568
Views
50
CrossRef citations to date
0
Altmetric
Review Article

The phosphoprotein phosphatase family of Ser/Thr phosphatases as principal targets of naturally occurring toxins

, &
Pages 83-110 | Received 24 Mar 2010, Accepted 10 Aug 2010, Published online: 03 Feb 2011

References

  • Ali A, Zhang J, Bao SD, Liu I, Otterness D, Dean NM, Abraham RT, Wang XF. (2004). Requirement of protein phosphatase 5 in DNA-damage-induced ATM activation. Genes Dev 18:249–254.
  • Alonso A, Sasin J, Bottini N, Friedberg I, Friedberg I, Osterman A, Godzik A, Hunter T, Dixon J, Mustelin T. (2004). Protein tyrosine phosphatases in the human genome. Cell 117:699–711.
  • Ammosova T, Jerebtsova M, Beullens M, Lesage B, Jackson A, Kashanchi F, Southerland W, Gordeuk VR, Bollen M, Nekhai S. (2005). Nuclear targeting of protein phosphatase-1 by HIV-1 Tat protein. J Biol Chem 280:36364–36371.
  • Amorim A, Vasconcelos V. (1999). Dynamics of microcystins in the mussel Mytilus galloprovincialis. Toxicon 37:1041–1052.
  • An J, Carmichael WW. (1994). Use of a colorimetric protein phosphatase inhibition assay and enzyme linked immunosorbent assay for the study of microcystins and nodularins. Toxicon 32:1495–1507.
  • Andreeva AV, Kutuzov MA. (1999). RdgC/PP5-related phosphatases: Novel components in signal transduction. Cell Signal 11:555–562.
  • Andreeva AV, Kutuzov MA. (2001). PPP family of protein Ser/Thr phosphatases: Two distinct branches? Mol Biol Evol 18:448–452.
  • Archambault J, Chambers RS, Kobor MS, Ho Y, Cartier M, Bolotin D, Andrews B, Kane CM, Greenblatt J. (1997). An essential component of a C-terminal domain phosphatase that interacts with transcription factor IIF in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 94:14300–14305.
  • Bastians H, Ponstingl H. (1996). The novel human protein serine/threonine phosphatase 6 is a functional homologue of budding yeast Sit4p and fission yeast ppe1, which are involved in cell cycle regulation. J Cell Sci 109:2865–2874.
  • Bertini I, Calderone V, Fragai M, Luchinat C, Talluri E. (2009). Structural basis of serine/threonine phosphatase inhibition by the archetypal small molecules cantharidin and norcantharidin. J Med Chem 52:4838–4843.
  • Bialojan C, Takai A. (1988). Inhibitory effect of a marine-sponge toxin, okadaic acid, on protein phosphatases. Specificity and kinetics. Biochem J 256:283–290.
  • Bialy L, Waldmann H. (2004). Total synthesis and biological evaluation of the protein phosphatase 2A inhibitor cytostatin and analogues. Chem Eur J 10:2759–2780.
  • Blatch GL, Lassle M. (1999). The tetratricopeptide repeat: A structural motif mediating protein-protein interactions. Bioessays 21:932–939.
  • Boger DL, Ichikawa S, Zhong W. (2001). Total synthesis of fostriecin (CI-920). J Am Chem Soc 123:4161–4167.
  • Boritzki TJ, Wolfard TS, Besserer JA, Jackson RC, Fry DW. (1988). Inhibition of type II topoisomerase by fostriecin. Biochem Pharmacol 37:4063–4068.
  • Ceulemans H, Bollen M. (2004). Functional diversity of protein phosphatase-1, a cellular economizer and reset button. Physiol Rev 84:1–39.
  • Chen J, Peterson RT, Schreiber SL. (1998). Alpha 4 associates with protein phosphatases 2A, 4, and 6. Biochem Biophys Res Commun 247:827–832.
  • Chen MS, Silverstein AM, Pratt WB, Chinkers M. (1996). The tetratricopeptide repeat domain of protein phosphatase 5 mediates binding to glucocorticoid receptor heterocomplexes and acts as a dominant negative mutant. J Biol Chem 271:32315–32320.
  • Chen MX, Cohen PTW. (1997). Activation of protein phosphatase 5 by limited proteolysis or the binding of polyunsaturated fatty acids to the TPR domain. FEBS Lett 400:136–140.
  • Chen MX, McPartlin AE, Brown L, Chen YH, Barker HM, Cohen PTW. (1994). A novel human protein serine/threonine phosphatase, which possesses 4 tetratricopeptide repeat motifs and localizes to the nucleus. EMBO J 13:4278–4290.
  • Chen X-C, Kihara T, Ying X, Uramoto M, Osada H, Kusakabe H, Wang B-N, Kobayashi Y, Ko K, Yamaguchi I, Shen Y-C, Isono K. (1989). A new antibiotic, tautomycetin. J Antibiot 42:141–144.
  • Chen X-C Ubukata, M, Isono K. (1990). The structure of tautomycetin, a dialkylmaleic anhydride antibiotic. J Antibiot 43:890–896.
