93
Views
100
CrossRef citations to date
0
Altmetric
Research Article

Toxicology of Quinone-Thioethers

&
Pages 243-270 | Published online: 25 Sep 2008

References

  • Thompson R. H. Naturally Occurring Quinones. Academic Press, London 1971
  • Monks T. J., Walker S. E., Flynn L. M., Conti C. J., DiGiovanni J. Epidermal ornithine decarboxylase induction and mouse skin tumor promotion by quinones. Carcinogenesis 1990; 11: 1795
  • Ames B. N. Dietary carcinogens and anticarcinogens. Science 1983; 221: 1256
  • Chesis P. L., Levin D. E., Smith M. T., Ernster L., Ames B. N. Mutagenicity of quinones: pathways of metabolic activation and detoxification. Proc. Natl. Acad. Sci. U. S. A. 1984; 81: 1696
  • Schuetzle D., Lee S. -C., Prater T. J., Tejada S. B. Polynuclear aromatic hydrocarbon (PAH) derivatives in mutagenic fractions of diesel particulate extracts. Int. J. Environ. Anal. Chem. 1981; 9: 93
  • Schuetzle D. Sampling of vehicle emissions for chemical analysis and biological testing, Environ. Health Perspect 1983; 47: 65
  • Stanford Research Institute (SRI) Database. 1984
  • Raff R., Ettling B. V. Hydroquinone, resorcinol and pyrocatechol, in. Encyclopedia of Chemical Technology. John Wiley & Sons, New York 1966; Vol. 11: 462
  • Final report on the safety assessment of hydroquinone and pyrocatechol. J. Am. Coll. Toxicol. 1986; 5: 123
  • IARC Monographs on the evaluation of the carcinogenic risk of chemicals to humans: tobacco smoking. 1986; 38, IARC, Lyon, France
  • Parke D. V., Williams R. T. Studies in detoxification. The metabolism of benzene containing 14C benzene. Biochem. J. 1953; 54: 231
  • Smith M. T., Evans C. G., Thor H., Orrenius S. Quinone-induced oxidative injury to cells and tissues, in. Oxidative Stress, H. Sies. Academic Press, London 1985; 91
  • Jocelyn P. C. Biochemistry of the SH Group. Academic Press, London 1972
  • Finley K. T. The addition and substitution chemistry of quinones, in. The Chemistry of the Quinonoid Compounds, Part 2, S. Patai. John Wiley & Sons, New York 1974; 877
  • Reed D. J., Meredith M. J. Cellular defense mechanisms against reactive metabolites, in. Bioactivation of Foreign Compounds, M. W. Anders. Academic Press, New York 1985; 71
  • Friedmann E., Marrian D. H., Simon-Ruess I. Sulfhydryl addition compounds of some quinones and related substances and their action on the growth of normal cells. Br. J. Pharmacol. 1948; 3: 335
  • Schubert M. The interaction of thiols and quinones. J. Am. Chem. Soc. 1947; 69: 712
  • Luvalle J. E. The reaction of quinone and sulfite. I. Intermediates. J. Am. Chem. Soc. 1952; 74: 2970
  • Burton H., David S. B. Addition reactions of quinones. I. The reaction of cysteine and thiourea and its derivatives with some quinones. J. Chem. Soc. 1952; 2193
  • Bongartz J. On the reactions of aldehydes, ketones and ketoacids with thioglycolic acid. Ber. Dtsch. Chem. Ges. 1888; 21: 478
  • Posner T. Ueber die Constitution der Phenochi-none, Thiophenochinone und Chinone. Ein Versuch zur einheitlichen Erklarung der Additionsvorgange beim chinon. Justus Liebigs Ann. Chem. 1904; 336: 85
  • Snell J. M., Weissberger A. The reaction of thiol compounds with quinones. J. Am. Chem. Soc. 1939; 61: 450
  • Fieser L. F., Turner R. B. The addition of sulfhydryl derivatives to 2-methyl-1, 4-naphthoquinone. J. Am. Chem. Soc. 1947; 69: 2335
  • Nickerson J. W., Falcone G., Strauss G. Studies on quinone-thioethers. I. Mechanism of formation of thiodone. Biochemistry 1963; 2: 537
  • Marcus S. Antibacterial activity of fuscin [addendum]. Biochem. J. 1948; 43: 528
  • Wilson I., Wardman P., Lin T., Sartorelli A. C. One-electron reduction of 2- and 6-methyl-1, 4-naphthoquinone bioreductive alkylating agents. J. Med. Chem. 1986; 29: 1381
  • Buffinton G. D., Ollinger K., Brunmark A., Cadenas E. DT-diaphorase-catalysed reduction of 1,4-naphthoquinone derivatives and gluta-thionyl-quinone conjugates. Biochem. J. 1989; 257: 561
  • Hansson C., Rorsman H., Rosengren E. 5–5-CysteinyIdopa as a substrate for tyrosinase. Acta Dermatol. 1980; 60: 399
  • Ito S., Novellino E., Chioccara F., Misuraca G., Prota G. Co-polymerization of dopa and cysteinyldopa in melanogenesis. in vitro, Experientia 1980; 36: 822
  • Brown E. R., Finley K. T., Reeves R. L. Steric effects of vicinal substituents on redox equilibria in quinonoid compounds. J. Org. Chem. 1971; 36: 2849
