 1,3-butadiene and its relationship to ‘spontaneous’ sister chromatid exchange frequencies in human lymphocytes. IARC Sci Publ (xx):265–273.
  • Wiencke JK, Pemble S, Ketterer B, Kelsey KT. (1995). Gene deletion of glutathione S-transferase theta: Correlation with induced genetic damage and potential role in endogenous mutagenesis. Cancer Epidemiol Biomarkers Prev 4:253–259.
  • Williams GM. (1985). Identification of genotoxic and epigenetic carcinogens in liver culture systems. Regul Toxicol Pharmacol 5:132–144.
  • Wilson DM III, Thompson LH. (2007). Molecular mechanisms of sister-chromatid exchange. Mutat Res 616:11–23.
  • Wiseman RW, Cochran C, Dietrich W, Lander ES, Soderkvist P. (1994). Allelotyping of butadiene-induced lung and mammary adenocarcinomas of B6C3F1 mice: Frequent losses of heterozygosity in regions homologous to human tumor-suppressor genes. Proc Natl Acad Sci U S A 91:3759–3763.
  • Wolman SR, Auerbach AD. (1975). Induction of chromosomal damage in fibroblasts from genetic instability syndromes. Proc Am Assoc Canc Res 16:69.
  • Wolman SR, Sivak A. (1975). Induction of unusual tumors in vivo by rat fibroblasts treated with diepoxybutane. Lab Invest 33:670–677.
  • Xi L, Zhang L, Wang Y, Smith MT. (1997). Induction of chromosome-specific aneuploidy and micronuclei in human lymphocytes by metabolites of 1,3-butadiene. Carcinogenesis 18:1687–1693.
  • Xiao Y, Tates AD. (1995). Clastogenic effects of 1,3-butadiene and its metabolites 1,2-epoxybutene and 1,2,3,4-diepoxybutane in splenocytes and germ cells of rats and mice in vivo. Environ Mol Mutagen 26:97–108.
  • Xiao Y, de Stoppelaar JM, Hoebee B, Schriever-Schwemmer G, Adler ID, Tates AD. (1996). Analysis of micronuclei induced by 1,3-butadiene and its metabolites using fluorescence in situ hybridization. Mutat Res 354:49–57.
  • Zang H, Harris TM, Guengerich FP. (2005). Kinetics of nucleotide incorporation opposite DNA bulky guanine N2 adducts by processive bacteriophage T7 DNA polymerase (exonuclease-) and HIV-1 reverse transcriptase. J Biol Chem 280:1165–1178.
  • Zeiger E, Pagano DA. (1989). Mutagenicity of the human carcinogen treosulphan in Salmonella. Environ Mol Mutagen 13:343–346.
  • Zhang XY, Elfarra AA. (2003). Identification and characterization of a series of nucleoside adducts formed by the reaction of 2′-deoxyguanosine and 1,2,3,4-diepoxybutane under physiological conditions. Chem Res Toxicol 16:1606–1615.
  • Zhang XY, Elfarra AA. (2004). Characterization of the reaction products of 2′-deoxyguanosine and 1,2,3,4-diepoxybutane after acid hydrolysis: Formation of novel guanine and pyrimidine adducts. Chem Res Toxicol 17:521–528.
  • Zhang L, Hayes RB, Guo W, McHale CM, Yin S, Wiencke JK, Patrick OJ, Rothman N, Li GL, Smith MT. (2004). Lack of increased genetic damage in 1,3-butadiene-exposed Chinese workers studied in relation to EPHX1 and GST genotypes. Mutat Res 558:63–74.
  • Zhang XY, Elfarra AA. (2005). Reaction of 1,2,3,4-diepoxybutane with 2′-deoxyguanosine: Initial products and their stabilities and decomposition patterns under physiological conditions. Chem Res Toxicol 18:1316–1323.
  • Zhao C, Koskinen M, Hemminki K. (1998). 32P-postlabelling of N6-adenine adducts of epoxybutanediol in vivo after 1,3-butadiene exposure. Toxicol Lett 102–103:591–594.
  • Zhao C, Vodicka P, Sram RJ, Hemminki K. (2000). Human DNA adducts of 1,3-butadiene an important environmental carcinogen. Carcinogenesis 21:107–111.
  • Zhao C, Vodicka P, Sram RJ, Hemminki K. (2001). DNA adducts of 1,3-butadiene in humans: Relationships to exposure, GST genotypes, single-strand breaks, and cytogenetic end points. Environ Mol Mutagen 37:226–230.
  • Zhu S, Zeiger E. (1993). Mutagenicity of the human carcinogen treosulphan, and its hydrolysis product dl-1,2:3,4-diepoxybutane in mammalian cells. Environ Mol Mutagen 21:95–99.
  • Zhuang SM, Eklund LK, Cochran C, Rao GN, Wiseman RW, Soderkvist P. (1996). Allelotype analysis of 2′,3′-dideoxycytidine- and 1,3-butadiene-induced lymphomas in B6C3F1 mice. Cancer Res 56:3338–3343.
  • Zhuang SM, Cochran C, Goodrow T, Wiseman RW, Soderkvist P. (1997). Genetic alterations of p53 and ras genes in 1,3-butadiene- and 2′,3′-dideoxycytidine-induced lymphomas. Cancer Res 57:2710–2714.
  • Zhuang SM, Schippert A, Haugen-Strano A, Wiseman RW, Soderkvist P. (1998). Inactivations of p16INK4a-alpha p16INK4a-beta and p15INK4b genes in 2′,3′-dideoxycytidine- and 1,3-butadiene-induced murine lymphomas. Oncogene 16:803–808.
  • Zhuang S, Soderkvist P. (2000). Genetic analysis of Raf1, Mdm2, C-Myc, Cdc25a and Cdc25b proto-oncogenes in 2′,3′-dideoxycytidine- and 1,3-butadiene-induced lymphomas in B6C3F1 mice. Mutat Res 452:19–26.
  • Zhuang SM, Wiseman RW, Soderkvist P. (2002). Frequent mutations of the Trp53 Hras1 and beta-catenin (Catnb) genes in 1,3-butadiene-induced mammary adenocarcinomas in B6C3F1 mice. Oncogene 21:5643–5648.
  • Zimmering S. (1983). Selective elimination of potential ring-X as opposed to rod-X in matings of males treated with diepoxybutane (DEB) to repair-deficient st mus302 females of Drosophila melanogaster. Environ Mutagen 5:363–365.
  • Zimmermann FK. (1971). Induction of mitotic gene conversion by mutagens. Mutat Res 11:327–337.
  • Zimmermann FK, Vig BK. (1975). Mutagen specificity in the induction of mitotic crossing-over in Saccharomyces cerevisiae. Mol Gen Genet 139:255–268.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.