  • Chinkers M. (1994). Targeting of a distinctive protein-serine phosphatase to the protein kinase-like domain of the atrial-natriuretic-peptide receptor. Proc Natl Acad Sci U S A 91:11075–11079.
  • Chinkers M. (2001). Protein phosphatase 5 in signal transduction. Trends Endocrinol Metab 12:28–32.
  • Cohen P. (2000). The regulation of protein function by multisite phosphorylation—A 25 year update. Trends Biochem Sci 25:596–601.
  • Cohen P, Holmes CFB, Tsukitani Y. (1990). Okadaic acid—A new probe for the study of cellular regulation. Trends Biochem Sci 15:98–102.
  • Cohen PTW. (1997). Novel protein serine/threonine phosphatases: Variety is the spice of life. Trends Biochem Sci 22:245–251.
  • Cohen PTW, Philp A, Vazquez-Martin C. (2005). Protein phosphatase 4—From obscurity to vital functions. FEBS Lett 579:3278–3286.
  • Connor JH, Kleeman T, Barik S, Honkanen RE, Shenolikar S. (1999). Importance of the β12-β13 loop in protein phosphatase-1 catalytic subunit for inhibition by toxins and mammalian protein inhibitors. J Biol Chem 274:22366–22372.
  • Craig M, Luu HA, McCready TL, Williams D, Andersen RJ, Holmes CFB. (1996). Molecular mechanisms underlying the interaction of motuporin and microycystins with type-1 and type-2A protein phosphatases. Biochem Cell Biol 74:569–578.
  • Craig M, McCready TL, Luu HA, Smillie MA, Dubord P, Holmes CFB. (1993). Identification and characterization of hydrophobic microcystins in Canadian freshwater cyanobacteria. Toxicon 31:1541–1549.
  • Das AK, Cohen PTW, Barford D. (1998). The structure of the tetratricopeptide repeats of protein phosphatase 5: Implications for TPR-mediated protein-protein interactions. EMBO J 17:1192–1199.
  • Das AK, Helps NR, Cohen PTW, Barford D. (1996). Crystal structure of the protein serine/threonine phosphatase 2C at 2.0 angstrom resolution. EMBO J. 15:6798–6809.
  • Dawson RM. (1998). The toxicology of microcystins. Toxicon 36:953–962.
  • De Jong RS, De Vries EGE, Mulder NH. (1997). Fostriecin: A review of the preclinical data. Anti-Cancer Drugs 8:413–418.
  • Denu JM, Dixon JE. (1998). Protein tyrosine phosphatases: Mechanisms of catalysis and regulation. Curr Opin Chem Biol 2:633–641.
  • Egloff MP, Johnson DF, Moorhead G, Cohen PTW, Cohen P, Barford D. (1997). Structural basis for the recognition of regulatory subunits by the catalytic subunit of protein phosphatase 1. EMBO J. 16:1876–1887.
  • Eichhorn PJA, Creyghton MP, Bernards R. (2009). Protein phosphatase 2A regulatory subunits and cancer. Biochim Biophys Acta Rev Cancer 1795:1–15.
  • Eriksson JE, Grönberg L, Nygård S, Slotte JP, Meriluoto JAO. (1990). Hepatocellular uptake of 3H-dihydromicrocystin-LR, a cyclic peptide toxin. Biochim Biophys Acta 1025:60–66.
  • Evans DRH, Simon JA. (2001). The predicted β12-β13 loop is important for inhibition of PP2Acα by the antitumor drug fostriecin. FEBS Lett 498:110–115.
  • Farkas I, Dombradi V, Miskei M, Szabados L, Koncz C. (2007). Arabidopsis PPP family of serine/threonine phosphatases. Trends Plant Sci 12:169–176.
  • Favre B, Turowski P, Hemmings BA. (1997). Differential inhibition and posttranslational modification of protein phosphatase 1 and 2A in MCF7 cells treated with calyculin-A, okadaic acid, and tautomycin. J Biol Chem 272:13856–13863.
  • Fruman DA, Klee CB, Bierer BE, Burakoff SJ. (1992). Calcineurin phosphatase activity in T lymphocytes is inhibited by FK 506 and cyclosporin A. Proc Natl Acad Sci U S A 89:3686–3690.
  • Fry DW, Besserer JA, Boritzki TJ. (1984). Transport of the antitumor antibiotic Cl-920 into L1210 leukemia cells by the reduced folate carrier system. Cancer Res 44:3366–3370.
  • Frydrychowski VA, Urbanek RA, Dounay AB, Forsyth CJ. (2001). Importance of the C28-C38 hydrophobic domain of okadaic acid for potent inhibition of protein serine-threonine phosphatases 1 and 2A. Bioorg Med Chem Lett 11:647–649.
  • Fujiki H, Suganuma M. (1993). Tumor promotion by inhibitors of protein phosphatases 1 and 2A: The okadaic acid class of compounds. Adv Cancer Res 61:143–194.
