257
Views
155
CrossRef citations to date
0
Altmetric
Research Article

The Effect of Diet on the Mammalian Gut Flora and Its Metabolic Activities

, &
Pages 31-103 | Published online: 26 Sep 2008

References

  • Drasar B.S., Hill M.J. Human Intestinal Flora. Academic Press, London 1974
  • Hudson M.J., Borriello S.P., Hill M.J. Elemental diets and the bacterial flora of the gastrointestinal tract. Elemental Diets, R.I. Russell. C.R.C. Press, Boca Raton, Fla 1981, Chap. 9
  • Rowland I.R., Walker R. The gastrointestinal tract in food toxicology. Toxic Hazards in Food, D.M. Conning, A.B.G. Lansdown. Croom Helm, London and Canberra 1983, Chap. 6
  • Moore W.E.C., Cato E.P., Holdeman L.V. Some current concepts in intestinal bacteriology. Am. J. Clin. Nutr. 1978; 31: 533
  • Brown J.P. Role of gut bacterial flora in nitrition and health; a review of recent advances in bacteriological techniques, metabolism and factors affecting flora composition. Crit. Rev. Fd. Sci. Nutr. 1977; 8: 229
  • Mitsouka T. Recent trends in research on intestinal flora. Bifidobacteria Microflora 1982; 1: 3
  • Evaldson G., Heimdahl A., Kager L., Nord C.E. The normal human anaerobic microflora. Scand. J. Infect. Dis., Suppl. 1982; 35: 9
  • Drasar B.S., Hill M.J., Williams R.E.O. The significance of the gut flora in safety testing of food additives. Metabolic Aspects of Food Safety, F.J.C. Roe. Blackwell, Oxford 1970; 245
  • Rowland I.R. Metabolism of di-(2-ethylhexyl) phthalate by the contents of the alimentary tract of the rat. Fd. Cosmet. Toxicol. 1974; 12: 293
  • Sykes P.A., Boulter K.H., Schofield P.F. Alterations in small-bowel microflora in acute intestinal obstruction. J. Med. Microbiol. 1976; 9: 13
  • Drasar B.S., Shiner M. Studies on the intestinal flora. II. Bacterial flora of the small intestine in patients with gastrointestinal disorders. Gut 1969; 10: 812
  • Savage D.C., McAllister J.S., Davis C.P. Anaerobic bacteria on the mucosal epithelium of the murine large bowel. Inf. Immun. 1971; 4: 492
  • Savage D.C. Interactions between the host and its microbes. Microbial Ecology of the Gut, R.T.J. Clark, T. Bauchop. Academic Press, London 1977; 277
  • Lee A., Phillips M. Isolation and cultivation of spirochetes and other spiral-shaped bacteria associated with the cecal mucosa of rats and mice. Appl. Environ. Microbiol. 1978; 35: 610
  • Nelson D.P., Mata L.J. Bacterial flora associated with the human gastrointestinal mucosa. Gastroenterology 1970; 58: 56
  • Holdeman L.V., Moore W.E.C. Roll-tube techniques for anaerobic bacteria. Am. J. Clin. Nutr. 1972; 25: 1314
  • Moore W.E.C., Holdeman L.V. Special problems associated with the isolation and identification of intestinal bacteria in fecal flora studies. Am. J. Clin. Nutr. 1974; 27: 1450
  • Holdeman L.V., Moore W.E.C. Anaerobe Laboratory Manual, 3rd Ed. V.P.I. Anaerobe Laboratory, Blacksburg, Va 1975
  • Holdeman L.V., Good I.J., Moore W.E.C. Human fecal flora: variation in bacterial composition within individuals and a possible effect of emotional stress. Appl. Environ. Microbiol. 1976; 31: 359
  • Czerkawski J.W. Methods for determining 2,6,diaminopimelic acid and 2-aminoethylphosphonic acid in gut contents. J. Sci. Fd. Agric. 1974; 25: 45
  • Ling J.R., Buttery P.J. The simultaneous use of ribonucleic acid,35S, 2–6 diaminopimelic acid and 2-aminoethylphosphonic acid as markers of microbial nitrogen entering the duodenum of the sheep. Br. J. Nutr. 1978; 39: 165
  • Gausserés B., Fauconneau G. Evaluation quantitative, a l'aide de la teneur en acides nucleiques de la population microbienne du tube digestif des ruminants, 1. Annales de Biologie animale. Biochim. Biophys. 1965; 5: 5a
  • Smith R.H. Nitrogen metabolism and the rumen. J. Dairy Res. 1969; 36: 313
  • Smith R.H., McAllan A.B. Nucleic acid metabolism in the ruminant. II. Formation of microbial nucleic acids in the rumen in relation to the digestion of food nitrogen and the fate of dietary nucleic acids. Br. J. Nutr. 1970; 24: 545
  • Hobson P.N., Summers R. ATP pool and growth yield in Selenomonas ruminantium. J. Gen. Microbiol. 1972; 70: 351
  • Wolstrup J., Jensen K. Adenosine triphosphate and dexoyribonucleic acid in the alimentary tract of cattle fed different nitrogen sources. J. Appl. Bacteriol. 1978; 45: 49
  • Rowland I.R., Davies M.J., Evans J.G. Tissue content of mercury in rats given methylmercuric chloride orally. Influence of intestinal flora. Arch. Environ. Health 1980; 35: 155
  • Remmel R.P., Pohl L.R., Elmer G.W. Influence of the intestinal microflora on the elimination of warfarin in the rat. Drug. Metab. Dispos. 1981; 9: 410
  • Wostman B.S., Bruckner-Kardoss E. Oxidation-reduction potentials in cecal contents of germfree and conventional rat. Proc. Soc. Exp. Med. 1966; 121: 1111
  • Ford D.J. The effect of the microflora on gastrointestinal pH in the chick. Br. Poultry Sci. 1974; 15: 131
  • Coates M.E., Fuller R. The gnotobiotic animal in the study of gut microbiology. Microbial Ecology of the Gut, R.T.J. Clarke, T. Bauchop. Academic Press, London 1977; 311
  • Luckey T.L. Germfree Life and Gnotobiology. Academic Press, New York 1963
  • Vince A., Down P.F., Murison J., Twig F.J., Wrong O.M. Generation of ammonia from non-urea sources in a fecal incubation system. Clin. Sci. Molec. Med. 1976; 51: 313
  • Mason R.P., Peterson F.J., Holtzman J.L. The formation of an azo anion free radical metabolite during the microsomal reduction of sulfonazo. III. Biochem. Biophys. Res. Commun. 1977; 75: 532
  • Mason R.P., Holtzman J.L. The role of catalytic superoxide formation in the O2 inhibition of nitroreductase. Biochem. Biophys. Res. Commun. 1975; 67: 1267
  • Vince A.J., Burridge S.M. Ammonia production by intestinal bacteria: the effects of lactose, lactulose and glucose. J. Med. Microbiol. 1980; 13: 177
  • Goldin B.R., Lombardi P., Mayhew J., Gorbach S.L. Factors that affect intestinal bacterial activity: implications for colon carcinogenesis. Banbury Report 7: Gastrointestinal Cancer – Endogenous Factors, W.R. Bruce, P. Correa, M. Lipkin, S.R. Tannenbaum, T.D. Wilkins. Cold Spring Harbor Laboratory, New York 1981; 41
  • Leegwater D.C., deGroot A.P., Van Kalmthout-Kuypers M. The aetiology of cecal enlargement in the rat. Fd. Cosmet. Toxicol. 1974; 12: 687
  • Mallett A.K., Wise A., Rowland I.R. Effect of dietary cellulose on the metabolic activity of the rat cecal microflora. Arch. Toxicol. 1983; 52: 311
  • Walker R. Some observations of the phenomenon of cecal enlargement in the rat. Chemical Toxicology of Food, C.L. Galli, R. Paoletti, G. Vettorazzi. Elsevier/North-Holland. 1978; 339
  • Wise A., Rowland I.R., Mallett A.K. Microbial metabolism of xenobioticsin vitro by cecal contents from rats given different diets. Proc. Nutr. Soc. 1983; 42: 113
  • Mallett A.K., Wise A., Rowland I.R. Hydrocolloid food additives and rat cecal microbial enzyme activities. Fd. Chem. Toxic. 1984; 22: 415
  • Walker R. The metabolism of azo compounds: a review of the literature. Fd. Cosmet. Toxicol. 1970; 8: 659
  • Drake J.J.P. Food colours – harmless aesthetics or epicurean luxuries?. Toxicology 1975; 5: 3
  • Rowland I. The influence of the gut microflora on food toxicity. Proc. Nutr. Soc. 1981; 40: 67
  • Radomski J.L., Mellinger T.J. The absorption, fate and excretion in rats of the water-soluble azo dyes, FD & C Red No. 2, FD & C Red No. 4 and FD & C Yellow No. 6. J. Pharm. Exp. Ther. 1962; 136: 259
  • Scheline R.R., Longberg B. The absorption, metabolism and excretion of the sulphonated azo dye, Acid yellow, by rats. Acta Pharmac. Tox. 1965; 23: 1
  • Jones R., Ryan A.J., Wright S.E. The metabolism and excretion of tartrazine in the rat, rabbit and man. Fd. Cosmet. Toxciol. 1964; 2: 447
  • Grasso P., Golberg L. Problems confronted and lessons learnt in the safety evaluation of Brown FK. Fd. Cosmet. Toxicol. 1968; 6: 737
  • Walker R., Grasso P., Gaunt I.F. Myotoxicity of amine metabolites from Brown FK. Fd. Cosmet. Toxciol. 1970; 8: 539
  • Gaunt I.F. Studies on the relationship between Heinz bodies and haemolysis in laboratory animals and the evaluation of Heinz body production in toxicological investigation. Ph.D. thesis, University of London. 1973
  • Grice H.C., Mannell W.A., Allmark M.G. Liver tumors in rats fed Ponceau 3R. Toxic. Appl. Pharmac. 1961; 3: 509
  • Mannell W.A. Further investigations on production of liver tumors in rats by Ponceau 3R. Fd. Cosmet. Toxicol. 1964; 2: 169
  • Grasso P., Lansdown A.B.G., Kiss I.S., Gaunt I.F., Gangolli S.D. Nodular hyperplasia in the rat liver following prolonged feeding of Ponceau MX. Fd. Cosmet. Toxicol. 1969; 7: 425
  • Hartman C.P., Andrews A.W., Chung K.T. Production of a mutagen from Ponceau 3R by a human intestinal anaerobe. Infect. Immunol. 1979; 23: 686
  • Garner R.C., Nutman C.A. Testing of some azo dyes and their reduction products for mutagenicity usingSalmonella typhimurium TA 1538. Mut. Res. 1977; 44: 9
  • Hartman C.P., Fulk G.E., Andrews A.W. Azo reduction of trypan blue to a known carcinogen by a cell-free extract of a human intestinal anaerobe. Mut. Res. 1978; 58: 125
  • Rinde E., Troll W. Metabolic redction of benzidine azo dyes to benzidine in the rhesus monkey. J. Natl. Cancer Inst. 1975; 55: 181
  • Vennitt S., Bushell C.T. Mutagenicity of the food colour Brown FK and constituents in Salmonella typhimurium. Mut. Res. 1976; 40: 309
  • Mitchard M. Bioreduction of organic nitrogen. Xenobiotica 1971; 1: 469
  • Cohen S.M., Ertürk E., Von Esch A.M., Crovetti A.J., Bryan G.T. Carcinogenicity of 5-nitrofurans, 5-nitroimidazoles, 4-nitrobenzenes, and related compounds. J. Natl. Cancer Inst. 1973; 51: 403
  • Chiu C.W., Lee L.H., Wang C.Y., Bryan G.T. Mutagenicity of some commercially available nitro compounds for Salmonella typhimurium. Mut. Res. 1978; 58: 11
  • Mirsalis J.C., Hamm T.E., Sherrill J.M., Butterworth B.E. Role of gut flora in genotoxicity of dinitrotoluene. Nature (London) 1982; 295: 322
