1,233
Views
89
CrossRef citations to date
0
Altmetric
Review Article

Regulation of p53 - insights into a complex process

&
Pages 367-392 | Received 27 Jul 2009, Accepted 09 Oct 2009, Published online: 20 Nov 2009

References

  • Abe Y, Oda-Sato E, Tobiume K, Kawauchi K, Taya Y, Okamoto K, Oren M and Tanaka N. 2008. Hedgehog signaling overrides p53-mediated tumor suppression by activating Mdm2. Proc Natl Acad Sci USA 105:4838–4843.
  • Abida WM, Nikolaev A, Zhao W, Zhang W and Gu W. 2007. FBXO11 promotes the Neddylation of p53 and inhibits its transcriptional activity. J Biol Chem 282:1797–1804.
  • Adams MM and Carpenter PB. 2006. Tying the loose ends together in DNA double strand break repair with 53BP1. Cell Div 1:19.
  • Allende-Vega N, Dias S, Milne D and Meek D. 2005. Phosphorylation of the acidic domain of Mdm2 by protein kinase CK2. Mol Cell Biochem 274: 85–90.
  • Alsheich-Bartok O, Haupt S, Alkalay-Snir I, Saito S, Appella E and Haupt Y. 2008. PML enhances the regulation of p53 by CK1 in response to DNA damage. Oncogene 27:3653–3661.
  • An W, Kim J and Roeder RG. 2004. Ordered cooperative functions of PRMT1, p300, and CARM1 in transcriptional activation by p53. Cell 117:735–748.
  • Ando K, Ozaki T, Yamamoto H, Furuya K, Hosoda M, Hayashi S, Fukuzawa M and Nakagawara A. 2004. Polo-like kinase 1 (Plk1) inhibits p53 function by physical interaction and phosphorylation. J Biol Chem 279:25549–25561.
  • Arai S, Matsushita A, Du K, Yagi K, Okazaki Y and Kurokawa R. 2007. Novel homeodomain-interacting protein kinase family member, HIPK4, phosphorylates human p53 at serine 9. FEBS Lett 581:5649–5657.
  • Ard PG, Chatterjee C, Kunjibettu S, Adside LR, Gralinski LE and McMahon SB. 2002. Transcriptional regulation of the mdm2 oncogene by p53 requires TRRAP acetyltransferase complexes. Mol Cell Biol 22:5650–5661.
  • Ashcroft M, Kubbutat MH and Vousden KH. 1999. Regulation of p53 function and stability by phosphorylation. Mol Cell Biol 19:1751–1758.
  • Ashcroft M, Ludwig RL, Woods DB, Copeland TD, Weber HO, MacRae EJ and Vousden KH. 2002. Phosphorylation of HDM2 by Akt. Oncogene 21:1955–1962.
  • Asher G, Lotem J, Sachs L, Kahana C and Shaul Y. 2002. Mdm-2 and ubiquitin-independent p53 proteasomal degradation regulated by NQO1. Proc Natl Acad Sci USA 99:13125–13130.
  • Barboza JA, Iwakuma T, Terzian T, El-Naggar AK and Lozano G. 2008. Mdm2 and Mdm4 loss regulates distinct p53 activities. Mol Cancer Res 6:947–954.
  • Batta K and Kundu TK. 2007. Activation of p53 function by human transcriptional coactivator PC4: role of protein–protein interaction, DNA bending, and posttranslational modifications. Mol Cell Biol 27:7603–7614.
  • Baudier J, Delphin C, Grunwald D, Khochbin S and Lawrence JJ. 1992. Characterization of the tumor suppressor protein p53 as a protein kinase C substrate and a S100b-binding protein. Proc Natl Acad Sci USA 89:11627–11631.
  • Bech-Otschir D, Kraft R, Huang X, Henklein P, Kapelari B, Pollmann C and Dubiel W 2001. COP9 signalosome-specific phosphorylation targets p53 to degradation by the ubiquitin system. EMBO J 20:1630–1639.
  • Bergamaschi D, Samuels Y, Sullivan A, Zvelebil M, Breyssens H, Bisso A, Del Sal G, Syed N, Smith P, Gasco M, Crook T and Lu X. 2006. iASPP preferentially binds p53 proline-rich region and modulates apoptotic function of codon 72-polymorphic p53. Nat Genet 38:1133–1141.