  • Fukuda H, Shima H, Vesonder RF, Tokuda H, Nishino H, Katoh S, Tamura S, Sugimura T, Nagao M. (1996). Inhibition of protein serine threonine phosphatases by fumonisin B-1, a mycotoxin. Biochem Biophys Res Commun 220:160–165.
  • Fushimi S, Furihata K, Seto H. (1989). Studies on new phosphate ester antifungal antibiotics phoslactomycins. II. Structure elucidation of phoslactomycins A to F. J Antibiot 42:1026–1036.
  • Gigena MS, Ito A, Nojima H, Rogers TB. (2005). A B56 regulatory subunit of protein phosphatase 2A localizes to nuclear speckles in cardiomyocytes. Am J Physiol Heart Circ Physiol 289 (1 58-1).
  • Goldberg J, Huang HB, Kwon YG, Greengard P, Nairn AC, Kuriyan J. (1995). Three-dimensional structure of the catalytic subunit of protein serine/threonine phosphatase-1. Nature 376:745–753.
  • Griffith JP, Kim JL, Kim EE, Sintchak MD, Thomson JA, Fitzgibbon MJ, Fleming MA, Caron PR, Hsiao K, Navia MA. (1995). X-ray structure of calcineurin inhibited by the immunophilin-immunosuppressant FKBP12-FK506 complex. Cell 82:507–522.
  • Gupta V, Ogawa AK, Du X, Houk KN, Armstrong RW. (1997). A model for binding of structurally diverse natural product inhibitors of protein phosphatases PP1 and PP2A. J Med Chem 40:3199–3206.
  • Harada KI, Ogawa K, Matsuura K, Murata H, Suzuki M, Watanabe MF, Itezono Y, Nakayama N. (1990). Structural determination of geometrical isomers of microcystins LR and RR from cyanobacteria by two-dimensional NMR spectroscopic techniques. Chem Res Toxicol 3:473–481.
  • Hastie CJ, Borthwick EB, Morrison LF, Codd GA, Cohen PTW. (2005). Inhibition of several protein phosphatases by a non-covalently interacting microcystin and a novel cyanobacterial peptide, nostocyclin. Biochim Biophys Acta Gen Subj 1726:187–193.
  • Hastie CJ, Carnegie GK, Morrice N, Cohen PTW. (2000). A novel 50 kDa protein forms complexes with protein phosphatase 4 and is located at centrosomal microtubule organizing centres. Biochem J 347:845–855.
  • Hastie CJ, Cohen PTW. (1998). Purification of protein phosphatase 4 catalytic subunit: Inhibition by the antitumour drug fostriecin and other tumour suppressors and promoters. FEBS Lett 431:357–361.
  • Helps NR, Brewis ND, Lineruth K, Davis T, Kaiser K, Cohen PTW. (1998). Protein phosphatase 4 is an essential enzyme required for organisation of microtubules at centrosomes in Drosophila embryos. J Cell Sci 111:1331–1340.
  • Hendrickx A, Beullens M, Ceulemans H, Den Abt T, Van Eynde A, Nicolaescu E, Lesage B, Bollen M. (2009). Docking motif-guided mapping of the interactome of protein phosphatase-1. Chem Biol 16:365–371.
  • Hill TA, Stewart SG, Gordon CP, Ackland SP, Gilbert J, Sauer B, Sakoff JA, McCluskey A. (2008). Norcantharidin analogues: Synthesis, anticancer activity and protein phosphatase 1 and 2A inhibition. ChemMedChem 3:1878–1892.
  • Holmes CFB, Luu HA, Carrier F, Schmitz FJ. (1990). Inhibition of protein phosphatases-1 and -2A with acanthifolicin: Comparison with diarrhetic shellfish toxins and identification of a region on okadaic acid important for phosphatase inhibition. FEBS Lett 270:216–218.
  • Honkanen RE. (1993). Cantharidin, another natural toxin that inhibits the activity of serine threonine protein phosphatases type-1 and type-2a. FEBS Lett 330:283–286.
  • Honkanen RE, Dukelow M, Zwiller J, Moore RE, Khatra BS, Boynton AL. (1991). Cyanobacterial nodularin is a potent inhibitor of type 1 and type 2A protein phosphatases. Mol Pharmacol 40:577–583.
  • Honkanen RE, Golden T. (2002). Regulators of serine/threonine protein phosphatases at the dawn of a clinical era. Curr Med Chem 9:2055–2075.
  • Huai Q, Kim HY, Liu Y, Zhao Y, Mondragon A, Liu JO, Ke H. (2002). Crystal structure of calcineurin-cyclophilin-cyclosporin shows common but distinct recognition of immunophilin-drug complexes. Proc Natl Acad Sci U S A 99:12037–12042.
  • Huang HB, Horiuchi A, Goldberg J, Greengard P, Nairn AC. (1997). Site-directed mutagenesis of amino acid residues of protein phosphatase 1 involved in catalysis and inhibitor binding. Proc Natl Acad Sci U S A 94:3530–3535.
  • Huang SL, Shu LL, Easton J, Harwood FC, Germain GS, Ichijo H, Houghton PJ. (2004). Inhibition of mammalian target of rapamycin activates apoptosis signal-regulating kinase 1 signaling by suppressing protein phosphatase 5 activity. J Biol Chem 279:36490–36496.