  • Lindmark D.G., Müller M. Antitrichomonad action, mutagenicity, and reduction of metronidazole and other nitroimidazoles. Antimicrob. Agents Chemother. 1976; 10: 476
  • McCalla D.R., Voutsinos D. On the mutagenicity of nitrofurans. Mut. Res. 1974; 26: 3
  • Reddy B.G., Pohl L.R., Krishna G. The requirement of the gut flora in nitrobenzene-induced methemoglobinemia in rats. Biochem. Pharmacol. 1976; 25: 1119
  • Facchini V., Griffiths L.A. The involvement of the gastrointestinal microflora in the nitrocompound-induced methaemoglobinaemia in rats and its relationship to nitrogroup reduction. Biochem. Pharmacol. 1981; 30: 931
  • Gillette J.R., Kamm J.J., Sesame H.A. Mechanism of p-nitrobenzoate reduction in liver: the possible role of cytochrome p-450 in liver microsomes. Molec. Pharmacol. 1968; 4: 541
  • Gardner D.M., Renwick A.G. The reduction of nitrobenzoic acids in the rat. Xenobiotica 1978; 8: 679
  • McCoy E.C., Rosenkranz H.S., Mermelstein R. Evidence for the existence of a family of bacterial nitroreductases capable of activating nitrated polycyclics to mutagens. Environ. Mut. 1981; 3: 421
  • Rosenkranz E.J., McCoy E.C., Mermelstein R., Rosenkranz H.S. Evidence for the existence of distinct nitroreductases inSalmonella typhimurium: role in mutagenesis. Carcinogenesis 1982; 3: 121
  • Gillette J.R. Reductive enzymes. Handbook of Experimental Pharmacology, B.B. Brodie, J.R. Gillette. Springer-Verlag, Berlin 1971, Chap. 42
  • Wheeler L.A., Soderberg F.B., Goldman P. The relationship between nitro group reduction and the intestinal microflora. J. Pharmacol. Exp. Ther. 1975; 194: 135
  • Kuzniar E.J.A., James S.P. Influence of the gut microflora on the metabolism of 4-nitrobenzoic acid in the marmoset. Xenobiotica 1981; 11: 675
  • Koch R.L., Goldman P. The anaerobic metabolism of metronidazole formsN-(2-hydroxyethyl)-oxamic acid. J. Pharmacol. Exp. Ther. 1979; 208: 406
  • Koch R.L., Chrystal E.J.T., Beaulieu B.B., Goldman P. Acetamide: a metabolite of metronidazole formed by the intestinal flora. Biochem. Pharmacol. 1979; 28: 3611
  • Koch R.L., Beaulieu B.B., Chrystal E.J.T., Goldman P. A metronidazole metabolite in human urine and its risk. Science 1981; 211: 398
  • Koch R.L., Beaulieu B.B., Goldman P. The role of the intestinal flora in the metabolism of misonidazole. Biochem. Pharmacol. 1980; 29: 3281
  • Chemical Industry Institute of Toxicology. A twenty-four month study in Fisher 344 rats given dinitrotoluene. Research Triangle Park, N.C. 1979, CIIT Docket No. 327N8
  • Couch D.B., Allen P.F., Abernethy D.J. The mutagenicity of dinitrotoluene in Salmonella typhimurium. Mut. Res. 1981; 90: 373
  • Abernethy D.J., Couch D.B. Cytotoxicity and mutagenicity of dinitrotoluenes in Chinese hamster ovary cells. Mut. Res. 1982; 103: 53
  • Dent J.G., Schnell S.R., Guest D. Metabolism of 2,4-dinitrotoluene by rat hepatic microsomes and cecal flora. Biological Reactive Intermediates. II. Chemical Mechanisms and Biological Effects, R. Snyder, D.V. Parke, J.J. Kocsis, D.J. Jollow, G.G. Gibson, C.M. Witmer. Plenum Press, New York 1982; 431
  • Rickert D.E., Long R.M., Krakowka S., Dent J.G. Metabolism and excretion of 2,4-[14C] dinitrotoluene in conventional and axenic Fischer-344 rats. Toxicol. App. Pharmacol. 1981; 59: 574
  • Doolittle D.J., Sherrill J.M., Butterworth B.E. Influence of intestinal bacteria, sex of animal, and position of the nitro group on the hepatic genotoxicity of nitrotoluene isomersin vivo. Cancer Res. 1983; 43: 2836
  • Kinouchi T., Manabe Y., Wakisaka K., Ohnishi Y. Biotransformation of 1-nitropyrene in intestinal anaerobic bacteria. Microbiol. Immunol. 1982; 26: 993
  • Rowland I.R., Mallett A.K., Wise A., Bailey E. Effect of dietary carrageenan and pectin on the reduction of nitro compounds by the rat cecal microflora. Xenobiotica 1983; 13: 251
  • Walker R., Ryan A.J. Some molecular parameters influencing rate of reduction of azo compounds by intestinal microflora. Xenobiotica 1971; 1: 483
  • Naumova R.P., Amerkanhova N.N., Belousova T.O. Bacterial reductive transformation of aromatic nitro compounds. Mikrobiologiya 1982; 51: 735
  • Gomez R.F., Tannenbaum S.R., Saroca J., Ralt D., Rockwitz N. Heterotrophic nitrification by intestinal microorganisms. Cancer 1980; 45: 1066
  • Tannenbaum S.R., Young V.R., Green L., Ruiz de Luzuriaga R. Intestinal formation of nitrite andN-nitrosocompounds, in N-Nitrosocompounds – Analysis Formation and Occurrence. IARC Scientific Publication No. 31, E.A. Walker, L. Gricuite, M. Castegnara, M. Börzsönyi, M. Davis. IARC, Lyon 1980; 281
  • Ralt D., Gomez R.F., Tannenbaum S.R. Conversion of acetohydroxamate and hydroxylamine to nitrite by intestinal microorganisms. Eur. J. Appl. Microbiol. Biotechnol. 1981; 12: 226
  • Witter J.P., Gatley S.J., Balish E. Evaluation of nitrate synthesis by intestinal microogamismsin vivo. Science 1981; 213: 449
  • Wagner D.A., Tannenbaum S.R. Enhancement of nitrate biosynthesis byEschericia coli lipopolysaccharide. Banbury Report 12: Nitrosamines and Human Cancer, P.N. Magee. Cold Spring Harbor Laboratory, New York 1982; 437
  • Tannenbaum S.R., Green L. Metabolism of Nitrate. Banbury Report 7: Gastrointestinal Cancer Endogenous Factors, W.R. Bruce, P. Correa, M. Lipkin, S.R. Tannenbaum, T.D. Wilkins. Cold Spring Harbor Laboratory, New York 1981; 331
  • Saul R.L., Kabir S.H., Cohen Z., Bruce W.R., Archer M.C. Reevaluation of nitrate and nitrite levels in the human intestine. Cancer Res. 1981; 41: 2280
  • Witter J.P., Balish E., Gatley S.J. Origin of excess urinary nitrate in the rat. Cancer Res. 1982; 42: 3654
  • Green L.C., Tannenbaum S.R., Goldman P. Nitrate synthesis in the germfree and conventional rat. Science 1981; 212: 56
  • Green L.C., Ralt D., Tannenbaum S.R. Nitrate, nitrite and N-nitrosocompounds: biochemistry, metabolism, toxicity and carcinogenicity. Human Nutrition, A. Neuberger, T.H. Jukes. MTP Press Ltd., Lancaster 1982; 87
  • Hartman P.E. Nitrates and nitrites: ingestion, pharmacodynamics and toxicology. Chemical Mutagens – Principles and Methods for Their Detection, F.J. de Serres, A. Hollaender. Plenum Press, New York 1982; Vol. 7: 211
  • Hasan S.M., Hall J.B. The physiological function of nitrate respiration in Clostridium perfringens. J. Gen. Microbiol. 1975; 87: 120
  • Ota A. Phosphorylation coupled to nitrate respiration. Int. J. Biochem. 1982; 14: 341
  • Mallett A.K., Rowland I.R., Wise A. Interaction between pectin and rat hindgut microflora. Appl. Environ. Microbiol. 1983; 45: 116
  • Klein D., Gaconnet N., Poullain B., Derby G. Effet d'une charge en nitrate sur le nitrite salivare et gastrique chez l'homme. Fd. Cosmet. Toxicol. 1978; 16: 111
  • Hill M.J., Hawksworth G. Bacterial production of nitrosamines ‘in vitro’ and ‘in vivo’. N-Nitroso Compounds – Formation and Analysis, P. Bogorski, R. Preussman, E.A. Walker, W. Davis. IARC Scientific Publication No. 3, IARC, Lyon 1972; 116
  • Goaz P.W., Biswell H.A. Nitrate reduction in whole saliva. J. Dent. Res. 1961; 40: 355
  • Tannenbaum S.R., Weisman M., Fett D. The effect of nitrate intake on nitrite formation in human saliva. Fd. Cosmet. Toxicol. 1976; 14: 549
  • Spiegelhalder B., Eisenbrand G., Preussman R. Influence of dietary nitrate on the nitrite content of human saliva: possible relevance toin vivo formation of N-nitrosocompounds. Fd. Cosmet. Toxicol. 1976; 14: 545
  • Fridovich I., Handler P. Xanthine oxidase. V. differential inhibition of the reduction of various electron acceptors. J. Biol. Chem. 1962; 237: 916
  • Rajagopalan K.V., Fridovich I., Handler P. Hepatic aldehyde oxidase. I. purification and properties. J. Biol. Chem. 1962; 237: 922
  • de Bruin A. Biochemical Toxicology of Environmental Agents. Elsevier, Amsterdam 1976; 1259
  • Kosaka H., Imaizumi K., Ima K., Tyuma I. Stoichiometry of the reaction of oxyhaemoglobin with nitrite. Biochim. Biophys. Acta 1979; 581: 184
  • Darling R.C., Roughton F.J.W. The effect of methemoglobin on the equilibrium between oxygen and haemoglobin. Am. J. Physiol. 1942; 44: 275
  • Newberne P.M. Nitrite promotes lymphoma incidence in rats. Science 1979; 204: 1079
  • Fraser P., Chilvers C., Beral V., Hill M.J. Nitrate and human cancer: a review of the evidence. Int. J. Epidem. 1980; 9: 3
  • Tannenbaum S.R., Archer M.C., Correa P., Cuello C., Haenszel W. Nitrate and the etiology of gastric cancer. Origins of Human Cancer, H.H. Hyatt, J.D. Watson, J.A. Winsten. Cold Spring Harbor Laboratory, New York 1977; 1609
  • Gibson G.G., Ionnides C. Safety Evaluation of Nitrosatable Drugs and Chemicals. Taylor and Francis, London 1981
  • Ruddell W.S., Bone E.S., Hill M.J., Blendis L.M., Walters C.L. Gastric-juice nitrite. A risk factor for cancer in the hypochlorhydric stomach?. Lancet 1976; ii: 1037
  • Fine D.H., Ross P., Rounbehler D.P., Silvergleid A., Song L. Formationin vivo of volatileN-nitrosamines in man after ingestion of cooked bacon and spinach. Nature (London) 1977; 265: 753
  • Kowalski B., Miller C.T., Sen N.P. Studies on thein vivo formation of nitrosamines in rats and humans after various meals. N-Nitroso Compounds: Analysis, Formation and Occurrence, E.A. Walker, L. Griciute, M. Castegnara, M. Borzsonyi. IARC Scientific Publication No. 31, IARC, Lyon 1980; 467
  • Mysliwy T.S., Wick E.L., Archer M.C., Shank R.C., Newberne P.M. Formation ofN-nitrosopyrrolidine in a dog's stomach. Br. J. Cancer 1974; 30: 279
  • Walter C.L., Carr F.P.A., Dyke C.S., Saxby M.J., Smith D.L.R. Nitrite sources and nitrosamine formationin vitro andin vivo. Fd. Cosmet. Toxicol. 1979; 17: 473
  • Hashimoto S., Yokokura T., Kawai Y., Mutai M. Dimethylnitrosamine formation in the gastrointestinal tract of rats. Fd. Cosmet. Toxciol. 1976; 14: 553