  • Miyata N., Miyahara M., Kamiya S. Chemical studies related to the mechanism of action of 3-terr-butyl-4-hydroxyanisole. Proc. 4th Biennial Meet. Soc. Free Rad. Res. 1988; 214
  • Monks T. J., Lau S. S. Glutathione, γ-glutamyl transpeptidase and the mercapturic acid pathway as modulators of 2-bromohydroquinone oxidation. Toxicol. Appl. Pharmacol. 1990; 103: 557
  • Lau S. S., Monks T. J. Glutathione conjugation as a mechanism of targeting latent quinones to the kidney, in. Biological Reactive Intermediates IV. Molecular and Cellular Effects and Human Impact, C. M. Witmer, R. R. Snyder, D. J. Jollow, G. F. Kalf, J. J. Kocsis, I. G. Sipes. Plenum, New York 1991; 457
  • Bray H. G., Franklin T. J., James S. P. The formation of mercapturic acids. 3.N-Acetylation of 5-substituted cysteines in the rabbit, rat and guinea pig. Biochem. J. 1959; 73: 465
  • Duffel M. W., Jakoby W. B. CysteineS-conjugateN-acetyltransferase from rat kidney microsomes. Mol. Pharmacol. 1982; 21: 444
  • Suzuki S., Tateishi M. Purification and characterization of a rat liver enzyme catalysingN-deacetylation of mercapturic acid conjugates. Drug Me-tab. Dispos. 1981; 9: 573
  • Rotman A., Daly J. W., Creveling C. R. Oxygen-dependent reaction of 6-hydroxy-dopamine, 5,6-dihydroxytryptamine, and related compounds with proteins in vitro: a model for cytotoxicity. Mol. Pharmacol 1976; 12: 887
  • Eyer P., Lierheimer E., Strosar M. Site and mechanism of covalent binding of 4-dimethylaminophenol to human hemoglobin, and its implications to the functional properties. Mol. Pharmacol. 1983; 24: 282
  • Huggett A., Blair I. A. The mechanism of paracetamol-induced hapatotoxicity: implications for therapy. Hum. Toxicol. 1983; 2: 399
  • Streeter A. J., Harvison P. J., Nelson S. D., Baillie T. A. Cross-linking of protein molecules by the reactive metabolism of arctaminophen. N, J. J. Kocsis, D. J. Jollow, C. M. Witmer, J. O. Nelson, R. Synder. Plenum, New York 1985; 727, acetyl-p-benzoquinone imine, and related quinoid compounds, inBiological Reactive Intermediates III: Mechanism of Action in Animal Models and Human Disease
  • Wefers H., Sies H. Hepatic low-level chemiluminescence during redox cycling of menadione and the menadione-glutathione conjugate: relation to glutathione and NAD(P)H:quinone reductase (DT-dia-phorase) activity. Arch. Biochem. Biophys. 1983; 224: 568
  • Brown P. C., Dulik D. M., Jones T. W. The toxicity of menadione (2-methyl-1, 4-naphthoquinone) and two thioether conjugates studied with isolated renal epithelial cells. Arch. Biochem. Biophys. 1991; 285: 187
  • Sies H., Akerboom T., Ishikawa T. Glutathione conjugates: transport from the cell and intracellular effects, in. Glutathione Centennial. Molecular Perspectives and Clinical Implications, N. Taniguchi, T. Higashi, Y. Sakamoto, A. Meister. Academic Press, New York 1989; 357
  • Sies H. Intracellular effects of glutathione conjugates and their transport from the cell, in. Glutathione Conjugation Mechanisms and Biological Significance, H. Sies, B. Ketterer. Academic Press, New York 1988; 176
  • Ernster L. DT-Diaphorase. Methods Enzymol. 1967; 10: 309
  • Westbrook C., Lin Y. -M., Jarabak J. NADP-linked 15-hydroxyprostaglandin dehydrogenase from human placenta: partial purification and characterization of the enzyme and identification of an inhibitor in placental tissue. Biochem. Biophys. Res. Commun. 1977; 76: 943
  • Lin Y. -M., Jarabak J. Isolation of two proteins with 9-keto-prostaglandin reductase and NADP-linked 15-hydroxyprostaglandin dehydrogenase activities and studies on their inhibition, Biochem. Biophys. Res. Commun. 1978; 81: 1227
  • Hassid A., Levine L. Multiple molecular forms of prostaglandin 15-hydroxydehydrogenase and 9-ketoreductase in chicken kidney. Prostaglandins 1977; 13: 503
  • Wermuth B. Purification and properties of a NADPH-dependent carbonyl reductase from human brain. J. Biol. Chem. 1981; 256: 1206
  • Chang D. G.-B, Tai H. -H. Prostaglandin 9-ketoreductase/typell 15-hydroxyprostaglandin dehydrogenase is not a prostaglandin specific enzyme. Biochem. Biophys. Res. Commun. 1981; 101: 898
  • Jarabak J., Luncsford A., Berkantz D. Substrate specificity of three prostaglandin dehydrogenases. Prostaglandins 1983; 26: 849