  • Huang XZ, Honkanen RE. (1998). Molecular cloning, expression, and characterization of a novel human serine/threonine protein phosphatase, PP7, that is homologous to Drosophila retinal degeneration C gene product (rdgC). J Biol Chem 273:1462–1468.
  • Huhn J, Jeffrey PD, Larsen K, Rundberget T, Rise F, Cox NR, Arcus V, Shi Y, Miles CO. (2009). A structural basis for the reduced toxicity of dinophysistoxin-2. Chem Res Toxicol 22:1782–1786.
  • Hunter T. (1995). Protein-kinases and phosphatases—The yin and yang of protein-phosphorylation and signaling. Cell 80:225–236.
  • Ishihara H, Martin BL, Brautigan DL, Karaki H, Ozaki H, Kato Y, Fusetani N, Watabe S, Hashimoto K, Uemura D, Hartshorne DJ. (1989). Calyculin A and okadaic acid: Inhibitors of protein phosphatase activity. Biochem Biophys Res Commun 159:871–877.
  • Janssens V, Goris J. (2001). Protein phosphatase 2A: A highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochem J 353:417–439.
  • Jin L, Harrison SC. (2002). Crystal structure of human calcineurin complexed with cyclosporin A and human cyclophilin. Proc Natl Acad Sci U S A 99:13522–13526.
  • Jochimsen EM, Carmichael WW, An JS, Cardo DM, Cookson ST, Holmes CEM, Antunes MBD, de Melo DA, Lyra TM, Barreto VST, Azevedo S, Jarvis WR. (1998). Liver failure and death after exposure to microcystins at a hemodialysis center in Brazil. N Engl J Med 338:873–878.
  • Jones S, Kress D. (2007). Treatment of molluscum contagiosum and herpes simplex virus cutaneous infections. Cutis 79:11–17.
  • Ju J, Li W, Yuan Q, Peters NR, Hoffmann FM, Rajski SR, Osada H, Shen B. (2009). Functional characterization of ttmM unveils new tautomycin analogs and insight into tautomycin biosynthesis and activity. Org Lett 11:1639–1642.
  • Jung WH, Guyenne S, Riesco-Fagundo C, Mancuso J, Nakamura S, Curran DP. (2008). Confirmation of the stereostructure of (+)-cytostatin by fluorous mixture synthesis of four candidate stereoisomers. Angew Chem 47:1130–1133.
  • Kamenski T, Heilmeier S, Meinhart A, Cramer P. (2004). Structure and mechanism of RNA polymerase IICTD phosphatases. Mol Cell 15:399–407.
  • Kang H, Sayner SL, Gross KL, Russell LC, Chinkers M. (2001). Identification of amino acids in the tetratricopeptide repeat and C-terminal domains of protein phosphatase 5 involved in autoinhibition and lipid activation. Biochemistry 40:10485–10490.
  • Kato Y, Fusetani N, Matsunaga S, Hashimoto K, Koseki K. (1988). Isolation and structure elucidation of calyculins B, C, and D, novel antitumor metabolites, from the marine sponge Discodermia calyx. J Org Chem 53:3930–3932.
  • Kawada M, Amemiya M, Ishizuka M, Takeuchi T. (1999). Differential induction of apoptosis in B16 melanoma and EL-4 lymphoma cells by cytostatin and bactobolin. Jpn J Cancer Res 90:219–225.
  • Kelker MS, Page R, Peti W. (2009). Crystal structures of protein phosphatase-1 bound to nodularin-R and tautomycin: A novel scaffold for structure-based drug design of serine/threonine phosphatase inhibitors. J Mol Biol 385:11–21.
  • Kennelly PJ. (2003). Archaeal protein kinases and protein phosphatases: Insights from genomics and biochemistry. Biochem J 370:373–389.
  • Kissinger CR, Parge HE, Knighton DR, Lewis CT, Pelletier LA, Tempczyk A, Kalish VJ, Tucker KD, Showalter RE, Moomaw EW, Gastinel LN, Habuka N, Chen X, Maldonado F, Barker JE, Bacquet R, Villafranca JE. (1995). Crystal structures of human calcineurin and the human FKBP12-FK506-calcineurin complex. Nature 378:641–644.
  • Kita A, Matsunaga S, Takai A, Kataiwa H, Wakimoto T, Fusetani N, Isobe M, Miki K. (2002). Crystal structure of the complex between calyculin A and the catalytic subunit of protein phosphatase 1. Structure 10:715–724.
  • Kloeker S, Bryant JC, Strack S, Colbran RJ, Wadzinski BE. (1997). Carboxymethylation of nuclear protein serine/threonine phosphatase X. Biochem J 327:481–486.
  • Kloeker S, Wadzinski BE. (1999). Purification and identification of a novel subunit of protein serine/threonine phosphatase 4. J Biol Chem 274:5339–5347.