  • Klubes P., Cerna I., Rabinowitz A.D., Jondorf W.R. Factors affecting dimethylnitrosamine formation from simple precursors by rat intestinal bacteria. Fd. Cosmet. Toxicol. 1972; 10: 757
  • Lee L.-J., Archer M.C., Bruce W.R. Absence of volatile nitrosamines in human feces. Cancer Res. 1981; 41: 3992
  • Mallett A.K., Rowland I.R., Wise A. Diet-related production of mutagens by the rat gut flora. Toxcologist 1982; 2: 146
  • Wang T., Kakizoe T., Dion P., Furrer R., Varghese A.J., Bruce W.R. Volatile nitrosamines in normal human feces. Nature, (London) 1978; 276: 280
  • Suzuki K., Mitsuoka T. Increase in fecal nitrosamines in Japanese individuals given a Western diet. Nature (London) 1981; 294: 453
  • Archer C., Saul R.L., Lee L.-J., Bruce W.R. Analysis of nitrate, nitrite and nitrosamines in human feces. Banbury Report 7: Gastrointestinal Cancer – Endogenous Factors, W.R. Bruce, P. Correa, M. Lipkin, S.R. Tannenbaum, T.D. Wilkins. Cold Spring Harbor Laboratory, New York 1981; 321
  • Eisenbrand G., Spiegelhalder B., Preussmann R. Analysis of human biological specimens for nitrosamine content. Banbury Report 7: Gastrointestinal Cancer – Endogenous Factors, W.R. Bruce, P. Correa, M. Lipkin, S.R. Tannenbaum, T.D. Wilkins. Cold Spring Harbor Laboratory, New York 1981; 245
  • Witter J.P., Balish E., Gatley S.J. Distribution of nitrogen - 13 from labelled nitrate (13NO3) and nitrite (13NO3) in germfree (GF) and conventional- flora (CV) rats. Appl. Environ. Microbiol. 1979; 38: 870
  • Melnykowycz J., Johansson K.R. Formation of amines by intestinal microorganisms and the influence of chlortetracycline. J. Exp. Med. 1955; 101: 507
  • Phear E.A., Reubner B. The in vitro production of ammonium and amines by intestinal bacteria in relation to nitrogen toxicity as a factor in hepatic coma. Br. J. Exp. Pathol. 1956; 37: 253
  • Anonymous. Headache, tyramine, serotinin and migraine. Nutr. Rev. 1968; 26: 40
  • Perry T.L., Hestrin M., MacDougall L., Hansen S. Urinary amines of intestinal bacterial origin. Clin. Chim. Acta. 1966; 14: 116
  • Bäkke O.M. Studies on the degradation of tyrosine by rat cecal contents. Scand. J. Gastroenterol. 1969; 4: 603
  • Boutwell R.K. Phenolic Compounds and Metabolic Regulation, B.J. Finkle, V.C. Runeckles. Appleton-Century-Crofts, New York 1967
  • Angel A., Rogers K.J. Convulsant action of polyphenols. Nature (London) 1968; 217: 84
  • Hill M.J. Bacterial metabolism and human carcinogenesis. Br. Med. Bull. 1980; 36: 89
  • Bryan G.T. The role of urinary tryptophan metabolites in the etiology of bladder cancer. Am. J. Clin. Nutr. 1971; 24: 841
  • Ehrhart H., Stich W. Untersuchungen uber Experimentelle Leukamien: Die Indol Leukamie bei der weissen Maus. Klin. Wochenschr. 1957; 35: 504
  • Dunning W.F., Curtis M.R. The role of indole in incidence of 2-acetylaminofluorene-induced bladder cancer in rats. Proc. Soc. Biol. Med. 1958; 99: 91
  • Sandler M., Karoum F., Ruthven C.R.J., Calne D.B. c-Hydroxyphenylacetic acid formation from L-dopa in man: suppression by neomycin. Science 1969; 166: 1417
  • Sandler M., Goodwin B.L., Ruthven C.R.J., Calne D.B. Therapeutic implications in Parkinsonism ofm-tyramine formation from L-dopa in man. Nature (London) 1971; 229: 414
  • Goldman P., Peppercorn M.A., Goldin B.A. Metabolism of drugs by microorganisms in the intestine. Am. J. Clin. Nutr. 1974; 27: 1348
  • Edwards T., McBride G.C. Biosynthesis and degradation of methylmercury in human feces. Nature (London) 1975; 253: 462
  • Rowland I.R., Grasso P., Davies M.J. The methylation of mercuric chloride by human intestinal bacteria. Experientia 1975; 31: 1064
  • Rowland I., Davies M., Grasso P. Biosynthesis of methylmercury compounds by the intestinal flora of the rat. Arch. Environ. Health. 1977; 32: 24
  • Abdulla M., Arnesjo B., Ihse I. Methylation of inorganic mercury in experimental jejunal blind-loop. Scand. J. Gastroenterol. 1973; 8: 565
  • Rowland I.R., Davies M.J. In vitro metabolism of inorganic arsenic by the gastro-intestinal microflora of the rat. J. Appl. Toxicol. 1981; 1: 278
  • Rowland I.R., Davies M.J., Grasso P. Volatilisation of methylmercuric chloride by hydrogen sulphide. Nature (London) 1977; 265: 718
  • Rowland I.R., Davies M.J., Grasso P. Metabolism of methylmercuric chloride by the gastrointestinal flora of the rat. Xenobiotica 1978; 8: 37
  • Rowland I.R., Robinson R.D., Doherty R.A. Demethylation of methylmercury by mouse gut flora in vitro. Toxicologist 1982; 2: 83
  • Nakamura I., Hosokawa K., Tamura H., Miura T. Reduced mercury excretion with feces in germfree mice after oral administration of methyl mercury chloride. Bull. Environ. Contam. Toxicol. 1977; 17: 528
  • Rowland I.R., Robinson R.D., Doherty R.A., Landry T.D. Are developmental changes in methylmercury metabolism and excretion mediated by the intestinal microflora?. Reproductive and Developmental Toxicity of Metals, T.W. Clarkson, G.F. Nordberg, P.R. Sager. Plenum Press, New York 1983; 745
  • Norseth T., Clarkson T.W. Intestinal transport of 203 Hg-labelled methylmercuric chloride. Role of biotransformation in rats. Arch. Environ. Health 1971; 22: 568
  • Smith R.L. The biliary excretion and enterohepatic circulation of drugs and other organic compounds. Progressive Drug Research, J. Jucker. Birkhauser, Basel 1966
  • Smith G.E., Griffiths L.A. Metabolism of a biliary metabolite of phenacetin and other acetanilides by the intestinal microflora. Experientia 1976; 32: 1556
  • El-Hawari A.M., Plaa G.L. Role of the enterohepatic circulation in the elimination of phenytoin in the rat. Drug Metab. Dispos. 1978; 6: 59
  • Williams R.T., Millburn P., Smith R.L. The influence of enterohepatic circulation on the toxicity of drugs. Ann. N.Y. Acad. Sci. 1965; 123: 110
  • Smith R.L. The role of the gut flora in the conversion of inactive compounds to active metabolites. Mechanisms of Toxicity, W.N. Aldridge. MacMillan, London 1971; 229
  • Weisburger J.H., Grantham P.H., Horton R.E., Weisburger E.K. Metabolism of the carcinogenN-hydroxyN-2-fluorenylacetamide in germfree rats. Biochem. Pharmacol. 1970; 19: 151
  • Williams J.R., Grantham P.H., Marsh H.H., Weisburger J.H., Weisburger E.K. Participation of liver fractions and of intestinal bacteria in the metabolism ofN-hydroxy-N-2-fluorenylacetamide in the rat. Biochem. Pharmacol. 1970; 19: 173
  • Hawksworth G.M., Drasar B.S., Hill M.J. Intestinal bacteria and the hydrolysis of glycosidic bonds. J. Med. Microbiol. 1971; 4: 451
  • Wlash C.T., Feierabend J.F., Levine R.R. The effect of lincomycin on the excretion of diethylstilbestrol and its uterotrophic action in rats. Life Sci. 1975; 16: 1683
  • Chipman J.K. Bile as a source of potential reactive metabolites. Toxicology 1982; 25: 99
  • Parke D.V., Rahman Kh.M.Q., Walker R. The absorption, distribution and excretion of linalool in the rat. Biochem. Soc. Trans. 1974; 2: 612
  • Ladomery L.G., Ryan A.J., Wright S.E. Excretion of14C butylated hydroxytoluene (BHT) in the rat. Fd. Cosmet. Toxicol. 1967; 3: 547
  • Weisburger J.H. Colon carcinogens, their metabolism and mode of action. Cancer 1971; 28: 60
  • Kinoshita N., Gelboin H.V. β-Glucuronidase catalyzed hydrolysis of benzo[a]pyrene-3-glucuronide and binding to DNA. Science 1978; 199: 307
  • Renwick A.G., Drasar B.S. Environmental carcinogens and large bowel cancer. Nature (London) 1976; 263: 234
  • Fiala E.S. Investigations into the metabolism and mode of action of the colon carcinogens 1,2-dimethylhydrazine and azoxymethane. Cancer 1977; 40: 2436
  • Reddy B.S., Weisburger J.H., Narisawa T., Wynder E.L. Colon carcinogenesis in germfree rats with 1,2-dimethylhydrazine andN-methyl-N-nitro-N-nitrosoguanidine. Cancer Res. 1974; 34: 2368
  • Takada H., Hirooka T., Hiramatsu Y., Yamamoto M. Effect of β-glucuronidase inhibitor on azoxymethane-induced colonic carcinogenesis in rats. Cancer Res. 1982; 42: 331
  • Robertson A.M., Lee S.P., Lindop R., Stanley R.A., Thomsen L., Tasman-Jones C. Biliary control of β-glucuronidase activity in the luminal contents of the rat ileum, cecum and colon. Cancer Res. 1982; 42: 5165
  • Mallett A.K., Bearne C., Rowland I.R. Metabolic activity and enzyme induction in rat fecal microflora maintained in continuous culture. Appl. Environ. Microbiol. 1983; 46: 591
  • Hill H.Z., Backer R., Hill G.J. Blood cyanide levels in mice after administration of amygdalin. Biopharm. Drug Disposition 1980; 1: 211
  • Laqueur G.L., Spatz M. Toxicology of cycasin. Cancer Res. 1968; 28: 2262
  • Anonymous. Cycad: the fruits of conversion. Fd. Cosmet. Toxicol. 1972; 10: 246
  • Spatz M., Smith D.W.E., McDaniel E.G., Laqueur G.L. Role of intestinal microorganisms in determining cycasin toxicity. Proc. Soc. Exp. Biol. Med. 1967; 124: 691
  • Laqueur G.L., Matsumoto H. Neoplasms in female Fisher rats following intraperitoneal injection of methylazoxymethanol. J. Natl. Cancer Inst. 1966; 37: 217
  • Tamura G., Gold C., Ferro-Luzzi A., Ames B.N. Fecalase: a model for activation of dietary glycosides to mutagens by intestinal flora. Proc. Natl. Acad. Sci. U.S.A. 1980; 77: 4961
  • Brown J.P., Dietrich P.S. Mutagenicity of plant flavonols in the Salmonella/mammalian microsome test. Activation of flavonol glycosides by mixed glycosidases from rat cecal bacteria and other sources. Mut. Res. 1979; 66: 223
  • Nagao M., Morita N., Yahagi T., Shimizu M., Kuroyanagi M., Fukuota M., Yoshihira K., Natori S., Fujino T., Sugimura T. Mutagenicities of 61 flavonoids and 11 related compounds. Environ. Mutagenesis 1981; 3: 401
  • Price J.M., Biava C.G., Oser B.L., Vogin E.E., Steinfield J., Ley H.L. Bladder tumours in rats fed cyclohexylamine or high doses of a mixture of cyclamate and saccharin. Science 1970; 167: 1131
  • Oser B.L., Carson S., Cox G.E., Vogin E.E., Sternberg S.S. Chronic toxicity of cyclamate: saccharin (10:1) in rats. Toxicology 1975; 4: 315
  • Renwick A.G. Microbial metabolism of drugs. Drug Metabolism – from Microbe to Man, P. Jenner, D.V. Parke. Taylor and Francis Ltd., London 1976; 169