  • Chung H., Harvey R. G., Armstrong R. N., Jarabak J. Polycyclic aromatic hydrocarbon quinones and glutathione thioethers as substrates and inhibitors of the human placental NADP-linked 15-hydroxyprostaglandin dehydrogenase. J. Biol. Chem. 1987; 262: 12, 448
  • Chung H., Fried J., Williams-Ashman E., Jarabak J. Glutathione mixed disulfide inhibitors of the human placental NADP-linked 15-hydroxyprostaglandin dehydrogenase. Prostaglandins 1987; 33: 383
  • Jarabak J. Polycyclic aromatic hydrocarbon qui-none-mediated oxidation reduction cycling catalyzed by a human placental NADPH-linked carbonyl reductase. Arch. Biochem. Biophys. 1991; 291: 334
  • Hinson J. A., Kadlubar F. F. Glutathione transferase in the detoxification of drug and carcinogen metabolites, in. Glutathione Conjugation. Mechanisms and Biological Significance, H. Sies, B. Ketterer. Academic Press, New York 1988; 236
  • Wolf C. R., Lewis A. D., Carmichael J., Ansell J., Adams D. J., Hickson I. J., Harris A., Balkwill F. R., Hayes J. D. Glutathione. S, T. J. Mantle, C. B. Pickett, J. D. Hayes. Taylor and Francis, London 1987; 199, transferase expression in normal and tumor cells resistant to cytotoxic drugs, inGlutathione S-Transferase and Carcinogenesis
  • Lewis A. D., Hayes J. D., Wolf C. R. Glutathione and glutathione-dependent enzymes in ovarian adenocarcinoma cell lines derived from a patient before and after the onset of drug resistance: intrinsic differences and cell cycle effects. Carcinogenesis 1988; 9: 1283
  • Hayes J. D., Pickett C. B., Mantle T. J. Glutathione S-Transferases and Drug Resistance. Taylor and Francis, London 1990
  • Motoyama N., Kulkarni A. P., Hodgson E., Dauterman W. C. Endogenous inhibitors of glutathione 5-transferases in house flies. Pestic. Biochem. Physiol. 1978; 9: 255
  • Dierickx P. J. Interaction of benzo- and naphthoquinones with soluble glutathioneS-transferases from rat liver. Pharmacol. Res. Commun. 1983; 15: 581
  • Vos R. M. E., van Ommen B., Hoekstein M. S. J., de Goede J. H. M., van Bladeren P. J. Irreversible inhibition of rat hepatic glutathioneS-transferase isoenzymes by a series of structurally related quinones. Chem. Biol. Int. 1989; 71: 381
  • van Ommen B., Den Besten C., Rutten A. C. M., Ploemen J. H. T. M., Vos R. M. E., Muller M., van Bladeren P. J. Active site-directed irreversible inhibition of glutathioneS-transferases by the glutathione conjugate of tetrachloro-1, 4-benzoquinone. J. Biol. Chem. 1988; 263: 12, 939
  • van Ommen B., Ploemen J. H. T. M., Ruven H. J., Vos R. M. E., Bogaards J. J. P., van Berkel W. J. H., van Bladeren P. J. Studies on the active site of rat glutathioneS-transferase isoenzyme 4–4. Chemical modification by tetrachloro-1, 4-benzoquinone and its glutathione conjugate. Eur. J. Biochem. 1989; 181: 423
  • van Ommen B., Ploemen J. P., Bogaards J. J. P., Monks T. J., Lau S. S., van Bladeren P. J. Irreversible inhibition of rat glutathione 5-transferase 1–1 by quinones and their glutathione conjugates: structure-activity relationship and mechanism. Biochem, J. 1991; 276: 661
  • Kiese M. Methemoglobinemia: A Comprehensive Treatise. CRC Press, Boca Raton, FL 1974
  • Eyer P., Kiese M. Biotransformation of 4-dimethylaminophenol: reaction with glutathione, and some properties of the reaction products. Chem. Biol. Int. 1976; 14: 165
  • Kiese M., Szinicz L., Thiel N., Weger N. Ferrihemoglobin and kidney lesions in rats produced by 4-aminophenol or 4-dimethylaminophenol. Arch. Toxicol. 1975; 34: 337
  • Szinicz L. L., Weger N. Effects of 4-dimethylaminophenol in rat kidneys, isolated kidney tubules and hepatocytes. Xenobiotica 1980; 10: 611
  • Monks T. J., Lau S. S., Highet R. J., Gillette J. R. Glutathione conjugates of 2-bromohydroquinone are nephrotoxic. Drug Metab. Dispos. 1985; 13: 553
  • Monks T. J., Highet R. J., Lau S. S. 2-Bromo-(diglutathion-S-yl) hydroquinone nephrotoxicity: physiological, biochemical and electrochemical determinants. Mol. Pharmacol. 1988; 34: 492
  • Lau S. S., Hill B. A., Highet R. J., Monks T. J. Sequential oxidation and glutathione addition to 1, 4-benzoquinone: correlation of toxicity with increased glutathione substitution. Mol. Pharmacol. 1988; 34: 829