  • Kumar R, Musiyenko A, Oldenburg A, Adams B, Barik S. (2004). Post-translational generation of constitutively active cores from larger phosphatases in the malaria parasite, Plasmodium falciparum: Implications for proteomics. BMC Mol Biol 5:6.
  • Kutuzov MA, Solov’eva OV, Andreeva AV, Bennett N. (2002). Protein Ser/Thr phosphatases PPEF interact with calmodulin. Biochem Biophys Res Commun 293:1047–1052.
  • Lawhorn BG, Boga SB, Wolkenberg SE, Colby DA, Gauss CM, Swingle MR, Amable L, Honkanen RE, Boger DL. (2006). Total synthesis and evaluation of cytostatin, its C10–C11 diastereomers, and additional key analogues: Impact on PP2A inhibition. J Am Chem Soc 128:16720–16732.
  • Lewy DS, Gauss CM, Soenen DR, Boger DL. (2002). Fostriecin: Chemistry and biology. Curr Med Chem 9:2005–2032.
  • Li X, Virshup DM. (2002). Two conserved domains in regulatory B subunits mediate binding to the A subunit of protein phosphatase 2A. Eur J Biochem 269:546–552.
  • Liu F, Grundke-Iqbal I, Iqbal K, Gong CX. (2005). Contributions of protein phosphatases PP1, PP2A, PP2B and PP5 to the regulation of tau phosphorylation. Eur J Neurosci 22:1942–1950.
  • MacKeigan JP, Murphy LO, Blenis J. (2005). Sensitized RNAi screen of human kinases and phosphatases identifies new regulators of apoptosis and chemoresistance. Nat Cell Biol 7:591–600.
  • Mackintosh C, Beattie KA, Klumpp S, Cohen P, Codd GA. (1990). Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatase-1 and phosphatase-2a from both mammals and higher-plants. FEBS Lett 264:187–192.
  • MacKintosh C, Klumpp S. (1990). Tautomycin from the bacterium Streptomyces verticillatus. Another potent and specific inhibitor of protein phosphatases 1 and 2A. FEBS Lett 277:137–140.
  • Mackintosh C, Mackintosh RW. (1994). Inhibitors of protein-kinases and phosphatases. Trends Biochem Sci 19:444–448.
  • MacKintosh RW, Dalby KN, Campbell DG, Cohen PTW, Cohen P, MacKintosh C. (1995). The cyanobacterial toxin microcystin binds covalently to cysteine-273 on protein phosphatase 1. FEBS Lett 371:236–240.
  • Manning G, Plowman GD, Hunter T, Sudarsanam S. (2002). Evolution of protein kinase signaling from yeast to man. Trends Biochem Sci 27:514–520.
  • Masuda T, Watanabe S, Amemiya M, Ishizuka M, Takeuchi T. (1995). Inhibitory effect of cytostatin on spontaneous lung metastases of B16-BL6 melanoma cells. J Antibiot 48:528–529.
  • Matsunaga S, Fujiki H, Sakata D, Fusetani N. (1991). Calyculins E, F, G, and H, additional inhibitors of protein phosphatases 1 and 2A, from the marine sponge Discodermia calyx. Tetrahedron 47:2999–3006.
  • Matsuzawa SI. (1994). Thyrsiferyl 23-acetate is a novel specific inhibitor of protein phosphatase PP2A. FEBS Lett 356:272–274.
  • Mayer-Jaekel RE, Hemmings BA. (1994). Protein phosphatase 2A a ‘menage a trois.’; Trends Cell Biol 4:287–291.
  • Maynes JT, Bateman KS, Cherney MM, Das AK, Luu HA, Holmes CFB, James MNG. (2001). Crystal structure of the tumor-promoter okadaic acid bound to protein phosphatase-1. J Biol Chem 276:44078–44082.
  • Maynes JT, Luu HA, Cherney MM, Andersen RJ, Williams D, Holmes CFB, James MNG. (2006). Crystal structures of protein phosphatase-1 bound to motuporin and dihydromicrocystin-LA: Elucidation of the mechanism of enzyme inhibition by cyanobacterial toxins. J Mol Biol 356:111–120.
  • Maynes JT, Perreault KR, Cherny MM, Luu HA, James MNG, Holmes CFB. (2004). Crystal structure and mutagenesis of a protein phosphatase-1:calcineurin hybrid elucidate the role of the beta12-beta13 loop in inhibitor binding. J Biol Chem 279:43198–43206.
  • McCluskey A, Sim ATR, Sakoff JA. (2002). Serine-threonine protein phosphatase inhibitors: Development of potential therapeutic strategies. J Med Chem 45:1151–1175.
  • Meinhart A, Kamenski T, Hoeppner S, Baumli S, Cramer P. (2005). A structural perspective of CTD function. Genes Dev 19:1401–1415.
  • Mitsuhashi S, Matsuura N, Ubukata M, Oikawa H, Shima H, Kikuchi K. (2001). Tautomycetin is a novel and specific inhibitor of serine/threonine protein phosphatase type 1, PP1. Biochem Biophys Res Commun 287:328–331.