  • Gaunt I.F., Hardy J., Grasso P., Gangolli S.D., Butterworth K.R. Long term toxicity of cyclohexylamine hydrochloride in the rat. Fd. Cosmet. Toxicol. 1976; 14: 255
  • Oser B.L., Carson S., Cox G.E., Vogin E.E., Sternberg S.S. Long-term and multigeneration toxicity studies on cyclohexylamine hydrochloride. Toxicology 1976; 6: 47
  • Mason P.L., Thompson G.R. Testicular effects of cyclohexylamine hydrochloride in the rat. Toxicology 1977; 8: 143
  • International Agency for Research in Cancer. IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans. Some Non-Nutritive Sweetening Agents, IARC, Lyon 1980; Vol. 22
  • Renwick A.G, Williams R.T. The fate of cyclamate in man and other species. Biochem. J. 1972; 129: 869
  • Asahina M., Yamaha T., Sarrazin G., Watanabe K. Conversion of cyclmate to cyclohexylamine in guinea pig. Chem. Pharm. Bull. 1972; 20: 102
  • Bickel M.H., Burkard B., Meier-Strasser E., Van den Broek-Boot M. Entero-bacterial formation of cyclohexylamine in rats ingesting cyclamate. Xenobiotica 1974; 4: 425
  • Sonders R.C., Newtwal J.C., Wiegand R.C. Site of conversion of cyclamate to cyclohexylamine. Pharmacologist 1969; 11: 241
  • Tsuchiya T. Studies on the metabolism of sodium cyclamate by intestinal bacteria. Memoirs of the Tokyo University of Agriculture 1982; XXIII: 1
  • Drasar B.S., Renwick A.G., Williams R.T. The role of the gut flora in the metabolism of cyclamate. Biochem. J. 1972; 129: 881
  • McGlinchey G., Coakley B., Gestataus-Tansey V., Gault J., Spillane W.J. In vivo andin vitro studies with sulphamate sweeteners. J. Pharm. Sci. 1982; 71: 661
  • Roxon J.J., Tesoriero A.A. Effect of cysteine on cyclamate metabolism by rat intestinal microorganisms. Aust. J. Pharm. Sci. 1974; NS3: 26
  • Tesoriero A.A., Roxon J.J. [35S] Cyclamate metabolism: incorporation of35S into proteins of intestinal bacteriain vitro and production of volatile35S - containing compounds. Xenobiotica 1975; 5: 25
  • Thompson M., Hill M.J. The role of bacterial metabolism in the gut in relation to large bowel cancer. Progress in Mutation Research, A. Kappas. Elsevier, Oxford 1981; Vol. 2: 41
  • MacDonald I.A., Bokkenheuser V.D., Winter J., McLernon A.M., Mosbach E.H. Degradation of steroids in the human gut. J. Lipid Res. 1983; 24: 675
  • Morotomi M., Kawai Y., Mutai M. Intestinal microflora and bile acids.In vitro cholic acid transformation by mixed fecal culture of rats. Microbiol. Immunol. 1979; 23: 839
  • Aries V., Hill M.J. Degradation of steroids by intestinal bacteria. II. Enzymes catalysing the oxido-reduction of the 3α-, 7α-, and 12α-hydroxy groups in cholic acid and the dehydroxylation of the 7α-hydroxyl group. Biochim. Biophys. Acta 1970; 202: 535
  • Macdonald I.A., Singh G., Mahony D.E., Meier C.E. The effect of pH on bile salt degradation by mixed fecal cultures. Steroids 1978; 32: 245
  • Hirano S., Masuda N., Oda H., Imamura T. Transformation of bile acids by mixed microbial cultures from human feces and bile acid transforming activities of isolated bacterial strains. Microbiol. Immunol. 1981; 25: 271
  • Hill M.J. The role of colon anaerobes in the metabolism of bile acids and steroids and its relation to colon cancer. Cancer 1975; 36: 2387
  • Thompson M.H. The role of the fecal microflora in colon carcinogenesis. Experimental Colon Carcinogenesis, H. Autrup, G.M. Williams. CRC Press, Boca Raton, Fla. 1983; 253
  • Fernandez F., Hill M. A fecal hydrogen acceptor for clostridial 3-oxo steroid Δ4-dehydrogenase. Biochem. Soc. Trans. 1978; 6: 376
  • Lombardi P., Goldin B., Boutin E., Gorbach S.L. Metabolism of androgens and estrogens by human fecal microorganisms. J. Steroid Biochem. 1978; 9: 795
  • Hill M.J., Drasar B.S., Williams R.E.O., Meade T.W., Cox A.G., Simpson J.E.P., Morson B.C. Faecal bile-acids and clostridia in patients with cancer of the large bowel. Lancet 1975; i: 535
  • Finegold S.M., Flora D.J., Attebery H.R., Sutter V.L. Fecal bacteriology of colonic polyp patients and control patients. Cancer Res. 1975; 35: 3407
  • IARC Intestinal Microecology Group. Dietary fibre, transit-time, fecal bacteria, steroids and colon cancer in two Scandinavian populations. Lancet 1977; i: 107
  • Crowther J.S., Drasar B.S., Hill M.J., MacLennan R., Magnin D., Peach S., Teoh-Chan C.H. Fecal steroids and bacteria and large bowel cancer in Hong Kong by socio-economic groups. Br. J. Cancer 1978; 34: 191
  • Eyssen H.J., Parmentier G.G. Influence of the microflora of the rat on the metabolism of fatty acids, sterols and bile salts in the intestinal tract. Clin. Exper. Gnotobiotics, Zbl. Bakt. 1979; 39, Suppl. 7
  • Kelsey M.I., Muschik G.M., Sexton S.A. The metabolism of lithocholic acid - 3α - sulphate by human intestinal microflora. Lipids 1978; 13: 152
  • Gustafsson B., Bergstrom S., Lindstedt S., Norman A. Turnover and nature of fecal bile acids in germfree and infected rats fed cholic acid -24-C14. Proc. Soc. Exp. Biol. Med. 1957; 94: 467
  • Kellogg T.F., Wostmann B.S. Fecal neutral steroids and bile acids from germfree rats. J. Lipid Res. 1969; 10: 495
  • Kelsey M.I. In vitro effect of bile acids. Experimental Colon Carcinogenesis, H. Autrup, G.M. Williams. CRC Press, Boca Raton, Fla. 1983; 241
  • Palmer R.H. Bile acids, liver injury and liver disease. Arch. Intern. Med. 1972; 130: 606
  • Autrup H., Harris C.C., Trump B.I., Jeffrey A.M. Metabolism of benzo(a)pyrene and identification of the major benzo(a)pyrene – DNA adducts in cultured human colon. Cancer Res. 1978; 38: 3689
  • Silverman S.J., Andrews A.W. Bile acids: co-mutagenic activity in the Salmonelia-mammalian-microsome mutagenicity test: brief communication. J. Natl. Cancer Inst. 1977; 59: 1557
  • Kawalek J.C., Andrews A.W. The effect of bile acids on the metabolism of benzo(a)pyrene and 2-aminoanthracene to mutagenic products. Fed. Proc. 1977; 36: 844
  • Kelsey M.I., Pienta P.J. Transformation of hamster embryo cells by cholesterol-epoxide and lithocholic acid. Cancer Lett. 1979; 6: 143
  • Zachariah P.K., Slaga T.J., Berry D.L., Bracken W.M., Buty S.G., Martinsen C.M., Juchau M.R. The ability of enteric bacteria to catalyse the covalent binding of bile acids and cholesterol to DNA and their ability to metabolize benzo(a)pyrene to a binding product and to known metabolites. Cancer Lett. 1977; 3: 99
  • Narisawa T., Magadia N.E., Weisburger J.H., Wynder E.L. Promoting effect of bile acids on colon carcinogenesis after intrarectal instillation of N-methyl-N′-nitro-N-nitrosoguanidine in rats. J. Natl. Cancer Inst. 1974; 53: 1093
  • Reddy B.S., Watanabe K., Weisburger J.H., Wynder E. Promoting effect of bile acids in colon carcinogenesis in germ free and conventional F344 rats. Cancer Res. 1977; 37: 3238
  • Nigro N.D., Bhadrachari N., Chomchai C. A rat model for studying colonic cancer: effect of cholestyramine on induced tumors. Dis. Colon Rectum 1973; 16: 438
  • Chomchai C., Bhadrachari N., Nigro N.D. The effect of bile on the induction of experimental intestinal tumors in rats. Dis. Colon Rectum 1974; 17: 310
  • Reddy B.S., Narisawa T., Wright P., Vukusich D., Weisburger J.H., Wynder E.L. Colon carcinogenesis with azoxymethane and dimethylhydrazine in germ free rats. Cancer Res. 1975; 35: 287
  • Sumi Y., Miyakawa M. Gastrointestinal carcinogenesis in germ free rats given N-methyl-N′-nitro-N-nitrosoguanidine in drinking water. Cancer Res. 1979; 39: 2733
  • Sadzikowski M.R., Sperry J.F., Wilkins T.D. Cholesterol-reducing bacterium from human feces. Appl. Environ. Microbiol. 1977; 34: 355
  • Wikins T.D., Hackman A.S. Two patterns of neutral steroid conversion in feces of normal North Americans. Cancer Res. 1974; 34: 2250
  • Crowther J.S., Drasar B.S., Goddard P., Hill M.J., Johnson K. The effect of a chemically defined diet on the faecal flora and faecal steroid concentration. Gut 1973; 14: 790
  • Eyssen H.J., Parmentier G.G., Compernolle F.C., Depauw G., Piessensdenef M. Biohydrogenation of sterols by Eubacterium ATCC 21, 408 Nova species. Eur. J. Biochem. 1973; 36: 412
  • Hirano S., Nakama R., Tamaki M., Masuda N., Oda H. Isolation and characterization of thirteen intestinal microorganisms capable of 7α-dehydroxylating bile acids. Appl. Environ. Microbiol. 1981; 41: 737
  • Rosemarin J., Vargo D., Floch M.H. Cholesterol - epoxide - triol: a possible important pathway of cholesterol metabolism. Am. J. Clin. Nutr. 1983; 37: 730
  • Goddard P., Hill M.J. Thein vivo metabolism of cholesterol by gut bacteria in the rat and guinea pig. J. Steroid Biochem. 1974; 5: 569
  • Owen R.W., Tenneson M.E., Bilton R.F., Mason A.N. The degradation of cholesterol byEscherichia coli isolated from human faeces. Biochem. Soc. Trans. 1978; 6: 377
  • Bischoff F. Carcinogenic effects of steroids. Adv. Lipid. Res. 1969; 7: 165
  • Blackburn G.M., Rashid A., Thompson M.H. Interaction of 5α, 6α-cholesterol oxide with DNA and other nucleophiles. J.C.S. Chem. Commun. 1979; 123: 420
  • Reddy B.S., Martin C.W., Wynder E.L. Fecal bile acids and cholesterol metabolites of patients with ulcerative colitis, a high-risk group for development of colon cancer. Cancer Res. 1977; 37: 1697
  • Hill M.J., Crowther J.S., Drasar B.S., Hawksworth G., Aries V.C., Williams R.E.O. Bacteria and etiology of cancer of the large bowel. Lancet 1971; i: 95
  • Reddy B.S., Wynder E.L. Large-bowel carcinogenesis, Fecal constituents of populations with diverse incidence rates of colon cancer. J. Natl. Cancer Inst. 1973; 50: 1437
  • Reddy B.S., Mastromarino A., Wynder E.L. Further leads on metabolic epidemiology of large bowel cancer. Cancer Res. 1975; 35: 3403
  • Reddy B.S., Mastromarino A., Gustafson C., Lipkin M., Wynder E.L. Fecal bile acids and neutral sterols in patients with familial polyposis. Cancer 1976; 38: 1694