  • Bernal JA, Luna R, Espina A, Lazaro I, Ramos-Morales F, Romero F, Arias C, Silva A, Tortolero M and Pintor-Toro JA. 2002. Human securin interacts with p53 and modulates p53-mediated transcriptional activity and apoptosis. Nat Genet 32:306–311.
  • Bernardi R, Scaglioni PP, Bergmann S, Horn HF, Vousden KH and Pandolfi PP. 2004. PML regulates p53 stability by sequestering Mdm2 to the nucleolus. Nat Cell Biol 6:665–672.
  • Bischoff JR, Anderson L, Zhu Y, Mossie K, Ng L, Souza B, Schryver B, Flanagan P, Clairvoyant F, Ginther C, Chan CS, Novotny M, Slamon DJ and Plowman GD. 1998. A homologue of Drosophila aurora kinase is oncogenic and amplified in human colorectal cancers. EMBO J 17:3052–3065.
  • Blattner C, Tobiasch E, Litfen M, Rahmsdorf HJ and Herrlich P. 1999. DNA damage induced p53 stabilization: no indication for an involvement of p53 phosphorylation. Oncogene 18:1723–1732.
  • Blattner C, Hay T, Meek DW and Lane DP. 2002. Hypophosphorylation of Mdm2 augments p53 stability. Mol Cell Biol 22:6170–6182.
  • Boehme KA, Kulikov R and Blattner C. 2008. p53 stabilization in response to DNA damage requires Akt/PKB and DNA-PK. Proc Natl Acad Sci USA 105:7785–7790.
  • Bothner B, Lewis WS, DiGiammarino EL, Weber JD, Bothner SJ and Kriwacki RW. 2001. Defining the molecular basis of Arf and Hdm2 interactions. J Mol Biol 314:263–277.
  • Boyd SD, Tsai KY and Jacks T. 2000. An intact HDM2 RING-finger domain is required for nuclear exclusion of p53. Nat Cell Biol 2:563–568.
  • Brady M, Vlatkovic N and Boyd MT. 2005. Regulation of p53 and MDM2 activity by MTBP. Mol Cell Biol 25:545–553.
  • Bruins W, Zwart E, Attardi LD, Iwakuma T, Hoogervorst EM, Beems RB, Miranda B, van Oostrom CT, van den Berg J, van den Aardweg GJ, Lozano G, van Steeg H, Jacks T and de Vries A. 2004. Increased sensitivity to UV radiation in mice with a p53 point mutation at Ser389. Mol Cell Biol 24:8884–8894.
  • Bulavin DV, Saito S, Hollander MC, Sakaguchi K, Anderson CW, Appella E and Fornace AJ, Jr. 1999. Phosphorylation of human p53 by p38 kinase coordinates N-terminal phosphorylation and apoptosis in response to UV radiation. EMBO J 18:6845–6854.
  • Cai X and Liu X. 2008. Inhibition of Thr-55 phosphorylation restores p53 nuclear localization and sensitizes cancer cells to DNA damage. Proc Natl Acad Sci USA 105:16958–16963.
  • Carter S, Bischof O, Dejean A and Vousden KH. 2007. C-terminal modifications regulate MDM2 dissociation and nuclear export of p53. Nat Cell Biol 9: 428–435.
  • Cecchinelli B, Porrello A, Lazzari C, Gradi A, Bossi G, D’Angelo M, Sacchi A and Soddu S. 2006. Ser58 of mouse p53 is the homologue of human Ser46 and is phosphorylated by HIPK2 in apoptosis. Cell Death Differ 13:1994–1997.
  • Chan WM, Mak MC, Fung TK, Lau A, Siu WY and Poon RY. 2006. Ubiquitination of p53 at multiple sites in the DNA-binding domain. Mol Cancer Res 4:15–25.
  • Chang NS, Doherty J, Ensign A, Schultz L, Hsu LJ and Hong Q. 2005. WOX1 is essential for tumor necrosis factor-, UV light-, staurosporine-, and p53-mediated cell death, and its tyrosine 33-phosphorylated form binds and stabilizes serine 46-phosphorylated p53. J Biol Chem 280:43100–43108.