  • Moed L, Shwayder TA, Chang MW. (2001). Cantharidin revisited: A blistering defense of an ancient medicine. Arch Dermatol 137:1357–1360.
  • Moorhead GB, De Wever V, Templeton G, Kerk D. (2009). Evolution of protein phosphatases in plants and animals. Biochem J 417:401–409.
  • Morita K, Saitoh M, Tobiume K, Matsuura H, Enomoto S, Nishitoh H, Ichijo H. (2001). Negative feedback regulation of ASK1 by protein phosphatase 5 (PP5) in response to oxidative stress. EMBO J 20:6028–6036.
  • Mourtada-Maarabouni M, Kirkham L, Jenkins B, Rayner J, Gonda TJ, Starr R, Trayner I, Farzaneh F, Williams GT. (2003). Functional expression cloning reveals proapoptotic role for protein phosphatase 4. Cell Death Differ 10:1016–1024.
  • Murakami Y, Oshima Y, Yasumoto T. (1982). Identification of okadaic acid as a toxic component of a marine dinoflagellate Prorocentrum lima. Bull Japan Soc Sci Fish 48:69–72.
  • Nam KY, Hiro M, Kimura S, Fujiki H, Imanishi Y. (1990). Permeability of a non-TPA-type tumor promoter, okadaic acid, through lipid bilayer membrane. Carcinogenesis 11:1171–1174.
  • Namikoshi M, Rinehart KL, Sakai R, Stotts RR, Dahlem AM, Beasley VR, Carmichael WW, Evans WR. (1992). Identification of 12 hepatotoxins from a homer lake bloom of the cyanobacteria Microcystis aeruginosa, Microcystis viridis, and Microcystis wesenbergii: Nine new microcystins. J Org Chem 57:866–872.
  • Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, Mann M. (2006). Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127:635–648.
  • Ortega-La Zaro JC, Del Mazo J. (2003). Expression of the B56delta subunit of protein phosphatase 2A and Mea1 in mouse spermatogenesis. Identification of a new B56Agamma subunit (B56Agamma4) specifically expressed in testis. Cytogenet Genome Res 103:345–351.
  • Pouria S, De Andrade A, Barbosa J, Cavalcanti RL, Barreto VTS, Ward CJ, Preiser W, Poon GK, Neild GH, Codd GA. (1998). Fatal microcystin intoxication in haemodialysis unit in Caruaru, Brazil. Lancet 352:21–26.
  • Prickett TD, Brautigan DL. (2006). The alpha 4 regulatory subunit exerts opposing allosteric effects on protein phosphatases PP6 and PP2A. J Biol Chem 281:30503–30511.
  • Quinn RJ, Taylor C, Suganuma M, Fujiki H. (1993). The conserved acid binding domain model of inhibitors of protein phosphatases 1 and 2A: Molecular modelling aspects. Bioorg Med Chem Lett 3:1029–1034.
  • Ramsey AJ, Chinkers M. (2002). Identification of potential physiological activators of protein phosphatase 5. Biochemistry 41:5625–5632.
  • Rantala A, Fewer DP, Hisbergues M, Rouhiainen L, Vaitomaa J, Borner T, Sivonen K. (2004). Phylogenetic evidence for the early evolution of microcystin synthesis. Proc Natl Acad Sci U S A 101:568–573.
  • Rinehart KL, Namikoshi M, Choi BW. (1994). Structure and biosynthesis of toxins from blue-green algae (cyanobacteria). J Appl Phycol 6:159–176.
  • Runnegar M, Berndt N, Kaplowitz N. (1995). Microcystin uptake and inhibition of protein phosphatases: Effects of chemoprotectants and self-inhibition in relation to known hepatic transporters. Toxicol Appl Pharmacol 134:264–272.
  • Runnegar M, Berndt N, Kong SM, Lee EYC, Zhang L. (1995). In vivo and in vitro binding of microcystin to protein phosphatases 1 and 2A. Biochem Biophys Res Commun 216:162–169.
  • Saitou N, Nei M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425.
  • Shan HB, Cai YC, Liu Y, Zeng WN, Chen HX, Fan BT, Liu XH, Xu ZL, Wang B, Xian LJ. (2006). Cytotoxicity of cantharidin analogues targeting protein phosphatase 2A. Anti-Cancer Drugs 17:905–911.
  • Shim J-H, Lee H-K, Chang, E-J, Chae W-J, Han, J-H, Han D-J, Morio T, Yang J-J, Bothwell A, Lee S-K. (2002). Immunosuppressive effects of tautomycetin in vivo and in vitro via T cell-specific apoptosis induction. Proc Natl Acad Sci U S A 99:10617–10622.
  • Shima H, Tohda H, Aonuma S, Nakayasu M, Depaoli-Roach AA, Sugimura T, Nagao M. (1994). Characterization of the PP2Aα gene mutation in okadaic acid-resistant variants of CHO-K1 cells. Proc Natl Acad Sci U S A 91:9267–9271.
  • Sinclair C, Borchers C, Parker C, Tomer K, Charbonneau H, Rossie S. (1999). The tetratricopeptide repeat domain and a C-terminal region control the activity of Ser/Thr protein phosphatase 5. J Biol Chem 274:23666–23672.