  • Mertens J. J. W. M., Temmink J. H. M., van Bladeren P. J., Jones T. W., Lo H. -H., Lau S. S., Monks T. J. Inhibition of γ-glutamyl transferase potentiates the nephrotoxicity of glutathione conjugated chlorohydroquinones. Toxicol. Appl. Pharmacol 1991; 110: 45
  • Lau S. S., Jones T. W., Highet R. J., Hill B. A., Monks T. J. Differences in the localization and extent of the renal proximal tubular necrosis caused by mercapturic acid and glutathione conjugates of menadione and 1, 4-naphthoquinone. Toxicol. Appl. Pharmacol. 1990; 104: 334
  • Tateshi M., Suzuki S., Shimizu H. Cysteine conjugate b˜-lyase in rat liver. A novel enzyme catalyzing formation of thiol-containing metabolites of drugs. J. Biol. Chem. 1978; 253: 8854
  • Jakoby W. B., Stevens J., Duffel M. W., Weisiger R. A. The terminal enzymes of mercapturate formation and the thiomethyl shunt. Rev. Biochem. Toxicol. 1985; 6: 97
  • Lock E. A. The nephrotoxicity of haloalkane and haloalkene glutathione conjugates in. Selectivity and Molecular Mechanisms of Toxicity, F. DeMattes, E. A. Lock. Macmillan. 1987; 59, New York
  • Lock E. A. Studies on the mechanism of nephrotoxicity and nephrocarcinogenicity of halogenated alkenes. Crit. Rev. Toxicol. 1988; 19: 23
  • Anders M. W., Lash L. H., Dekant W., Elfarra A. A., Dohn D. R. Biosynthesis and biotransformation of glutathioneS-conjugates to toxic metabolites. Crit. Rev. Toxicol. 1988; 18: 311
  • Dekant W., Vamvakas S., Anders M. W. Bioactivation of nephrotoxic haloalkenes by glutathione conjugation: formation of toxic and mutagenic intermediates by cysteine conjugate b˜-lyase. Drug Metab. Rev. 1989; 20: 43
  • Monks T. J., Highet R. J., Chu P. S., Lau S. S. Synthesis and nephrotoxicity of 6-bromo-2, 5-dihydroxythiophenol. Mol. Pharmacol. 1988; 34: 15
  • Lau S. S., Monks T. J. The invivo disposition of 2-bromo14C-hydroquinone and the effect of γ-glutamyl transpeptidase inhibition. Toxicol. Appl. Pharmacol. 1990; 103: 121
  • Monks T. J., Jones T. W., Hill B. A., Lau S. S. Nephrotoxicity of 2-bromo-(cystein-S-yl)hydroquinone and 2-bromo-(N-acetylcystein-S-yl)hydroquinone thioethers. Toxicol. Appl. Pharmacol. 1991; 111: 279
  • Monks T. J., Highet R. J., Lau S. S. Oxidative cyclization, 1, 4-benzothiazine formation and dimerization of 2-bromo-3-(glutathion-5-yl)hydro-quinone. Mol. Pharmacol. 1990; 38: 121
  • Prota G. Some new aspects of eumelanin chemistry. Prog. Clin. Biol. Med. 1988; 256: 101
  • Redegeld F. A. M., Hofman G. A., van der Loo P. G. F., Koster A. S., Noordhoek J. Nephrotoxicity of the GSH conjugate of menadione (2-methyl-1,4-naphthoquinone) in the isolated perfused rat kidney. Role of metabolism by γ-Glutamyl transpeptidase and probenecid-sensitive transport. J. Pharmacol. Exp. Ther. 1989; 256: 665
  • Nakai N., Hase. J. Chem. Pharm. Bull. 1968; 16: 2334
  • Green C. R., Ham K. N., Tange J. D. Kidney lesions induced in rats by 4-aminophenol. Br. Med. J. 1969; 1: 162
  • Newton J. F., Kuo C. -H., Gemborys M. W., Mudge G. H., Hook J. B. Nephrotoxicity of 4-aminophenol, a metabolite of acetaminophen in the F344 rat. Toxicol. Appl. Pharmacol. 1982; 65: 336
  • Eckert K. -G., Eyer P., Sonnenbichler J., Zetl I. Activation and detoxication of aminophenols. II. Synthesis and structural elucidation of various thiol addition products of 1,4-benzoquinoneimine andN-acetyl-1,4-benzoquinoneimine. Xenobiotica 1990; 20: 333
  • Gartland K. P. R., Bonner F. W., Timbrell J. A., Nicholson J. K. Biochemical characterization of 4-aminophenol-induced nephrotoxic lesions in the F344 rat. Arch. Toxicol. 1989; 63: 97
  • Fowler L. M., Moore R. D., Foster J. R., Lock E. A. Nephrotoxicity of 4-aminophenol glutathione conjugate. Hum. Exp. Toxicol. 1991; 10: 451
  • Klos C., Koob M., Kramer C., Dekant W. p-Aminophenol nephrotoxicity: biosynthesis of toxic glutathione conjugates. Toxicol. Appl. Pharmacol. 1992; 115: 98
  • Kari F. W. Toxicology and carcinogenesis studies of hydroquinone in F344/N rats and B6C3F1 mice (gavage studies) National Toxicology Program Technical Report, 366, U. S. Department of Health and Human Services, PHS, NIH. 1989
  • Shibata M. -A., Hirose M., Tanaka H., Asakawa E., Shirai T., Ito N. Induction of renal cell tumors in rats and mice, and enhancement of hepatocellular tumor development in mice after long-term hydroquinone treatment. Jpn. J. Cancer Res. 1991; 82: 1211