  • Reddy B.S., Wynder E.L. Metabolic epidemiology of colon cancer. Fecal bile acids and neutral sterols in colon cancer petients and patients with adenomatous polyps. Cancer 1977; 39: 2533
  • Bone E., Drasar B.S., Hill M.J. Gut bacteria and their metabolic activities in familial polyposis. Lancet 1975; i: 1117
  • Watne A.L., Lai H.-Y.L., Mance T., Core S. Fecal steroids and bacterial flora in patients with polyposis coli. Am. J. Surg. 1976; 131: 42
  • Lipkin M., Reddy B.S., Weisburger J., Schechter L. Nondegradation of fecal cholesterol in subjects at high risk for cancer of the large intestine. J. Clin. Invest. 1981; 67: 304
  • Cruse J.P., Lewin M.R., Ferulano G.P., Clark C.G. Co-carcinogenic effects of dietary cholesterol in experimental colon cancer. Nature (London) 1978; 276: 822
  • Broitman S.A., Vitale J.J., Vavrousek-Jakuba E., Gottleib L.S. Polyunsaturated fat, cholesterol and large bowel tumorigenesis. Cancer 1977; 40: 2455
  • Cohen B.I., Raicht R.F., Fazzini E. Reduction of N-methly-N-nitrosourea-induced colon tumors in the rat by cholesterol. Cancer Res. 1982; 42: 5050
  • Rao C.B.S. The Chemistry of Lignans. Anahra University Press, WaltairIndia 1978
  • Setchell K.D.R., Lawson A.M., Conway E., Taylor N.F., Kirk D.N., Cooley B., Farrant R.D., Wynn S., Axelson M. The definitive identification of the lignans trans - 2,3-bis(3-hydroxybenzyl)butyrolactone and 2,3-bis(3-hydroxybenzyl)butane-1,4-diol in human and animal urine. Biochem J. 1981; 197: 448
  • Axelson M., Setchell K.D.R. Conjugation of lignans in human urine. FEBS Lett. 1980; 122: 49
  • Axelson M., Setchell K.D.R. The excretion of lignans in rats – evidence for an intestinal bacterial source for this new group of compounds. FEBS Lett. 1981; 123: 337
  • Setchell K.D.R., Bull R., Adlercreutz H. Steroid excretion during the reproductive cycle and in pregnancy of the vervet monkey (Ceropithecus aethiopus pygerythrus). J. Steroid Biochem. 1980; 12: 375
  • Adlercreutz H., Fotsis T., Heikkinen R., Dwyer J.T., Woods M., Goldin B.R., Golbach S.L. Excretion of the lignans enterolactone and enterodiol and of equol in ominivorous and vegetarian postmenopausal women and in women with breast cancer. Lancet 1982; ii: 1295
  • Setchell K.D.R., Lawson A.M., Borriello S.P., Harkness R., Gordon H., Morgan D.M.L., Kirk D.N., Adlercreutz H., Anderson L.C., Axelson M. Lignan formation in man – microbial involvement and possible roles in relation to cancer. Lancet 1981; ii: 4
  • Borriello S.P., Setchell K.D.R., Axelson M., Lawson A.M. Production and metabolism of lignans by the human faecal flora. J. Appl. Bacteriol. 1985; 58: 37
  • Hartwell J.L. Types of anticancer agents isolated from plants. Cancer Treat. Rep. 1976; 60: 1031
  • Owen R.W., Hill M.J. Cholesterol and carcinogenic fecal steroids. Animal Products in Human Nutrition, D.C. Beitz, R.G. Hansen. Academic Press, London 1982; 461
  • Eyssen H., Parmetier G. Biohydrogenation of sterols and fatty acids by the intestinal microflora. Am. J. Clin. Nutr. 1974; 27: 1329
  • Eriksson H., Gustafsson J.-A., Sjövall J. Steroids in germfree and conventional rats. IV. Identification and bacterial formation of 17α-pregnane derivatives. Eur. J. Biochem. 1968; 6: 219
  • Martin F., Peltonen J., Laatikainen T., Pulkkinen M., Adlercreutz H. Excretion of progesterone metabolites and estriol in faeces from pregnant women during ampicillin administration. J. Steroid Biochem. 1975; 6: 1339
  • Pulkkinen M.O., Willman K. Reduction of maternal estrogen excretion by neomycin. Am. J. Obstet. Gynecol. 1973; 115: 1153
  • Carey M.C. The enterohepatic circulation. The Liver, Biology and Pathobiology, I. Arias, H. Popper, D. Schachter, D.A. Shafritz. Raven Press, New York 1982; 429
  • Aries V.C., Goddard P., Hill M.J. Degradation of steroids by intestinal bacteria III, 3-oxo-5β-steroid Δ-dehydrogenase and 3-oxo-5β-steroid Δ dehydrogenase. Biochim. Biophys. Acta. 1971; 248: 482
  • Goddard P., Hill M.J. Degradation of steroids by intestinal bacteria. IV. The aromatization of ring A. Biochim. Biophys. Acta. 1972; 280: 336
  • Järvenpää P., Kosunen T., Fotsis T., Adlercreutz H. In vitro metabolism of estrogens by isolated intestinal microorganisms and human fecal microflora. J. Steroid Biochem. 1980; 13: 345
  • Bokkenheuser V.D., Winter J. Biotransformation of steroid hormones by gut bacteria. Am. J. Clin. Nutr. 1980; 33: 2502
  • Winter J., Cerone-McLernon A., O'Rourke S., Ponticorvo L., Bokkenheuser V.D. Formation of 20β-dihydrosteroids by anaerobic bacteria. J. Steroid Biochem. 1982; 17: 661
  • Bokkenheuser V.D., Winter J., Mosbach E.H. 21-dehydroxylation of corticoids in colorectal cancer. Am. Assoc. Cancer Res. Abstr. 1983; 123
  • Mizutani T., Mitsouka T. Relationship between liver tumorigenesis and intestinal bacteria in gnotobiotic C3H/He male mice. Recent Advances in Germfree Research, S. Sasaki. Tokai University Press, Tokai 1981; 639
  • Suzuki K., Mitsouka T. Mutagenicity of intestinal bacteria. Mut. Res. 1978; 50: 295
  • Clarke H.E., Coates M.E., Eva J.K., Ford D.J., Milner C.K., O'Donoghue P.N., Scott P.P., Ward R.J. Dietary standards for laboratory animals: report of the Laboratory Animals Centre Diets Advisory Committee. Lab. Anim. 1977; 11: 1
  • Wise A. Interaction of diet and toxicity - the future role of purified diet in toxicological research. Arch. Toxicol. 1982; 50: 287
  • Bieri J.G., Stoewsand G.S., Briggs G.M., Phillips R.W., Woodard J.C, Knapka J.J. Report of the American Institute of Nutritionad hoc committee on Standards for Nutritional Studies. J. Nutr. 1977; 107: 1340
  • Knudsen I., Meyer O.A. Note of the use of semisynthetic diet for SPF rodents in toxicological experiments. Toxicology 1975; 4: 203
  • Rechcigl M. CRC Handbook Series in Nutrition and Food. CRC Press, Cleveland 1977; Vol. G/1
  • Mitchell H.H. Comparative nutrition of man and domestic animals. Academic Press, New York 1962; Vol. 1 and 2
  • Guilbert H.R., Howell C.E., Hart G.H. Minimum vitamin A and carotene requirements of mammalian species. J. Nutr. 1940; 19: 91
  • Kleiber M. The Fire of Life: an Introduction to Animal Energetics, 2nd ed. Krieger, Huntingdon, New York 1975
  • Greenfield H., Briggs G.M. Nutritional methodology in metabolic research with rats. Annu. Rev. Biochem. 1971; 40: 549
  • Quinn M.R., Chan M.M. Effect of vitamin B-6 deficiency on glutamic acid decarboxylase activity in rat olfactory bulb and brain. J. Nutr. 1979; 109: 1694
  • Bettger W.J., Reeves P.G., Moscatelli E.A., Reynolds G., Odell B.L. Interaction of zinc and essential fatty acids on the rat. J. Nutr. 1979; 109: 480
  • McKenna M.C., Campagnoni A.T. Effect of pre- and post-natal essential fatty acid deficiency on brain development and myelination. J. Nutr. 1980; 109: 1195
  • Leth T., Sondergaard H. Biological activity of vitamin E compounds and natural materials by the resorption-gestation test, and chemical determination of vitamin E activity in foods and feeds. J. Nutr. 1977; 107: 2236
  • Elliott J.G., Lachange P.A. Effects of vitamin A and ascorbic acid onin vitro cholesterol biosynthesis in the rat. J. Nutr. 1980; 110: 1488
  • Hotzewi D., Barnes R.H. Contributions of the intestinal microflora to the nutrition of the host. Vitam. Horm. 1966; 24: 115
  • Hardie-Muncy D.A., Rasmussan A.I. Interrelationships between zinc and protein level and source in weanling rats. J. Nutr. 1979; 109: 321
  • Harris R.S. Biotin in The Vitamins: Chemistry, Physiology Pathology, Methods, Vol. 2, 2nd ed., W.H. Sebrell, R.S. Harris, 1968; 261
  • Mason J.B., Gibson N., Kodicek E. The chemical nature of the bound nicotinic acid of wheat bran: studies of nicotinic acid-containing macromolecules. Br. J. Nutr. 1973; 30: 297
  • Schwartz K., Foltz C.M. Factor 3 activity of selenium compounds. J. Biol. Chem. 1958; 233: 245
  • Bothwell T.H., Charlton R.W., Cook J.D., Finch C.A. Iron metabolism in man. Blackwell, Oxford 1979; 256
  • Paul A.A., Southgate D.A.T. McCance and Widdowson'sThe Composition of Foods, 4th Ed. HMSO, London 1978; 10
  • Wise A., Gilburt D.J. The variability of dietary fibre in laboratory animal diets and its relevance to the control of experimental conditions. Fd. Cosmet. Toxicol. 1980; 18: 643
  • Bright-See E., Rao A.V., Li S., Tang T. A system for studying the biological effects of dietary fibres. Nutr. Rep. Int. 1978; 18: 671
  • Wilcox R.A., Balding J.L. Feed manufacturing problems: incomplete mixing and segregation. Feedstuffs Dec. 13, 1976; 33
  • Navia J.M. Animal models in dental research. University of Alabama Press, University. 1977; 151
  • Sauberlich H.E., Skala J.H., Dowdy R.P. Laboratory Tests for the Assessment of Nutritional Status. CRC Press, Cleveland 1974
  • Kellogg T.F., Wostmann B.S. Stock diet for colony production of germfree rats and mice. Lab. Anim. Care 1969; 19: 812
  • Reddy B.S., Wostmann B.S., Pleasants J.R. Nutritionally adequate diets for germfree animals. The Germfree Animal in Research. Academic Press, New York 1968; 87
  • Wostmann B.S. Nutrition and metabolism of the germfree mammal. Wld. Rev. Nutr. Diet. 1975; 22: 40
  • Ford D.J. Influence of diet pellet hardness and particle size on food utilization by mice, rats and hamsters. Lab. Anim. 1977; 11: 241
  • ARC/MRC. Food and nutrition research. Report of the ARC/MRC, 1974
  • Reddy B.S., Weisburger J.H., Wynder E.L. Effects of high risk and low risk diets for colon carcinogenesis on fecal microflora and steroids in man. J. Nutr. 1975; 105: 878
  • HMSO. Household food consumption and expenditure. HMSO, London 1981
  • Beisel W.R. Metabolic balance studies – their continuing usefulness in nutritional research. Am. J. Clin. Nutr. 1979; 32: 271
  • Reddy B.S., Wynder E. Large-bowel carcinogenesis: fecal constituents of populations with diverse rates of colon cancer. J. Natl. Cancer Inst. 1973; 50: 1437