  • Chao C, Hergenhahn M, Kaeser MD, Wu Z, Saito S, Iggo R, Hollstein M, Appella E and Xu Y. 2003. Cell type- and promoter-specific roles of Ser18 phosphorylation in regulating p53 responses. J Biol Chem 278:41028–41033.
  • Chao C, Wu Z, Mazur SJ, Borges H, Rossi M, Lin T, Wang JY, Anderson CW, Appella E and Xu Y. 2006. Acetylation of mouse p53 at lysine 317 negatively regulates p53 apoptotic activities after DNA damage. Mol Cell Biol 26:6859–6869.
  • Chehab NH, Malikzay A, Appel M and Halazonetis TD. 2000. Chk2/hCds1 functions as a DNA damage checkpoint in G(1) by stabilizing p53. Genes Dev 14:278–288.
  • Chen D, Kon N, Li M, Zhang W, Qin J and Gu W. 2005. ARF-BP1/Mule is a critical mediator of the ARF tumor suppressor. Cell 121:1071–108.
  • Chen D, Zhang Z, Li M, Wang W, Li Y, Rayburn ER, Hill DL, Wang H and Zhang R. 2007. Ribosomal protein S7 as a novel modulator of p53-MDM2 interaction: binding to MDM2, stabilization of p53 protein, and activation of p53 function. Oncogene 26:5029–5037.
  • Chen D, Zhang J, Li M, Rayburn ER, Wang H and Zhang R. 2009. RYBP stabilizes p53 by modulating MDM2. EMBO Rep 10:166–172.
  • Chen J, Marechal V and Levine AJ. 1993. Mapping of the p53 and mdm-2 interaction domains. Mol Cell Biol 13:4107–4114.
  • Chen L and Chen J. 2003. MDM2-ARF complex regulates p53 sumoylation. Oncogene 22:5348–5357.
  • Chuikov S, Kurash JK, Wilson JR, Xiao B, Justin N, Ivanov GS, McKinney K, Tempst P, Prives C, Gamblin SJ, Barlev NA and Reinberg D. 2004. Regulation of p53 activity through lysine methylation. Nature 432:353–360.
  • Cordenonsi M, Montagner M, Adorno M, Zacchigna L, Martello G, Mamidi A, Soligo S, Dupont S and Piccolo S. 2007. Integration of TGF-beta and Ras/MAPK signaling through p53 phosphorylation. Science 315:840–843.
  • Dai MS and Lu H. 2004. Inhibition of MDM2-mediated p53 ubiquitination and degradation by ribosomal protein L5. J Biol Chem 279:44475–44482.
  • Dai MS, Zeng SX, Jin Y, Sun XX, David L and Lu H. 2004. Ribosomal protein L23 activates p53 by inhibiting MDM2 function in response to ribosomal perturbation but not to translation inhibition. Mol Cell Biol 24:7654–7668.
  • Dai MS, Sun XX and Lu H. 2008. Aberrant expression of nucleostemin activates p53 and induces cell cycle arrest via inhibition of MDM2. Mol Cell Biol 28:4365–4376.
  • Danes CG, Wyszomierski SL, Lu J, Neal CL, Yang W and Yu D. 2008. 14-3-3 zeta down-regulates p53 in mammary epithelial cells and confers luminal filling. Cancer Res 68:1760–1767.
  • Das S, Raj L, Zhao B, Kimura Y, Bernstein A, Aaronson SA and Lee SW. 2007. Hzf Determines cell survival upon genotoxic stress by modulating p53 transactivation. Cell 130:624–637.
  • Dauth I, Kruger J and Hofmann TG. 2007. Homeodomain-interacting protein kinase 2 is the ionizing radiation-activated p53 serine 46 kinase and is regulated by ATM. Cancer Res 67:2274–2279.
  • Demonacos C, Krstic-Demonacos M and La Thangue NB. 2001. A TPR motif cofactor contributes to p300 activity in the p53 response. Mol Cell 8:71–84.
  • de Toledo SM, Azzam EI, Dahlberg WK, Gooding TB and Little JB. 2000. ATM complexes with HDM2 and promotes its rapid phosphorylation in a p53-independent manner in normal and tumor human cells exposed to ionizing radiation. Oncogene 19:6185–6193.