  • Tunek A., Piatt K. L., Przybylski M., Oesch F. Multi-step metabolic activation of benzene. Effect of superoxide dismutase on covalent binding to microsomal macromolecules, and identification of glutathione conjugates using high pressure liquid chromatography and field desorption mass spectrometry. Chem. Biol. Int. 1980; 33: 1
  • Lunte S. M., Kissinger P. T. Detection and identification of sulfhydryl conjugates of. p. 1983; 195, benzoquinone in microsomal incubations of benzene and phenol, Chem. Biol. Int., Al
  • Sawahata T., Neal R. A. Biotransformation of phenol to hydroquinone and catechol by rat liver microsomes. Mol. Pharmacol. 1983; 23: 453
  • Eckert K. -G., Eyer P., Sonnenbichler J., Zetl I. Activation and detoxication of aminophenols. III. Synthesis and structural elucidation of various glutathione addition products to 1,4-benzoquinone. Xenobiotica 1990; 20: 351
  • Nerland D. E., Pierce W. M. Identification ofN-acetyl-S-(2,5-dihydroxyprienyl)-L-cysteine as a urinary metabolite of benzene, phenol, and hydroquinone. Drug Metab. Dispos. 1990; 18: 958
  • Tajima K., Hashizaki M., Yamamoto K., Mizutani T. Identification and structure characterization of S-containing metabolites of 3-tert-butyl-4-hydroxyanisole in rat urine and liver microsomes. Drug Metab. Dispos. 1991; 19: 1028
  • Tsuda H., Fukushima S., Imaida K., Sakata T., Ito N. Modification of carcinogenesis by antioxidants and other compounds. Acta Pharmacol. Toxicol. 1984; 55: 125
  • Li J. J., Li S. A., Klicka J. K., Parson J. A., Lam L. K. T. Relative carcinogenic activity of various synthetic and natural estrogens in the hamster kidney. Cancer Res. 1983; 43: 5200
  • Li S. A., Klicka J. K., Li J. J. Estrogen 2–4-hydroxylase activity and catechol estrogen formation in the hamster kidney: implications for estrogen carcinogenesis. Cancer Res. 1985; 45: 181
  • Liehr J. G. 2-Fluoroestradiol: separation of estrogenicity from carcinogenicity. Mol. Pharmacol. 1983; 23: 278
  • Marks F., Hecker E. Metabolism and mechanism of action of estrogens. XII. Structure and mechanism of formation of water-soluble and protein-bound metabolites of estrone in rat liver microsomes in vitro and in vivo. Biochem. Biophys. Acta 1969; 187: 250
  • Kuss E. Water-soluble metabolites of oestradiol-17b˜. III. Separation and identification of 1- and 4-glutathione thioethers of 2,3-dihydroxy-oestratrienes. Hoppe-Seylers, Z. Physiol. Chem. 1969; 350: 95
  • Kuss E. Microsomal oxidation of estradiol-17b˜. 2-Hydroxylation and 1- or 4-thioether formation with and without 17-hydroxyl dehydrogenation. Hoppe-Seylers, Z. Physiol. Chem. 1971; 352: 817
  • Hoppen H. -O., Siekmann L., Breuer H. Metabolism of oestrone in the microsomal fraction of rat liver. Hoppe-Seylers Z. Physiol. Chem. 1974; 355: 1304
  • Elce J. S. Metabolism of a glutathione conjugate of 2-hydroxyoestradiol by rat liver and kidney preparations. in vitro, Biochem. J. 1970; 116: 913
  • Elce J. S. Metabolism of a glutathione conjugate of 2-hydroxyoestradiol-17B in the adult male rat. Biochem. J. 1972; 126: 1067
  • Elce J. S., Harris J. Conjugation of 2-hydroxy-estradiol-17b˜ [1,3,5 (10)-estratriene-2,3, 17b˜-triol] with glutathione in the rat. Steroids 1971; 18: 583
  • Elce J. S., Chandra J. Estrogen mercapturic acid in the adult male rat. Steroids 1973; 22: 699
  • Ball P., Haupt M., Knuppen R. Biogenesis and metabolism of catechol estrogens. in vitro, in Catechol Estrogens, G. R. Merriam, M. B. Lip-Sett. Raven Press, New York 1983; 91, Eds
  • Tannebaum M. Ultrastructural pathology of human renal cell tumors. Pathol. Ann. 1971; 6: 249
  • deKernion J. B. Campbell's Urology, 5th ed., P. C. Welsh, et al. W. B. Saunders, Philadelphia 1986; 1294
  • Gonzalez A., Oberley T. O., Li J. J. Morphological and immunohistochemical studies of the estrogen-induced Syrian hamster renal tumor: probable cell of origin. Cancer Res. 1989; 49: 1020
  • Ross D., Larsson R., Norbeck K., Ryhage R., Moldeus P. Characterization and mechanism of formation of reactive products formed during peroxidase-catalysed oxidation ofp-phenetidine. Mol. Pharmacol. 1985; 27: 277
  • Andersson B., Larsson R., Rahimtula A., Moldeus P. Hydroperoxide-dependent activation ofp-phenetidine catalyzed by prostaglandin synthase and other peroxidases. Biochem. Pharmacol. 1983; 32: 1045