  • Stark MJR. (1996). Yeast protein serine/threonine phosphatases: Multiple roles and diverse regulation. Yeast 12:1647–1675.
  • Stefansson B, Brautigan DL. (2006). Protein phosphatase 6 subunit with conserved sit4-associated protein domain targets I kappa B epsilon. J Biol Chem 281:22624–22634.
  • Stefansson B, Ohama T, Daugherty AE, Brautigan DL. (2008). Protein phosphatase 6 regulatory subunits composed of ankyrin repeat domains. Biochemistry 47:1442–1451.
  • Stern A, Privman E, Rasis M, Lavi S, Pupko T. (2007). Evolution of the metazoan protein phosphatase 2C superfamily. J Mol Evol 64:61–70.
  • Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, Block D, Zhang J, Soden R, Hayakawa M, Kreiman G, Cooke MP, Walker JR, Hogenesch JB. (2004). A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci U S A 101:6062–6067.
  • Sugiyama Y, Ohtani II, Isobe M, Takai A, Ubukata M, Isono K. (1996). Molecular shape analysis and activity of tautomycin, a protein phosphatase inhibitor. Bioorg Med Chem Lett 6:3–8.
  • Suzuki T, Suzuki M, Furusaki A. (1985). Teurilene and thyrsiferyl 23-acetate, meso and remarkably cytotoxic compounds from the marine red alga Laurencia obtusa (Hudson) Lamouroux. Tetrahedron Lett 26:1329–1332.
  • Swingle M, Ni L, Honkanen RE. (2007). Small molecule inhibitors of ser/thr protein phosphatases: Specificity, use and common forms of abuse. Methods Mol Biol 365:23–38.
  • Swingle MR, Amable L, Lawhorn BG, Buck SB, Burke CP, Ratti P, Fischer KL, Boger DL, Honkanen RE. (2009). Structure-activity relationship studies of fostriecin, cytostatin, and key analogs, with PP1, PP2A, PP5, and (β12-β13)-chimeras (PP1/PP2A and PP5/PP2A), provide further insight into the inhibitory actions of fostriecin family inhibitors. J Pharmacol Exp Ther 331:45–53.
  • Swingle MR, Honkanen RE, Ciszak EM. (2004). Structural basis for the catalytic activity of human serine/threonine protein phosphatase-5. J Biol Chem 279:33992–33999.
  • Tachibana K, Scheuer PJ, Tsukitani Y, Kikuchi H, Van Engen D, Clardy J, Gopichand Y, Schmitz FJ. (1981). Okadaic acid, a cytotoxic polyether from two marine sponges of the genus Halichondria. J Am Chem Soc 103:2469–2471.
  • Tamura K, Dudley J, Nei M, Kumar S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599.
  • Tautz L, Pellecchia M, Mustelin T. (2006). Targeting the PTPome in human disease. Expert Opin Ther Targets 10:157–177.
  • Terrak M, Kerff F, Langsetmo K, Tao T, Dominguez R. (2004). Structural basis of protein phosphatase 1 regulation. Nature 429:780–784.
  • Teruya T, Simizu S, Kanoh N, Osada H. (2005). Phoslactomycin targets cysteine-269 of the protein phosphatase 2A catalytic subunit in cells. FEBS Lett 579:2463–2468.
  • Tolstykh T, Lee J, Vafai S, Stock JB. (2000). Carboxyl methylation regulates phosphoprotein phosphatase 2A by controlling the association of regulatory B subunits. EMBO J 19:5682–5691.
  • Tonks NK. (2006). Protein tyrosine phosphatases: From genes, to function, to disease. Nat Rev Mol Cell Biol 7:833–846.
  • Ubukata M, Cheng XC, Isono K. (1990). The structure of tautomycin, a regulator of eukaryotic cell growth. J Chem Soc Chem Commun xx:244–246.
  • Ueno Y, Nagata S, Tsutsumi T, Hasegawa A, Watanabe MF, Park HD, Chen GC, Chen G, Yu SZ. (1996). Detection of microcystins, a blue-green algal hepatotoxin, in drinking water sampled in Haimen and Fusui, endemic areas of primary liver cancer in China, by highly sensitive immunoassay. Carcinogenesis 17:1317–1321.
  • Urban G, Golden T, Aragon IV, Cowsert L, Cooper SR, Dean NM, Honkanen RE. (2003). Identification of a functional link for the p53 tumor suppressor protein in dexamethasone-induced growth suppression. J Biol Chem 278:9747–9753.
  • Usui T, Marriott G, Inagaki M, Swarup G, Osada H. (1999). Protein phosphatase 2A inhibitors, phoslactomycins. effects on the cytoskeleton in NIH/3T3 cells. J Biochem 125:960–965.
  • Vander Mierde D, Scheuner D, Quintens R, Patel R, Song B, Tsukamoto K, Beullens M, Kaufman RJ, Bollen M, Schuit FC. (2007). Glucose activates a protein phosphatase-1-mediated signaling pathway to enhance overall translation in pancreatic beta-cells. Endocrinology 148:609–617.