  • Di Stefano V, Soddu S, Sacchi A and D’Orazi G. 2005. HIPK2 contributes to PCAF-mediated p53 acetylation and selective transactivation of p21Waf1 after nonapoptotic DNA damage. Oncogene 24:5431–5442.
  • Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA, Jr., Butel JS and Bradley A. 1992. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356:215–221.
  • D’Orazi G, Cecchinelli B, Bruno T, Manni I, Higashimoto Y, Saito S, Gostissa M, Coen S, Marchetti A, Del Sal G, Piaggio G, Fanciulli M, Appella E and Soddu S. 2002. Homeodomain-interacting protein kinase-2 phosphorylates p53 at Ser 46 and mediates apoptosis. Nat Cell Biol 4:11–19.
  • Dornan D and Hupp TR. 2001. Inhibition of p53-dependent transcription by BOX-I phospho-peptide mimetics that bind to p300. EMBO Rep 2:139–144.
  • Dornan D, Bheddah S, Newton K, Ince W, Frantz GD, Dowd P, Koeppen H, Dixit VM and French DM. 2004. COP1, the negative regulator of p53, is overexpressed in breast and ovarian adenocarcinomas. Cancer Res 64:7226–7230.
  • Dumaz N, Milne DM and Meek DW. 1999. Protein kinase CK1 is a p53-threonine 18 kinase which requires prior phosphorylation of serine 15. FEBS Lett 463:312–316.
  • Espinosa JM and Emerson BM. 2001. Transcriptional regulation by p53 through intrinsic DNA/chromatin binding and site-directed cofactor recruitment. Mol Cell 8:57–69.
  • Esser C, Scheffner M and Hohfeld J. 2005. The chaperone-associated ubiquitin ligase CHIP is able to target p53 for proteasomal degradation. J Biol Chem 280:27443–27448.
  • Fan J, Ren H, Jia N, Fei E, Zhou T, Jiang P, Wu M, Wang G. 2008. DJ-1 decreases Bax expression through repressing p53 transcriptional activity. J Biol Chem 283:4022–4030
  • Fang S, Jensen JP, Ludwig RL, Vousden KH and Weissman AM. 2000. Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J Biol Chem 275:8945–8951.
  • Farmer G, Colgan J, Nakatani Y, Manley JL and Prives C. 1996. Functional interaction between p53, the TATA-binding protein (TBP), and TBP-associated factors in vivo. Mol Cell Biol 16:4295–4304.
  • Feng J, Tamaskovic R, Yang Z, Brazil DP, Merlo A, Hess D and Hemmings BA. 2004. Stabilization of Mdm2 via decreased ubiquitination is mediated by protein kinase B/Akt-dependent phosphorylation. J Biol Chem 279:35510–35517.
  • Feng L, Lin T, Uranishi H, Gu W and Xu Y. 2005. Functional analysis of the roles of posttranslational modifications at the p53 C terminus in regulating p53 stability and activity. Mol Cell Biol 25:5389–5395.
  • Fernandez-Fernandez MR, Veprintsev DB and Fersht AR. 2005. Proteins of the S100 family regulate the oligomerization of p53 tumor suppressor. Proc Natl Acad Sci USA 102:4735–4740.
  • Foo RS, Nam YJ, Ostreicher MJ, Metzl MD, Whelan RS, Peng CF, Ashton AW, Fu W, Mani K, Chin SF, Provenzano E, Ellis I, Figg N, Pinder S, Bennett MR, Caldas C and Kitsis RN. 2007. Regulation of p53 tetramerization and nuclear export by ARC. Proc Natl Acad Sci USA 104:20826–20831.
  • Freeman DJ, Li AG, Wei G, Li HH, Kertesz N, Lesche R, Whale AD, Martinez-Diaz H, Rozengurt N, Cardiff RD, Liu X and Wu H. 2003. PTEN tumor suppressor regulates p53 protein levels and activity through phosphatase-dependent and -independent mechanisms. Cancer Cell 3:117–130.
  • Gamper AM and Roeder RG. 2008. Multivalent binding of p53 to the STAGA complex mediates coactivator recruitment after UV damage. Mol Cell Biol 28:2517–2527.