  • Cummings J.H., Wiggins H.S., Jenkins D.J.A., Houston H., Jivraj T., Drasar B.S., Hill M.J. Influence of diets high and low in animal fat on bowel habit, gastrointestinal transit time, fecal microflora, bile acid and fat excretion. J. Clin. Invest. 1978; 61: 953
  • Reddy B.S., Hanson D., Mangat S., Mathews L., Sbaschnig M., Sharma C., Simi B. Effect of high-fat, high-beef diet and of mode of cooking of beef in the diet on fecal bacterial enzymes and fecal bile acids and neutral sterols. J. Nutr. 1980; 110: 1880
  • Ehle F.R., Robertson J.B., Van Soest P.J. Influence of dietary fibers on fermentation in the human large intestine. J. Nutr. 1982; 112: 158
  • Miller R.S., Hoskins L.C. Mucin degradation in human colon ecosystems. Gastroenterology 1981; 81: 759
  • Tannenbaum S.R., Young V.R. Endogenous nitrite formation in man. J. Environ. Pathol. Toxicol. 1980; 3: 357
  • Twombly J., Meyer J.H. Endogenous nitrogen secretion into the digestive tract. J. Nutr. 1961; 74: 453
  • Altman G. Influence of starvation and refeeding on mucosal size and epithelial renewal in the rat small intestine. Am. J. Anat. 1972; 133: 391
  • FAO/WHO. Report on a joint FAO/WHOad hoc expert group. Energy and protein requirements. Tech. Rep. Ser., WHO, Geneva 1973; 522
  • Visek W.J., Clinton S.K., Truek C.R. Nutrition and experimental carcinogenesis. The Cornell Vet. 1977; 68: 3
  • Salyers A.A., O'Brien M. Cellular location of enzymes involved in chondroitin sulfate breakdown by Bacteroides thetaiotaomicron. J. Bact. 1980; 143: 722
  • Gibson J.A., Sladen G.E., Dawson A.M. Protein absorption and ammonia production: the effects of dietary protein and removal of the colon. Br. J. Nutr. 1976; 35: 61
  • Corring T., Moreau C., Ducluzeau R. Comparative apparent digestibility of casein in holoxenic, axenic andClostridium bifermentens monoassociated rats. Am. J. Clin. Nutr. 1979; 32: 1231
  • Russell J.B. Fermentation of peptides byBacteroides ruminicola B14. Appl. Environ. Microbiol. 1983; 45: 1566
  • Yoshida T., Pleasants J.R., Reddy B.S. Amino acid composition of cecal contents and feces in germfree and conventional rabbits. J. Nutr. 1971; 101: 1423
  • Bond H.J., Currier B.E., Buchwald H., Levitt M.D. Colonic conservation of malabsorbed carbohydrate. Gastroenterology 1980; 78: 444
  • Anderson I.H., Leveine A.S., Levitt M.D. Incomplete absorption of the carbohydrate in all purpose wheat flour. New Engl. J. Med. 1981; 304: 891
  • Anonymous. Malabsorption of “absorbable” carbohydrates by normal individuals. Nutr. Rev. 1983; 41: 174
  • Ambuhl S., Williams V.J., Senior W. Effects of caecectomy in young adult female rat on digestibility of food offeredad libitum and in resticted amounts. Aust. J. Biol. Sci. 1979; 32: 205
  • Williams V.J., Senior W. Effects of caecectomy on the digestibility of food and rate of passage of digesta in the rat. Aust. J. Biol. Sci. 1982; 35: 373
  • Cummings J.H., Stephen A.M., Branch W.J. Implications of dietary fiber breakdown in the human colon. Banbury Report 7: Gastrointestinal Cancer – Endogenous factors, W.R. Bruce, P. Correa, M. Lipkin, S.R. Tannenbaum, T.D. Wilkins. Cold Spring Harbour Laboratory, New York 1981; 71
  • Van Soest P. Some factors influencing the ecology of gut fermentation in man. Banbury Report 7: Gastrointestinal Cancer – Endogenous factors, W.R. Bruce, P. Correa, M. Lipkin, S.R. Tannenbaum, T.D. Wilkins. Cold Spring Harbour Laboratory, New York 1981; 61
  • Montgomery L., Macy J.M. Characterisation of rat cecum cellulolytic bacteria. Appl. Environ. Microbiol. 1982; 44: 1435
  • Reddy N.R., Palmer J.K., Pierson M.D., Bothast R.J. Wheat starch hemicelluloses: composition and fermentation by human colon Bacteroides. J. Agric. Fd. Chem. 1983; 31: 1308
  • Salyers A.A., O'Brien M., Schmetter B. Catabolism of mucopolysaccharides, plant gums and maillard products by human colonicBacteroides. Unconventional Sources of Dietary Fiber, I. Furda. American Chemical Society, Washington, D.C. 1983; 123
  • Miller T.L., Wolin M.J. Fermentations by saccharolytic intestinal bacteria. Am. J. Clin. Nutr. 1979; 32: 164
  • Kim K.-I., Benevenga N.J., Grummer R.H. Estimation of the fraction of lactose in a high lactose diet available for fermentation in the cecum and colon of the rat. J. Nutr. 1978; 108: 79
  • Horikoshi M., Ohmura M., Gomyo T., Kuwabara Y., Ueda S. Effects of browning products on the intestinal microflora of the rat. Prog. Fd. Nutr. Sci. 1981; 5: 223
  • Kay R.M. Dietary fiber. J. Lipid Res. 1982; 23: 221
  • Ershoff B.H. Antitoxic effects of plant fiber. Am. J. Clin. Nutr. 1974; 27: 1395
  • Ershoff B.H. Effects of diet on growth and survival of rats fed toxic levels of Tartrazine (FD & C Yellow No. 5) and Sunset Yellow FCF (FD & C Yellow No. 6). J. Nutr. 1977; 107: 822
  • Calabrese E.J. Dietary fiber. Nutrition and Environmental Health. Wiley-Interscience, New York 1981; Vol. 2, Chap. 11
  • Drucker D.B. Microbiological applications of gas chromatography. Cambridge University Press, Cambridge 1982; 60
  • Rubinstein R., Howard A.V., Wrong O.M. In vivo dialysis of faeces as a method of stool analysis, IV. The organic anion component. Clin. Sci. 1969; 37: 549
  • Argenzio R.A., Southworth M. Sites of organic acid production and absorption in the gastrointestinal tract of the pig. Am. J. Physiol. 1974; 228: 454
  • McNeil N.I., Cummings J.H., James W.P.T. Short chain fatty acid absorption by the human large intestine. Gut 1978; 19: 819
  • Wallnofer P., Baldwin P.L., Stagno E. Conversion of C14-labelled substrate to volatile fatty acids by the rumen microbiota. Appl. Microbiol. 1966; 14: 1004
  • Agostini L., Down P.F., Murison J., Wrong O.M. Faecal ammonia and pH during lactulose administration in man: comparison with other carthartics. Gut 1972; 13: 859
  • Brown B.L., Gibson J.A., Sladen G.E., Hicks B., Dawson A.M. Effects of lactulose and other laxatives on ileal and colon pH as measured by a radiotelemetry device. Gut 1974; 15: 999
  • Wrong O.M., Edmonds C.J., Chadwick V.S. The Large Intestine – its Role in Mammalian Nutrition and Homeostasis. MTP Press Ltd, Lancaster 1981
  • Demigné C., Rémésy C., Rayssiguier Y. Effect of fermentable carbohydrates on volatile fatty acids, ammonia and mineral absorption in the rat caecum. Reprod. Nutr. Dévelop. 1980; 20: 1351
  • McKay L.F., Eastwood M.A. A comparison of bacterial fermentation end-products in carnivores, herbivores and primates including man. Proc. Nutr. Soc. 1984; 43: 35A
  • Wise A., Mallett A.K., Rowland I.R. Dietary fibre, bacterial metabolism and toxicity of nitrate in the rat. Xenobiotica 1981; 12: 111
  • Thomsen L.L., Tasman-Jones C., Lee S.P., Robertson A.M. Dietary factors in the control of pH and volatile fatty acid production in the rat caecum. Falk Symposium 32 – Colon and Nutrition, H. Kasper, H. Goebell. MTP Press Ltd., Lancaster 1982; 47
  • Bryant M.P. Nutritional features and ecology of predominant anaerobic bacteria in the intestinal tract. Am. J. Clin. Nutr. 1974; 27: 1313
  • Soergel K.H. Absorption of fermentation products from the colon. Falk Symposium 32 – Colon and Nutrition, H. Kasper, H. Goebell. MTP Press Ltd., Lancaster 1982; 27
  • Parker D.S. The measurement of production rates of volatile fatty acids in the caecum of the conscious rabbit. Br. J. Nutr. 1976; 36: 61
  • Illman R.J., Trimble R.P., Snoswell A.M., Topping D.L. Daily variations in the concentrations of volatile fatty acids in the splanchnic blood vessels of rats fed diets high in pectin and bran. Nutr. Rep. Int. 1982; 26: 439
  • Hagopian H.K., Riggs L.A., Swartz L.A., Ingram V.M. Effects of n-butyrate on DNA synthesis in chick fibroblasts and Hela cells. Cell 1977; 12: 855
  • Leavitt J., Barrett J.C., Crawford B.D., Ts'o P.O.P. Butyric acid suppression on thein vitro neoplastic state of Syrian hamster cells. Nature (London) 1978; 271: 262
  • Thornton J.R. High colonic pH promotes colorectal cancer. Lancet 1981; i: 1081
  • Jacobs L.R., Lupton J.R. Dietary wheat bran lowers colonic pH in rats. J. Nutr. 1982; 112: 592
  • Van Dokkum W., der Boer B.C.J., Van Faassen PikaarV.A., Hermus R.J.J. Diet, faecal pH and colorectal cancer. Br. J. Cancer 1983; 48: 109
  • Gamble J.L. The ammonia and urea content of infant's stools, with a description of methods. Am. J. Dis. Children 1915; 9: 519
  • Sabbaj J., Sutter V.L., Finegold S.M. Urease and deaminase activities of fecal bacteria in hepatic coma. Antimicrob. Agents Chemothrapy 1970; 181
  • Summerskill W.H.J. On the origin and transfer of ammonia in the human gastrointestinal tract. Medicine 1966; 45: 491
  • Wrong O.M., Vince A.J., Waterlow J.C. The origins and bacterial metabolism of faecal ammonia. Falk symposim 32 – Colon and Nutrition, H. Kaspar, H. Goebell. MTP Press Ltd., Lancaster 1982, Chap. 14
  • Wrong O.M., Vince A. Urea and ammonia metabolism in the human large intestine. Proc. Nutr. Soc. 1984; 43: 77
  • Dawson A.M. Regulation of blood ammonia. Gut 1978; 19: 504
  • Brown R.L., Gibson J.A., Fenton J.C.B., Sneddon W., Clark M.L., Sladen G.E. Ammonia and urea transport by the excluded human colon. Clin. Sci. Molec. Med. 1975; 48: 279
  • Visek W.J. Diet and cell growth modulation by ammonia. Am. J. Clin. Nutr. 1978; 31: S216
  • Dang H.C., Visek W.J. Some characteristics of blood in normal and immune rabbits after urease injection. Am. J. Physiol. 1968; 215: 502
  • Anderson D.P., Beard C.W., Hansen R.P. The adverse effects of ammonia on chickens including resistance to infection with Newcastle disease virus. Avian Dis. 1964; 8: 369
  • Boquillon M., Clément J. Effect of type and amount of dietary fat on bile flow and composition in rats. Ann. Biol. Anim. Biochim. Biophys. 1979; 19: 1725
  • Dowling R.H., Cowley D., White J., Campbell C.B. The effect of dietary fat on bile composition in monkeys with an intact enterohepatic circulation (EHC). Eur. J. Clin. Invest. 1971; 1: 369
  • Juste C., Demarne Y., Corring T. Response of bile flow biliary lipids and bile acid pool in the pig to quantitative variations in dietary fat. J. Nutr. 1983; 113: 1691