  • Vasconcelos V, Oliveira S, Teles FO. (2001). Impact of a toxic and a non-toxic strain of Microcystis aeruginosa on the crayfish Procambarus clarkii. Toxicon 39:1461–1470.
  • Vasconcelos VM. (1995). Uptake and depuration of the heptapeptide toxin microcystin-LR in Mytilus galloprovincialis. Aquat Toxicol 32:227–237.
  • Wakimoto T, Matsunaga S, Takai A, Fusetani N. (2002). Insight into binding of calyculin A to protein phosphatase 1: Isolation of hemicalyculin A and chemical transformation of calyculin A. Chem Biol 9:309–319.
  • Walsh AH, Cheng A, Honkanen RE. (1997). Fostriecin, an antitumor antibiotic with inhibitory activity against serine/threonine protein phosphatases types 1 (PP1) and 2A (PP2A), is highly selective for PP2A. FEBS Lett 416:230–234.
  • Wang GS. (1989). Medical uses of mylabris in ancient China and recent studies. J Ethnopharmacol 26:147–162.
  • Wechsler T, Chen BPC, Harper R, Morotomi-Yano K, Huang BCB, Meek K, Cleaver JE, Chen DJ, Wabl M. (2004). DNA-PKcs function regulated specifically by protein phosphatase 5. Proc Natl Acad Sci U S A 101:1247–1252.
  • Xing Y, Xu YH, Chen Y, Jeffrey PD, Chao Y, Lin Z, Li Z, Strack S, Stock JB, Shi YG. (2006). Structure of protein phosphatase 2A core enzyme bound to tumor-inducing toxins. Cell 127:341–353.
  • Xu L, Lam PKS, Chen J, Zhang Y, Harada K. (2000). Comparative study on in vitro inhibition of grass carp (Ctenopharyngodon idellus) and mouse protein phosphatases by microcystins. Environ Toxicol 15:71–75.
  • Xu YH, Xing YN, Chen Y, Chao Y, Lin Z, Fan E, Yu JW, Strack S, Jeffrey PD, Shi YG. (2006). Structure of the protein phosphatase 2A holoenzyme. Cell 127:1239–1251.
  • Yamaguchi Y, Katoh H, Mori K, Negishi M. (2002). G alpha and G alpha(13) interact with Ser/Thr protein phosphatase type 5 and stimulate its phosphatase activity. Curr Biol 12:1353–1358.
  • Yang J, Roe SM, Cliff MJ, Williams MA, Ladbury JE, Cohen PTW, Barford D. (2005). Molecular basis for TPR domain-mediated regulation of protein phosphatase. EMBO J 24:1–10.
  • Yang J, Wu J, Tan C, Klein PS. (2003). PP2A: B56E is required for Wnt/beta-catenin signaling during embryonic development. Development 130:5569–5578.
  • Yu SZ. (1995). Primary prevention of hepatocellular carcinoma. J Gastroenterol Hepatol 10:674–682.
  • Zeke T, Morrice N, Vazquez-Martin C, Cohen PTW. (2005). Human protein phosphatase 5 dissociates from heat-shock proteins and is proteolytically activated in response to arachidonic acid and the microtubule-depolymerizing drug nocodazole. Biochem J 385:45–56.
  • Zhang L, Zhang Z, Long F, Lee EYC. (1996). Tyrosine-272 is involved in the inhibition of protein phosphatase-1 by multiple toxins. Biochemistry 35:1606–1611.
  • Zhang Z, Zhao S, Long F, Zhang L, Bai G, Shima H, Nagao M, Lee EYC. (1994). A mutant of protein phosphatase-1 that exhibits altered toxin sensitivity. J Biol Chem 269:16997–17000.
  • Zhao SY, Sancar A. (1997). Human blue-light photoreceptor hCRY2 specifically interacts with protein serine/threonine phosphatase 5 and modulates its activity. Photochem Photobiol 66:727–731.
  • Zhou GF, Golden T, Aragon IV, Honkanen RE. (2004). Ser/Thr protein phosphatase 5 inactivates hypoxia-induced activation of an apoptosis signal-regulating kinase 1/MKK-4/JNK signaling cascade. J Biol Chem 279:46595–46605.
  • Zuo Z, Dean NM, Honkanen RE. (1998). Serine/threonine protein phosphatase type 5 acts upstream of p53 to regulate the induction of p21(WAF1/Cip1) and mediate growth arrest. J Biol Chem 273:12250–12258.
  • Zuo Z, Urban G, Scammell JG, Dean NM, McLean TK, Aragon I, Honkanen RE. (1999). Ser/Thr protein phosphatase type 5 (PP5) is a negative regulator of glucocorticoid receptor-mediated growth arrest. Biochemistry 38:8849–8857.
  • Zurawell RW, Chen HR, Burke JM, Prepas EE. (2005). Hepatotoxic cyanobacteria: A review of the biological importance of microcystins in freshwater environments. J Toxicol Environ Health B Crit Rev 8:1–37.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.