  • Garkavtsev IV, Kley N, Grigorian IA and Gudkov AV. 2001. The Bloom syndrome protein interacts and cooperates with p53 in regulation of transcription and cell growth control. Oncogene 20:8276–8280.
  • Gatti A, Li HH, Traugh JA and Liu X. 2000. Phosphorylation of human p53 on Thr-55. Biochemistry 39:9837–9842.
  • Geyer RK, Yu ZK and Maki CG. 2000. The MDM2 RING-finger domain is required to promote p53 nuclear export. Nat Cell Biol 2:569–573.
  • Ghosh M, Weghorst K and Berberich SJ. 2005. MdmX inhibits ARF mediated Mdm2 sumoylation. Cell Cycle 4:604–608.
  • Goldberg Z, Vogt Sionov R, Berger M, Zwang Y, Perets R, Van Etten RA, Oren M, Taya Y and Haupt Y. 2002. Tyrosine phosphorylation of Mdm2 by c-Abl: implications for p53 regulation. EMBO J 21:3715–3727.
  • Golubovskaya VM, Finch R and Cance WG. 2005. Direct interaction of the N-terminal domain of focal adhesion kinase with the N-terminal transactivation domain of p53. J Biol Chem 280:25008–25021.
  • Gomez-Lazaro M, Fernandez-Gomez FJ and Jordan J. 2004. p53: twenty five years understanding the mechanism of genome protection. J Physiol Biochem 60:287–307.
  • Gostissa M, Hengstermann A, Fogal V, Sandy P, Schwarz SE, Scheffner M and Del Sal G. 1999. Activation of p53 by conjugation to the ubiquitin-like protein SUMO-1. EMBO J 18: 6462–6471.
  • Gotz C, Kartarius S, Scholtes P, Nastainczyk W and Montenarh M. 1999. Identification of a CK2 phosphorylation site in mdm2. Eur J Biochem 266:493–501.
  • Gotz C, Kartarius S, Schwar G and Montenarh M. 2005. Phosphorylation of mdm2 at serine 269 impairs its interaction with the retinoblastoma protein. Int J Oncol 26:801–808.
  • Green DR and Kroemer G. 2009. Cytoplasmic functions of the tumour suppressor p53. Nature 458:1127–1130.
  • Gronroos E, Terentiev AA, Punga T and Ericsson J. 2004. YY1 inhibits the activation of the p53 tumor suppressor in response to genotoxic stress. Proc Natl Acad Sci USA 101:12165–12170.
  • Grossman SR, Deato ME, Brignone C, Chan HM, Kung AL, Tagami H, Nakatani Y and Livingston DM. 2003. Polyubiquitination of p53 by a ubiquitin ligase activity of p300. Science 300:342–344.
  • Hamamori Y, Sartorelli V, Ogryzko V, Puri PL, Wu HY, Wang JY, Nakatani Y and Kedes L. 1999. Regulation of histone acetyltransferases p300 and PCAF by the bHLH protein twist and adenoviral oncoprotein E1A. Cell 96:405–413.
  • Hammond EM, Denko NC, Dorie MJ, Abraham RT and Giaccia AJ. 2002. Hypoxia links ATR and p53 through replication arrest. Mol Cell Biol 22:1834–1843.
  • Han JM, Park BJ, Park SG, Oh YS, Choi SJ, Lee SW, Hwang SK, Chang SH, Cho MH and Kim S. 2008. AIMP2/p38, the scaffold for the multi-tRNA synthetase complex, responds to genotoxic stresses via p53. Proc Natl Acad Sci USA 105:11206–11211.
  • Hanson S, Kim E and Deppert W. 2005. Redox factor 1 (Ref-1) enhances specific DNA binding of p53 by promoting p53 tetramerization. Oncogene 24:1641–1647.
  • Hasegawa K and Yoshikawa K. 2008. Necdin regulates p53 acetylation via Sirtuin1 to modulate DNA damage response in cortical neurons. J Neurosci 28:8772–8784.
  • Haupt Y, Maya R, Kazaz A and Oren M. 1997. Mdm2 promotes the rapid degradation of p53. Nature 387:296–299.