  • Andersson B. R., Larsson A., Rahimtula A., Moldeus P. Prostaglandin synthase and horseradish peroxidase catalysed DNA binding of p-phenetidine. Carcinogenesis 1984; 5: 161
  • Larsson R., Boutin J., Moldeus P. Peroxidase-catalysed metabolic activation of xenobiotics in. Metabolism of Xenobiotics, J. W. Gorrod, H. Oelschlager, J. Caldwell. Taylor and Francis, New York 1988; 43
  • Kriz W., Kaissling B. Structural organization of the mammalian kidney, in. The Kidney: Physiology and Pathophysiology, D. N. Seldin, G. Giebisch. Raven Press, New York 1985; 265
  • Tate S. S. Enzymes of mercapturic acid formation, in. Enzymatic Basis of Detoxication, W. B. Jacoby. Academic Press, New York 1980; 95
  • Lau S. S., Jones T. W., Sioco R., Hill B. A., Pinon R. K., Monks T. J. Species differences in renal γ-glutamyl transpeptidase do not correlate with susceptibility to 2-bromo-(diglutathion-S-yl)hydroquinone nephrotoxicity. Toxicology 1990; 64: 291
  • Yamashita K., Totani K., Iwaki Y., Takamisawa I., Tateishi N., Higashi T., Sakamoto Y., Kobata A. Comparative study of the sugar chains of γ-glutamyl-transpeptidases purified from human hepatocellular carcinoma and from human liver. J. Biochem. 1989; 105: 728
  • Rajpert-Demeyts E., Heisterkamp N., Groffen J. Cloning and nucleotide sequence of human γ-Glutamyl transpeptidase. Proc. Natl. Acad. Sci. U. S. A. 1988; 85: 8840
  • Pawlak A., Lahuna O., Bulle F., Suzuki A., Ferry N., Siegrist S., Chikhi N., Chobert M. N., Guellaen G., Laperche Y. γ-Glutamyl transpeptidase: a single copy gene in the rat and a multigene family in the human genome. J. Biol. Chem. 1988; 263: 9913
  • Reyes E. Rat brain γ-Glutamyltranspeptidase: effects of alcohol. Res. Commun. Chem. Pathol. Pharmacol. 1978; 21: 145
  • Reyes E., Barela T. D. Isolation and purification of multiple forms of γ-Glutamyl transpeptidase from rat brain. Neurochem. Res. 1980; 5: 159
  • Antoine B., Visvikis A., Thioudellet C., Rahimi-Pour A., Strazielle N., Wellman M., Siest G. Electrophoretic mobility of γ-glutamyltransferase in rat liver subcellular fractions. Evidence for structure difference from the kidney enzyme. Biochem. J. 1989; 262: 535
  • Meister A., Tate S. S., Ross L. L. Membrane-bound γ-glutamyl transpeptidase, in. The Enzymes of Biological Membranes, A. Martonosi. Plenum, New York 1976; 315
  • Augusteyn R. C. Protein modification of cataract: possible oxidative mechanisms, in. Mechanisms of Cataract Formation in the Human Lens, G. Duncan. Academic Press, London 1981; 71
  • Spector A. Towards a solution of senile cataracts. Invest. Opthamol. Vis. Sci. 1984; 25: 130
  • Pethig R., Gascoyne P. R. C., McLaughlin J. A., Szent-Gyorgi A. Ascorbate-quinone interactions: electrochemical, free radical, and cytotoxic properties. Proc. Natl. Acad. Sci. U. S. A. 1983; 80: 129
  • Wolff S. P., Spector A. Pro-oxidant activation of ocular reductants. II. Lens epithelial cell cytotoxicity of a dietary quinone is associated with a stable free radical formed with glutathione in vitro. Exp. Eye Res. 1987; 45: 791
  • Takahashi N., Schreiber J., Fischer V., Mason R. Formation of glutathione-conjugated semiquinones by the reaction of quinones with glutathione; an ESR study. Arch. Biochem. Biophys. 1987; 252: 41
  • Rao D. N. R., Takahashi N., Mason R. P. Characterization of a glutathione conjugate of the 1,4-benzosemiquinone-free radical formed in rat hepatocytes. J. Biol. Chem. 1988; 263: 17, 981
  • Rees J. R., Pirie A. Possible reactions of 1, 2-naphthoquinone in the eye. Biochem. J. 1967; 102: 853
  • Wells P. G., Wilson B., Lubek B. M. In vivo studies on the biochemical mechanism of naphthalene cataractogenesis. Toxicol. Appl. Pharmacol. 1989; 99: 466
  • Hinson J. A., Monks T. J., Highet R. J., Hong M., Pohl L. R. 3-(Glutathion-S-yl) acetaminophen. A biliary metabolite of acetaminophen. Drug Metab. Dispos. 1982; 10: 47
  • Rosen G. M., Rauckman E. J., Ellington S. P., Dahlin D. C., Christie J. L., Nelson S. D. Reduction and glutathione conjugation reaction ofN-acetyl-p-benzoquinone imine and two dimethylated analogues. Mol. Pharmacol., 25: 151, 1984
  • Shichi H., Gaasterland D., Jensen N. M., Nebert D. W. Ah locus: genetic differences in susceptibility to cataracts induced by acetaminophen. Science 1978; 200: 539