  • Kegami S., Tsuchihashi N., Nagayama S., Innami S. Effects of viscous indigestible polysaccharides on pancreatic exocrine and biliary secretion in rats. Nutr. Rep. Int. 1982; 26: 239
  • Van Soest P., McBurney M., Jeraci J., Allen M. Somein vitro andin vivo properties of dietary fibers from noncereal sources. Unconventional Sources of Dietary Fiber, I. Furda. ACS Symposium series, No. 214, American Chem. Soc., Washington, D.C. 1983; 135
  • MacDonald I.A., Webb G.R., Mahoney D.C. Fecal hydroxysteroid activities in vegetarian Seventh-day Adventists, control subjects and bowel cancer patients. Am. J. Clin. Nutr. 1978; 31: S233
  • Goldin B.R., Adlercreutz H., Dwyer J.T., Swenson J.L., Warram J.H., Gorbach S.L. Effect of diet on excretion of extrogens in pre- and post menopausal women. Cancer Res. 1981; 41: 3771
  • Reddy B.S., Hentges K., Laakso K., Wynder E.L. Metabolic epidemiology of large bowel cancer: fecal bulk and constituents of high-risk North American and low-risk Finnish population. Cancer 1978; 42: 2832
  • Kelsey M.I., Molina J.E., Hwang K.-K. A comparison of lithocholic acid metabolism by intestinal microflora in subjects of high and low-risk colon cancer populations. Front. Gastrointest. Res. 1979; 4: 38
  • Hill M.J. Steroid nuclear dehydrogenation and colon cancer. Am. J. Clin. Nutr. 1974; 27: 1475
  • Cummings J.H., Hill M.J., Jivraj T., Houston H., Branch W.J., Jenkins D.J.A. The effect of meat protein and dietary fiber on colon function and metabolism. I. Changes in bowel habit, bile acid excretion and calcium absorption. Am. J. Clin. Nutr. 1979; 32: 2086
  • Brussaard J.H., Katan M.B., Hautvast J. G. A. J. Faecal excretion of bile acids and neutral steroids on diets differing in type and amount of dietary fat in young healthy persons. Eur. J. Clin. Invest. 1983; 13: 115
  • Botham K.M., Boyd G.S. The effect of dietary fat on bile salt synthesis in rat liver. Biochim. Biophys. Acta. 1983; 752: 307
  • Reddy B.S., Weisburger J.H., Wynder E.L. Effects of dietary fat level and dimethylhydrazine on fecal acid and neutral sterol excretion and colon carcinogenesis in rats. J. Natl. Cancer Inst. 1974; 52: 507
  • Reddy B.S., Mangat S., Sheinfil A., Weisburger J.H., Wynder E.L. Effect of type and amount of dietary fat and 1,2-dimethylhydrazine on biliary bile acids, fecal bile acids and neutral sterols in rats. Cancer Res. 1977; 37: 2132
  • Tanaka C., Nozaki Y. Effect of partial hydrolyzates of casein and soybean protein on serum lipoproteins and fecal neutral steroids. J. Nutr. Sci. Vitaminol. 1983; 29: 439
  • Tanaka C., Watanuki M., Nozaki Y. Effect of soybean protein on coprostanol production and cholesterol metabolism in cholesterol-fed rats. J. Nutr. Sci. Vitaminol. 1983; 29: 447
  • Cummings J.H., Hill M.J., Jenkins D.J.A., Pearson J.R., Wiggins H.S. Changes in fecal composition and colonic function due to cereal fiber. Am. J. Clin. Nutr. 1976; 29: 1468
  • Judd P.A., Truswell A.S. The effect of rolled oats on blood lipids and fecal steroid excretion in man. Am. J. Clin. Nutr. 1981; 34: 2061
  • McLean RossA.H., Eastwood M.A., Brydon W.G., Anderson J.R., Anderson D.M.W. A study of the effects of dietary gum arabic in humans. Am. J. Clin. Nutr. 1983; 37: 368
  • Ross J.K., Leklem J.E. The effect of dietary citrus pectin on the excretion of human fecal neutral and acid steroids and the activity of 7α-dehydroxylase and β-glucuronidase. Am. J. Clin. Nutr. 1981; 34: 2068
  • Adrian J. Gums and hydrocolloids in nutrition. Wld. Rev. Nutr. Diet. 1976; 25: 189
  • Hill M.J. Colonic bacterial activity – effect of fiber on substrate concentration and enzyme action. Dietary Fiber in Health and Disease, G.V. Vahouny, D. Kritchevsky. Plenum Press, New York 1982; 35
  • Reddy B.S., Watanabe K., Sheinfil A. Effect of dietary wheat bran, alfalfa, pectin and carrageenan on plasma cholesterol and fecal bile acid and neutral sterol excretion in rats. J. Nutr. 1980; 110: 1247
  • Sacquet E., Leprince C., Riottot M. Dietary fiber and cholesterol and bile acid metabolism in axenic (germfree) and holoxenic (conventional) rats. I. Effects of wheat bran. Reprod. Nutr. Develop. 1982; 22: 291
  • Glauert H.P., Bennick M.R., Sander C.H. Enhancement of 1,2-dimethylhydrazine-induced colon carcinogenesis in mice by dietary agar. Fd. Cosmet. Toxicol. 1981; 19: 281
  • Nigro N.D., Bull A.W., Klopfer B., Pak M.S., Campbell R.L. Effect of dietary fiber on azoxymethane-induced intestinal carcinogenesis in rats. J. Natl. Cancer Inst. 1979; 62: 1097
  • Hill M.J. Influence of nutrition on the intestinal flora. Falk Symposium 32 – Colon and Nutrition, H. Kaspar, H. Goebell. MTP Press Ltd., Lancaster 1982, Chap. 4
  • Domellöf L. Diet as an etiological factor in gastrointestinal carcinogenesis. Vån Födda, Suppl. 1981; 1: 113
  • Finegold S.M., Attebery H.R., Sutter V.L. Effect of diet on human fecal flora: comparison of Japanese and American diets. Am. J. Clin. Nutr. 1974; 27: 1456
  • Finegold S.M., Sutter V.L., Sugihara P.T., Elder H.A., Lehmann S.M., Phillips R.L. Fecal microbial flora in Seventh Day Adventist populations and control subjects. Am. J. Clin Nutr. 1977; 30: 1781
  • Moore W.E.C., Holdeman L.V. Human fecal flora: the normal flora of 20 Japanese-Hawaiians. Appl. Microbiol. 1974; 27: 961
  • Moore W.E.C., Holdeman L.V. Discussion of current bacteriological investigations of the relationship between intestinal flora, diet and colon cancer. Cancer Res. 1975; 35: 3418
  • Domellöf L., Darby L., Hanson D., Matthews L., Simi B., Reddy B.S. Fecal sterols and bacterialβ-glucuronidase activity: a preliminary metabolic epidemiology study of healthy volunteers from Umea, Sweden, and metropolitan New York. Nutr. Cancer 1982; 4: 120
  • Goldin B.R., Swenson L., Dwyer J., Sexton M.S., Gorbach S.L. Effect of diet andLactobacillus acidophilus supplements on human fecal bacterial enzymes. J. Natl. Cancer Inst. 1980; 61: 255
  • Mastromarino A., Reddy B.S., Wynder E.L. Metabolic epidemiology of colon cancer: enzymic activity of fecal flora. Am. J. Clin. Nutr. 1976; 29: 1455
  • Keathley J.D., Needham C.A. Analysis of the fecal microflora and its enzymic activity in individuals predisposed to colon cancer. Cancer Res. 1982; 42: 4284
  • Hentges D.J., Maier B.R., Burton G.C., Flynn M.A., Tsutakawa R.K. Effect of a high beef diet on the fecal bacterial flora of humans. Cancer Res. 1977; 37: 568
  • Reddy B.S., Mangat S., Weisburger J.H., Wynder E.L. Effect of high-risk diets for colon carcinogenesis on intestinal mucosal and bacterialβ-glucuronidase activity in F344 rats. Cancer Res. 1977; 37: 3533
  • Goldin B.R., Gorbach S.L. The relationship between diet and rat fecal bacterial enzymes implicated in colon cancer. J. Natl. Cancer Inst. 1976; 57: 371
  • Wise A., Mallett A.K., Rowland I.R. Dietary protein and cecal microbial metabolism in the rat. Nutr. Cancer 1983; 4: 267
  • National Research Council. Nutritional requirements for laboratory animals, 3rd ed. NRC, National Academy of Sciences, Washington, D.C. 1978; 7
  • Mallett A.K., Rowland I.R., Wise A. Influence of dietary fats on the rat cecal microflora. Proc. Nutr. Soc. 1983; 43: 7A
  • Mallett A.K., Rowland I.R., Wise A. Dietary fat and microbial biotransformation activities in rat cecal contents. Nutr. Cancer 1984; 6: 86
  • Goldin B.R., Gorbach S.L. Microbial factors and nutrition in carcinogenesis. Adv. Nutr. Res. 1979; 2: 129
  • Takeda H., Kiriyama S. Correlation between the physical properties of dietary fibers and their protective activity against Amaranth toxicity in rats. J. Nutr. 1979; 109: 388
  • Brown R.C., Kelleher J., Losowsky M.S. The effect of pectin on the structure and function of the rat small intestine. Br. J. Nutr. 1979; 42: 357
  • Selvendran R.R. The chemistry of plant cell walls. Dietary Fibre, G.G. Birch, K.J. Parker. Applied Science Publishers, London 1983; 95
  • Baird I.M., Walters R.L., Davies P.S., Hill M.J., Drasar B.S., Southgate D.A.T. The effects of two dietary fibre supplements on gastrointestinal transit, stool weight and frequency, bacterial flora and faecal bile acids in normal subjects. Metabolism 1977; 26: 117
  • Drasar B.S., Jenkins D.J.A., Cummings J.H. The influence of a diet rich in wheat fibre on the human faecal flora. J. Med. Microbiol. 1976; 9: 423
  • London J.F., Clapp N.K., Henke M.A. Effects of dietary bran and the colon carcinogen 1,2-dimethylhydrazine on faecalβ-glucuronidase activity in mice. Fd. Cosmet. Toxicol. 1981; 19: 707
  • Brockett M., Tannock G.W. Dietary influence on microbial activities in the cecum of mice. Can. J. Microb. 1982; 28: 493
  • Bauer H.G., Asp N-G., Öste R., Dahlquvist A., Fredlund P.E. Effect of dietary fiber on the induction of colorectal tumors and fecalβ-glucuronidase activity in the rat. Cancer Res. 1979; 39: 3752
  • Cummings J.H., Southgate D.A.T., Branch W., Houston H., Jenkins D.J.A., James W.P.T. Colonic response to dietary fibre from carrot, cabbage, apple, bran and guar gum. Lancet 1978; i: 5
  • Rowland I.R., Wise A., Mallett A.K. Metabolic profile of caecal microorganisms from rats fed indigestible plant cell-wall components. Fd. Chem. Toxicol. 1983; 21: 25
  • Chang G.W., Fukumoto H.E., Gyory C.P., Block A.P., Kretsch M.J., Calloway D.H. Effects of diet on the gut microflora: fecal enzymes and bacterial metabolites. Fed. Proc., Abstr. 1979; 38: 2846
  • Shiau S.-Y., Chang G.W. Effects of dietary fiber on fecal mucinase andβ-glucuronidase activity in rats. J. Nutr. 1983; 113: 138
  • Glicksman M. Gum Technology in the Food Industry. Academic Press, New York 1969
  • DeBethizy J.D., Sherril J.M., Rickert D.E., Hamm T.E. Effects of pectin-containing diets on hepatic macromolecular covalent binding of 2,6-dinitro-[H3]toluene in Fischer 344 rats. Toxicol. Appl. Pharmacol. 1983; 69: 369