  • Hengstermann A, Whitaker NJ, Zimmer D, Zentgraf H and Scheffner M. 1998. Characterization of sequence elements involved in p53 stability regulation reveals cell type dependence for p53 degradation. Oncogene 17:2933–2941.
  • Higashimoto Y, Saito S, Tong XH, Hong A, Sakaguchi K, Appella E and Anderson CW. 2000. Human p53 is phosphorylated on serines 6 and 9 in response to DNA damage-inducing agents. J Biol Chem 275:23199–23203.
  • Higashitsuji H, Itoh K, Sakurai T, Nagao T, Sumitomo Y, Masuda T, Dawson S, Shimada Y, Mayer RJ anf Fujita J. 2005. The oncoprotein gankyrin binds to MDM2/HDM2, enhancing ubiquitylation and degradation of p53. Cancer Cell 8:75–87.
  • Higashitsuji H, Masuda T, Liu Y, Itoh K and Fujita J. 2007. Enhanced deacetylation of p53 by the anti-apoptotic protein HSCO in association with histone deacetylase 1. J Biol Chem 282:13716–13725.
  • Hirao A, Kong YY, Matsuoka S, Wakeham A, Ruland J, Yoshida H, Liu D, Elledge SJ and Mak TW. 2000. DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science 287:1824–1827.
  • Hjerrild M, Milne D, Dumaz N, Hay T, Issinger OG and Meek D. 2001. Phosphorylation of murine double minute clone 2 (MDM2) protein at serine-267 by protein kinase CK2 in vitro and in cultured cells. Biochem J 355:347–356.
  • Hofmann TG, Moller A, Sirma H, Zentgraf H, Taya Y, Droge W, Will H and Schmitz ML. 2002. Regulation of p53 activity by its interaction with homeodomain-interacting protein kinase-2. Nat Cell Biol 4:1–10.
  • Homer C, Knight DA, Hananeia L, Sheard P, Risk J, Lasham A, Royds JA and Braithwaite AW. 2005. Y-box factor YB1 controls p53 apoptotic function. Oncogene 24:8314–8325.
  • Honda R and Yasuda H. 1999. Association of p19(ARF) with Mdm2 inhibits ubiquitin ligase activity of Mdm2 for tumor suppressor p53. EMBO J 18:22–27.
  • Horn HF and Vousden KH. 2008. Cooperation between the ribosomal proteins L5 and L11 in the p53 pathway. Oncogene 27:5774–5784.
  • Hsieh JK, Chan FS, O’Connor DJ, Mittnacht S, Zhong S and Lu X. 1999. RB regulates the stability and the apoptotic function of p53 via MDM2. Mol Cell 3:181–193.
  • Hu MC, Qiu WR and Wang YP. 1997. JNK1, JNK2 and JNK3 are p53 N-terminal serine 34 kinases. Oncogene 15:2277–2287.
  • Huang C, Ma WY, Maxiner A, Sun Y and Dong Z. 1999. p38 kinase mediates UV-induced phosphorylation of p53 protein at serine 389. J Biol Chem 274:12229–12235.
  • Huang J, Perez-Burgos L, Placek BJ, Sengupta R, Richter M, Dorsey JA, Kubicek S, Opravil S, Jenuwein T and Berger SL. 2006. Repression of p53 activity by Smyd2-mediated methylation. Nature 444:629–632.
  • Huang J, Sengupta R, Espejo AB, Lee MG, Dorsey JA, Richter M, Opravil S, Shiekhattar R, Bedford MT, Jenuwein T and Berger SL. 2007. p53 is regulated by the lysine demethylase LSD1. Nature 449:105–108.
  • Huang Q, Raya A, DeJesus P, Chao SH, Quon KC, Caldwell JS, Chanda SK, Izpisua-Belmonte JC and Schultz PG. 2004. Identification of p53 regulators by genome-wide functional analysis. Proc Natl Acad Sci USA 101:3456–3461.
  • Hublitz P, Kunowska N, Mayer UP, Muller JM, Heyne K, Yin N, Fritzsche C, Poli C, Miguet L, Schupp IW, van Grunsven LA, Potiers N, van Dorsselaer A, Metzger E, Roemer K and Schule R. 2005. NIR is a novel INHAT repressor that modulates the transcriptional activity of p53. Genes Dev 19:2912–2924.