  • Shichi H., Tanaka M., Jensen N. M., Nebert D. W. Genetic differences in cataract and other ocular abnormalities induced by paracetamol and naphthalene. Pharmacology 1980; 20: 229
  • Lubek B. M., Avaria M., Basu P. K., Wells P. G. Pharmacological studies on thein vivo catar-actogenicity of acetaminophen in mice and rabbits. Fund. Appl. Toxicol. 1988; 10: 596
  • Lubek B. M., Basu P. K., Wells P. G. Metabolic evidence for the involvement of enzymatic bioactivation in the cataractogenicity of acetaminophen in genetically susceptible (C57BL/6) and resistant (DBA/2) murine strains. Toxicol. Appl. Pharmacol. 1988; 94: 487
  • Orlowski M., Sessa G., Green J. P. γ-Glutamyl transpeptidase in brain capillaries: possible site of a blood-brain barrier for amino acids. Science 1974; 184: 184
  • Djuricic B. M., Mrsulja B. B. Enzymatic activity of the brain: microvessels vs. total forebrain homogenate. Brain Res. 1977; 138: 561
  • DeBault L., Cancilla P. A. γ-Glutamyl transpeptidase in isolated brain endothelial cells: induction by glial cells. in vitro, Science 1980; 207: 653
  • Shine H. D., Haber B. Immunocytochemical localization of γ-glutamyl transpeptidase in the rat CNS. Brain Res. 1981; 217: 339
  • Varga V., Somogyi J., Langley O. K., et al. Localization of γ-Glutamyl transpeptidase in neural tissue, in. Gamma-Glutamyltransferases: Advances in Biochemical Pharmacology, G. Siest, C. Heusghem. Masson, Paris 1982; 31
  • Baranczyk-Kuzma A., Audus K. L., Borchardt R. T. Catecholamine metabolizing enzymes of bovine brain microvessel endothelial cell monolayers. J. Neurochem. 1986; 46: 1956
  • Minn A., Besagni D. Uptake of L-glutamine into synaptosomes. Is the γ-glutanyl cycle involved?. Life Sci. 1983; 33: 619
  • Ghersi-Egea J. F., Minn A., Seist G. Changes of cerebral gamma-glutamyl-transferase activities after treatment with exogenous inducers. Neurochem. Res. 1987; 12: 357
  • Wakamatsu K., Ito S., Nagatsu T. Cys-teinyldopamine is not incorporated into neurome-lanin. Neurosci. Lett. 1991; 131: 57
  • Wooley D. W., Shaw E. A biochemical and pharmacological suggestion about certain mental disorders. Proc. Natl. Acad. Sci. U. S. A. 1954; 40: 228
  • Gaddum J. H. Tryptamine receptors. J. Physiol. (London) 1953; 119: 363
  • McLsaac W. M., Page I. H. The metabolism of serotonin (5-hydroxytryptamine). J. Biol. Chem. 1959; 234: 858
  • Ericksen N., Martin G. M., Benditt E. P. Oxidation of the indole nucleus of 5-hydroxytryptamine and the formation of pigments: isolation and partial characterization of a dimer of 5-hydroxytryptamine. J. Biol. Chem. 1960; 235: 1662
  • Baumgarten H. G., Bjorklund A., Lachenmayer L., Nobin A., Stenevi U. Long-lasting selective depletion of brain serotonin by 5,6-dihydrox-ytryptamine. Acta Physiol. Scand. 1971; 66: 1
  • Baumgarten H. G., Evetts K. D., Holman R. B., Iverson L. L., Vogt M., Wilson G. Effects of 5,6-dihydroxytryptamine on monoaminergic neurones in the central nervous system of the rat. J. Neurochem. 1972; 19: 1587
  • Baumgarten H. G., Goethert M., Holstein A. F., Schlossberger H. G. Chemical sympathectomy induced by 5,6-dihydroxytryptamine. Z. Zellforsch. 1972; 128: 115
  • Perry E. K., Marshall E. F., Blessed G. Decreased imipramine binding in the brains of patients with depressive illness. Br. J. Psychiatry 1983; 142: 188
  • Bowen D. M., Allen S. J., Benton J. S., Goodhardt M. J., Haan M. J., Palmer A. M., Sims N. R., Smith C. C. T., Spillane J. A., Esiri M. M., Neary D., Snowden J. S., Wilcock G. K., Davison A. N. Biochemical assesment of serotonergic and cholinergic dysfunction and cerebral atrophy in Alzheimer's disease. J. Neurochem. 1983; 41: 266
  • Palmer A. M., Francis P. T., Benton J. S., Sims N. R., Mann D. M. A., Neary D., Snowden J. S., Bowen D. M. Presynaptic serotonergic dysfunction in patients with Alzheimer's disease. J. Neurochem. 1987; 48: 8
  • Volicer L., Langlais P. J., Matson W. R., Mark K. A., Gamache P. H. Serotoninergic system in dementia of the Alzheimer type. Abnormal forms of 5-hydroxytryptophan and serotonin in cerebrospinal fluid. Arch. Neurol. 1985; 42: 1158
  • Matson W. R., Langlais P., Volicer L., Gamache P. H., Bird E., Mark K. A. n-Electrode three-dimensional chromatography with electrochemical detection for determination of neurotransmitters. Clin. Chem. 1984; 30: 1477