  • Rowland I.R., Mallett A.K., Wise A. A comparison of the activity of five microbial enzymes from rats, mice and hamsters and response to dietary pectin. Toxicol. Appl. Pharmacol. 1983; 69: 143
  • Doyle R.B., Wolfman M., Vargo D., Floch M.H. Alteration in bacterial flora induced by dietary pectin. Am. J. Clin. Nutr. 1981; 34: 635
  • Bauer H.G., Asp N.-G., Dahlquvist A., Fredlund P.E., Nyman M., Oste R. Effect of two kinds of pectin and guar gum on 1,2-dimethylhydrazine initiation of colon tumours and on fecalβ-glucuronidase activity in the rat. Cancer Res. 1981; 41: 2518
  • Chadwick R.W., Copeland M.F., Chadwick C.J. Enhanced pesticide metabolism, a previously unreported effect of dietary fibre in mammals. Fd. Cosmet. Toxicol. 1978; 16: 217
  • Rexová-Benkova L., Markovic O. Pectic enzymes. Adv. Carbohydr. Chem. Biochem. 1976; 33: 323
  • Schink B., Zeikus J.G. Microbial methanol formation: a major end product of pectin metabolism. Curr. Microbiol. 1980; 4: 387
  • Furda I. Unconventional sources of dietary fibre ACS Symposium No. 214, American Chemical Society, Washington, D.C., 1983
  • Nyman M., Asp N.G. Fermentation of dietary fibre components in the rat intestinal tract. Br. J. Nutr. 1982; 47: 357
  • Mizutani T., Benno Y., Mitsuoka T. Effect of dietary fiber on tumorigenesis and longevity: with special reference to the fecal microflora. Nutr. Rep. Int. 1982; 26: 289
  • Kretchmer N. The geography and biology of lactose digestion and malabsorption. Post-Grad. Med. J. Suppl. 1977; 53: 65
  • Leitcher J. Effect of dietary lactose on intestinal lactase activity in young rats. J. Nutr. 1973; 103: 392
  • Kim K.-I., Benevenga N.J., Grummer R.H. In vitro measurement of the lactase activity and the fermentation products of lactose in the cecal and colonic contents of rats fed a control or 30% lactose diet. J. Nutr. 1979; 109: 856
  • Atkinson R.L., Kratzer F.H., Stewart G.F. Lactose in animal and human feeding: a review. J. Dairy Sci. 1957; 40: 1114
  • Mitsuoka T., Kaneuchi C. Ecology of the bifidobacteria. Am. J. Clin. Nutr. 1977; 30: 1799
  • Morishita Y., Fuller R., Coates M.E. Influence of dietary lactose on the gut flora of chicks. Br. Poultry Sci. 1982; 23: 349
  • Dahlquvist A., Gryboski J.D. Inability of the human small-intestinal lactase to hydrolyze lactulose. Biochim. Biophys. Acta 1965; 110: 635
  • Conn H.O., Floch M.H. Effects of lactulose andLactobacillus acidophilus on the fecal flora. Am. J. Clin. Nutr. 1970; 23: 1588
  • Vince A., Zeegen R., Drinkwater J.E., O'Grady F., Dawson A.M. The effect of lactulose on the faecal flora of patients with hepatic encephalopathy. J. Med. Microbiol. 1973; 7: 163
  • Hill M.J. Bacterial adaptation to lactase deficiency. Milk Intolerances and Rejection, J. Delmont. Karger, Basel 1983; 22
  • Leichter J., Tolensky A.F. Effect of dietary lactose on the absorption of protein, fat and calcium in the postweaning rat. Am. J. Clin. Nutr. 1975; 28: 238
  • James W.P.T. Sugar absorption and intestinal motility in children when malnourished and after treatment. Clin. Sci. 1970; 39: 305
  • Eyssen H., DePauw G., Parmentier G. Effect of lactose on Δ5-steroid-reducing activity of intestinal bacteria in gnotobiotic rats. J. Nutr. 1974; 104: 605
  • Wostman B., Bruckner-Kardoss E., Beaver M., Chang L., Madsen D. Effect of dietary lactose at levels comparable to human consumption on cholesterol and bile acid metabolism of conventional and germfree rats. J. Nutr. 1976; 106: 1782
  • Wise A., Rowland I.R., Mallett A.K. Dietary lactose and the metabolic acitivity of the caecal microfloras of weanling and adult rats. Fd. Chem. Toxicol. 1984; 22: 113
  • Wostmann B.S., Beaver M., Chang L., Madsen K. Effect of autoclaving of a lactose-containing diet on cholesterol and bile acid metabolism of conventional germfree rats. Am. J. Clin. Nutr. 1977; 30: 1999
  • Bleyl D.W.R., Schulze J., Grütte F.-K. Toxicological effects of steam-sterilised high lactose diets on conventional and gnotobiotic rats. Arch. Toxicol., Suppl. 1980; 4: 431
  • Horikoshi M., Ohmura M., Gomyo T., Kuwabara Y., Veda S. Effects of browning products on the intestinal microflora of the rat. Prog. Fd. Nutr. Sci. 1981; 5: 223
  • Araujo P.E., Norden A.R. Response of mouse intestinal microflora to dietary cellulose, starch and sucrose. J. Fd. Sci. 1979; 44: 308
  • Bullen C.L., Tearle P.V., Stewart M.G. The effect of “humanised” milk and supplemented breast feeding on the faecal flora of infants. J. Med. Microbiol. 1977; 10: 403
  • Tomkins A.M., Bradley A.K., Oswald S., Drasar B.S. Diet and the faecal microflora of infants, children and adults in rural Nigeria and Urban U.K. J. Hyg., (Cambridge) 1981; 86: 285
  • Bullen C.L., Tearle P.V., Willis A.T. Bifidobacteria in the intestinal tract of infants: anin vivo study. J. Med. Microbiol. 1976; 9: 325
  • Bullen C.L., Tearle P.V. Bifidobacteria in the intestinal tract of infants: anin vitro study. J. Med. Microbiol. 1976; 9: 335
  • Heine W., Zunft H.-J., Müller-Beuthow W., Grütte F.-K. Lactose and protein absorption from breast milk and cows milk preparations and its influence on the intestinal flora. Investigations on two infants with an artificial anus. Acta Paediatr. Scand. 1977; 66: 699
  • Axelsson C.K., Justesen T. Studies of the duodenal and fecal flora in gastrointestinal disorders during treatment with an elemental diet. Gastroenterology 1977; 72: 397
  • Bornside G.H., Cohn I. Stability of normal human fecal flora during a chemically defined, low-residue liquid diet. Ann. Surg. 1975; 181: 58
  • Winitz M., Adams R.F., Seedman D.A., Davis P.N., Jayko L.G., Hamilton J.A. Studies in metabolic nutrition employing chemically defined diets. Am. J. Clin. Nutr. 1970; 23: 546
  • Attebery H.R., Sutter V.L., Finegold S.M. Effect of a partially chemically defined diet on normal human fecal flora. Am. J. Clin. Nutr. 1972; 25: 1391
  • Bounous G., Devroede G. Effects of an elemental diet on human faecal flora. Gastroenterology 1974; 66: 210
  • Tannock G.W., Savage D.C. Influences of dietary and environmental stress on microbial populations in the murine gastrointestinal tract. Infect. Immun. 1974; 9: 591
  • Morishita Y., Oyata M. Studies on the alimentary flora of pig. V. Influence of starvation on the microbial flora. Jap. J. Vet. Sci. 1970; 32: 19
  • Morishita Y., Miyaki K. Effects of age and starvation on the gastrointestinal microflora and the heat resistance of fecal bacteria in rats. Microbiol. Immunol. 1979; 23: 455
  • Landry T.D., Doherty R.A., Gates A.H. Effects of three diets on mercury excretion after methylmercury administration. Bull. Environ. Contam. Toxicol. 1979; 22: 151
  • Rowland I.R., Robinson R.D., Doherty R.A. Influence of diet on methylmercury excretion and demethylation in mice – role of the intestinal microflora. Chemical Toxicology and Clinical Chemistry of Metals, S. Brown, J. Savory. Academic Press, London 1983; 381
  • Al-Shamristani H., Shihab K.M. Variation of biological half-life of methylmercury in man. Arch. Environ. Health 1974; 28: 342
  • Arnold D.L., Krewski D., Munro I.C. Saccharin: a toxicological and historical perspective. Toxicology 1983; 27: 179
  • Lutz W.K., Schlatter C. Saccharin does not bind to DNA of liver or bladder in the rat. Chem.-Biol. Interact. 1977; 19: 253
  • Hicks R.M., Wakefield J. St. J., Chowaniec J. Co-carcinogenic action of saccharin in the chemical induction of bladder cancer. Nature (London) 1973; 243: 347
  • Cohen S.M., Arai M., Jacobs J.B., Friedell G.H. Promoting effects of saccharin and dl-tryptophan in urinary bladder carcinogenesis. Cancer Res. 1979; 39: 1207
  • Nakanishi K., Fukushima S., Hgiwara A., Tamano S., Ito N. Organ-specific promoting effects of phenobarbital sodium and sodium saccharin in the induction of liver and bladder tumors in male F344 rats. J. Natl. Cancer. Inst. 1982; 68: 497
  • Ball L.M., Renwick A.G., Williams R.T. The fate of [14C] saccharin in man, rat and rabbit and of 2-sulphamoyl[14C]-benzoic acid in the rat. Xenobiotica 1977; 7: 189
  • Anderson R.L. Response of male rats to sodium saccharin ingestion: urine composition and mineral balance. Fd. Cosmet. Toxicol. 1979; 17: 195
  • Anderson R.L., Kirkland J.J. The effect of sodium saccharin in the diet on caecal microflora. Fd. Cosmet. Toxicol. 1980; 18: 353
  • Anderson R.L. Effect of saccharin ingestion on stool composition in relation to caecal enlargement and increased stool hydration. Fd. Chem. Toxicol. 1983; 21: 255
  • Anderson R.L. Some changes in gastrointestinal metabolism, urine and bladder in rats, in response to sodium saccharin ingestion. Fd. Chem. Toxicol. 1985; 23: 457
  • Sims J., Renwick A.G. The effects of saccharin on the metabolism of dietary tryptophan to indole, a known carcinogen for the urinary bladder of the rat. Toxicol. Appl. Pharmacol. 1983; 67: 132
  • Yokoyama M.T., Carlson J.R. Microbial metabolites of tryptophan in the intestinal tract with special reference to skatole. Am. J. Clin. Nutr. 1979; 32: 173
  • Hill M.J. Bacteria and human carcinogenesis. Bacteria and Cancer, J. Jeljaszewiz, G. Pulverer, W. Roszkowski. Academic Press, New York 1982; 27
  • Dunning W.F., Curtis M.R. The role of indole in the incidence of 2-acetylaminofluorene-induced bladder cancer in rats. Proc. Soc. Exp. Biol. Med. 1958; 99: 91
  • Oyasu R., Kitajima T., Hopp M.L., Sumie H. Enhancement of urinary bladder tumorigenesis in hamsters by coadministration of 2-acetylaminofluroene and indole. Cancer Res. 1972; 32: 2027
  • Bone E., Tamm A., Hill M.J. The production of urinary phenols by gut bacteria and their possible role in the causation of large bowel cancer. Am. J. Clin. Nutr. 1976; 29: 1448
  • Castledon W.M., Shilkin K.B. Diet, liver function and dimethylhydrazine-induced gastrointestinal tumors in male Wistar rats. Br. J. Cancer 1979; 39: 731
  • Rowland I.R., unpublished results

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.