  • Hupp TR, Sparks A and Lane DP. 1995. Small peptides activate the latent sequence-specific DNA binding function of p53. Cell 83:237–245.
  • Imbriano C, Gurtner A, Cocchiarella F, Di Agostino S, Basile V, Gostissa M, Dobbelstein M, Del Sal G, Piaggio G and Mantovani R. 2005. Direct p53 transcriptional repression: in vivo analysis of CCAAT-containing G2/M promoters. Mol Cell Biol 25:3737–3751.
  • Inoue T, Geyer RK, Howard D, Yu ZK and Maki CG. 2001. MDM2 can promote the ubiquitination, nuclear export, and degradation of p53 in the absence of direct binding. J Biol Chem 276:45255–45260.
  • Itahana K, Mao H, Jin A, Itahana Y, Clegg HV, Lindstrom MS, Bhat KP, Godfrey VL, Evan GI and Zhang Y. 2007. Targeted inactivation of Mdm2 RING finger E3 ubiquitin ligase activity in the mouse reveals mechanistic insights into p53 regulation. Cancer Cell 12:355–366.
  • Ito A, Lai CH, Zhao X, Saito S, Hamilton MH, Appella E and Yao TP. 2001. p300/CBP-mediated p53 acetylation is commonly induced by p53-activating agents and inhibited by MDM2. EMBO J 20:1331–1340.
  • Ito A, Kawaguchi Y, Lai CH, Kovacs JJ, Higashimoto Y, Appella E and Yao TP. 2002. MDM2-HDAC1-mediated deacetylation of p53 is required for its degradation. EMBO J 21:6236–6245.
  • Jackson MW and Berberich SJ. 2000. MdmX protects p53 from Mdm2-mediated degradation. Mol Cell Biol 20:1001–1007.
  • Jackson MW, Agarwal MK, Agarwal ML, Agarwal A, Stanhope-Baker P, Williams BR and Stark GR. 2004. Limited role of N-terminal phosphoserine residues in the activation of transcription by p53. Oncogene 23:4477–4487.
  • Jansson M, Durant ST, Cho EC, Sheahan S, Edelmann M, Kessler B and La Thangue NB. 2008. Arginine methylation regulates the p53 response. Nat Cell Biol 10:1431–1439.
  • Jardine LJ, Milne DM, Dumaz N and Meek DW. 1999. Phosphorylation of murine p53, but not human p53, by MAP kinase in vitro and in cultured cells highlights species-dependent variation in post-translational modification. Oncogene 18:7602–7607.
  • Jayaraman L, Murthy KG, Zhu C, Curran T, Xanthoudakis S and Prives C. 1997. Identification of redox/repair protein Ref-1 as a potent activator of p53. Genes Dev 11:558–570.
  • Jayaraman L, Moorthy NC, Murthy KG, Manley JL, Bustin M and Prives C. 1998. High mobility group protein-1 (HMG-1) is a unique activator of p53. Genes Dev 12:462–472.
  • Jenkins LM, Yamaguchi H, Hayashi R, Cherry S, Tropea JE, Miller M, Wlodawer A, Appella E and Mazur SJ. 2009. Two distinct motifs within the p53 transactivation domain bind to the Taz2 domain of p300 and are differentially affected by phosphorylation. Biochemistry 48:1244–1255.
  • Jin A, Itahana K, O’Keefe K and Zhang Y. 2004. Inhibition of HDM2 and activation of p53 by ribosomal protein L23. Mol Cell Biol 24:7669–7680.
  • Jin Y, Zeng SX, Lee H and Lu H. 2004. MDM2 mediates p300/CREB-binding protein-associated factor ubiquitination and degradation. J Biol Chem 279:20035–20043.
  • Jones SN, Roe AE, Donehower LA and Bradley A. 1995. Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 378:206–208.
  • Jones SN, Ansari-Lari MA, Hancock AR, Jones WJ, Gibbs RA, Donehower LA and Bradley A. 1996. Genomic organization of the mouse double minute 2 gene. Gene 175:209–213.