  • Chen J. -C, Crino P. B., Schnepper P. W., To A. C. S., Volicer L. Increased serotonin efflux by a partially oxidized serotonin: tryptamine-4,5-dione. J. Pharmacol. Exp. Ther. 1989; 250: 141
  • Wolf W. A., Bobik A. Effects of 5,6-dihydroxytryptamine on the release, synthesis and storage of serotonin: studies using rat brain synaptosomes. J. Neurochem. 1988; 50: 534
  • Slivka A., Spina M. B., Cohen G. Reduced and oxidized glutathione in human and monkey brain. Neurosci. Lett. 1987; 74: 112
  • Wong K. -S., Dryhurst G. Tryptamine-4, 5-dione: properties and reaction with glutathione. Bioorg. Chem. 1990; 18: 253
  • Singh S., Dryhurst G. Reactions of the serotonergic neurotoxin 5,6-dihydroxy-tryptamine with glutathione. J. Org. Chem. 1991; 56: 1767
  • Zhang F., Dryhurst G. Electrochemical and enzyme-mediated oxidation of tetrahydropapavero-line. J. Org. Chem. 1991; 56: 7113
  • Fa Z., Dryhurst G. Interactions of salsolinol with oxidative enzymes. Biochem. Pharmacol. 1991; 42: 2209
  • Fa A., Dryhurst G. Oxidation chemistry of the endogenous central nervous system alkaloid salsolinol. I. Electrochemical studies. Bioorg. Chem. 1991; 19: 384
  • Wahley M. W., Govindachari T. R. The Pictet-Spengler synthesis of tetrahydroisoquinolines and related compounds. Org. React. 1951; 6: 151
  • Sjoquist B., Liljequist S., Engel J. Increased salsolinol levels in rat striatum and limbic forebrain following chronic ethanol treatment. J. Neurochem. 1982; 39: 259
  • Myers W. D., Mackenzie L., Ng K. T., Singer G., Smythe G. A., Duncan M. W. Salsolinol and dopamine in rat medial basal hypothalamus after chronic ethanol exposure. Life Sci. 1984; 36: 309
  • Matsubara K., Fukishima S., Fukui Y. A systematic regional study of brain salsolinol levels during and immediately following chronic ethanol injection in rats. Brain Res. 1987; 413: 336
  • Collins M. A., Nijm W. P., Borge G., Teas G., Goldfarb C. Dopamine-related tetrahydroiso-quinolines: significant urinary excretion by alcoholics after alcohol consumption. Science 1979; 206: 1184
  • Sjoquist B., Borg S., Kvande H. Catecholamine derived compounds in urine and cerebrospinal fluid from alcoholics during and after longstanding intoxication. Subst. Alcohol Actions/Misuse 1981; 7: 63
  • Cohen G., Collins M. A. Alkaloids from catecholamines in adrenal tissue: possible role in addiction. Science 1970; 167: 1749
  • Collins M. A. A possible neurochemical mechanism for brain and nerve damage associated with chronic alcoholism. Trends Pharmacol. Sci. 1982; 3: 373
  • Davis V. E., Walsh M. J. Alcohol, amines and alkaloids: a possible biochemical basis for alcohol addiction. Science 1970; 167: 1005
  • Myers R. D., Melchior C. L. Alcohol drinking: abnormal intake caused by tetrahydropapavero-line in brain. Science 1977; 196: 554
  • Lin L. Y., Kumagai Y., Cho A. K. Enzymatic and chemical demethylenation of (mefhylenedioxy)amphetamine and (methylenedioxy) meth-amphetamine by rat brain microsomes. Chem. Res. Toxicol. 1992; 5: 401
  • Fukuto J. M., Kumagai Y., Cho A. K. Determination of the mechanism of demethylenation of (methylenedioxy)phenyl compounds by cytochrome P450 using deuterium isotope effects. J. Med. Chem. 1991; 34: 2871
  • Johnson M., Elayan I., Hanson G. R., Foltz R. L., Gibb J. W., Lim H. K. Effects of 3,4-dihydroxymethamphetamine and 2,4,5-trihy-droxymethamphetamine, two metabolites of 3,4-methylenedioxymethamphetamine, on central serotonergic and dopaminergic systems. J. Pharm. Exp. Ther. 1992; 261: 447
  • Patel N., Kumagai Y., Unger S. E., Fukuto J. M., Cho A. K. Transformation of dopamine and a-methyldopamine by NE 108–15 cells: formation of thiol adducts. Chem. Res. Toxicol. 1991; 4: 421
  • Hiramatsu M., Kumagai Y., Unger S. E., Cho A. K. Metabolism of methylene-dioxy-methamphetamine: formation of dihydroxymetham-phetamine and a quinone identified as its glutathione adduct. J. Pharm. Exp. Ther. 1990; 254: 521
  • Singleton V. L., Zaya J., Trousdale E., Salgues M. Caftaric acid in grapes and conversion to a reaction product during processing. Vitis 1984; 23: 113
  • Singleton V. L., Salgues M., Zaya J., Trousdale E. Disappearance and conversion to products of enzymatic oxidation in grape must and wine. Am. J. Enol. Vine 1985; 36: 50

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.