  • Juan LJ, Shia WJ, Chen MH, Yang WM, Seto E, Lin YS and Wu CW. 2000. Histone deacetylases specifically down-regulate p53-dependent gene activation. J Biol Chem 275:20436–20443.
  • Jung H, Seong HA and Ha H. 2007. NM23-H1 tumor suppressor and its interacting partner STRAP activate p53 function. J Biol Chem 282:35293–35307.
  • Jung H, Seong HA and Ha H. 2008. Critical role of cysteine residue 81 of macrophage migration inhibitory factor (MIF) in MIF-induced inhibition of p53 activity. J Biol Chem 283:20383–20396.
  • Juven T, Barak Y, Zauberman A, George DL and Oren M. 1993. Wild type p53 can mediate sequence-specific transactivation of an internal promoter within the mdm2 gene. Oncogene 8:3411–3416.
  • Kachirskaia I, Shi X, Yamaguchi H, Tanoue K, Wen H, Wang EW, Appella E and Gozani O. 2008. Role for 53BP1 Tudor domain recognition of p53 dimethylated at lysine 382 in DNA damage signaling. J Biol Chem 283:34660–34666.
  • Kaeser MD and Iggo RD. 2002. Chromatin immunoprecipitation analysis fails to support the latency model for regulation of p53 DNA binding activity in vivo. Proc Natl Acad Sci USA 99:95–100.
  • Kamijo T, Weber JD, Zambetti G, Zindy F, Roussel MF and Sherr CJ. 1998. Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2. Proc Natl Acad Sci USA 95:8292–8297.
  • Kanai M, Hanashiro K, Kim SH, Hanai S, Boulares AH, Miwa M and Fukasawa K. 2007. Inhibition of Crm1-p53 interaction and nuclear export of p53 by poly(ADP-ribosyl)ation. Nat Cell Biol 9:1175–1183.
  • Katayama H, Sasai K, Kawai H, Yuan ZM, Bondaruk J, Suzuki F, Fujii S, Arlinghaus RB, Czerniak BA and Sen S. 2004. Phosphorylation by aurora kinase A induces Mdm2-mediated destabilization and inhibition of p53. Nat Genet 36:55–62.
  • Kawai H, Wiederschain D and Yuan ZM. 2003. Critical contribution of the MDM2 acidic domain to p53 ubiquitination. Mol Cell Biol 23:4939–4947.
  • Kawai H, Lopez-Pajares V, Kim MM, Wiederschain D and Yuan ZM. 2007. RING domain-mediated interaction is a requirement for MDM2’s E3 ligase activity. Cancer Res 67:6026–6030.
  • Keller DM, Zeng X, Wang Y, Zhang QH, Kapoor M, Shu H, Goodman R, Lozano G, Zhao Y and Lu H. 2001. A DNA damage-induced p53 serine 392 kinase complex contains CK2, hSpt16, and SSRP1. Mol Cell 7:283–292.
  • Khanal P, Lee KY, Kang KW, Kang BS and Choi HS. 2009. Tpl-2 kinase downregulates the activity of p53 and enhances signaling pathways leading to activation of activator protein 1 induced by EGF. Carcinogenesis 30:682–689.
  • Khosravi R, Maya R, Gottlieb T, Oren M, Shiloh Y and Shkedy D. 1999. Rapid ATM-dependent phosphorylation of MDM2 precedes p53 accumulation in response to DNA damage. Proc Natl Acad Sci USA 96:14973–14977.
  • Kim EJ and Um SJ 2008. Thymine-DNA glycosylase interacts with and functions as a coactivator of p53 family proteins. Biochem Biophys Res Commun 377:838–842.
  • Kim MM, Wiederschain D, Kennedy D, Hansen E and Yuan ZM. 2007. Modulation of p53 and MDM2 activity by novel interaction with Ras-GAP binding proteins (G3BP). Oncogene 26:4209–4215.
  • Kimura SH and Nojima H. 2002. Cyclin G1 associates with MDM2 and regulates accumulation and degradation of p53 protein. Genes Cells 7:869–880.
  • Knights CD, Catania J, Di Giovanni S, Muratoglu S, Perez R, Swartzbeck A, Quong AA, Zhang X, Beerman T, Pestell RG and Avantaggiati ML. 2006. Distinct p53 acetylation cassettes differentially influence gene-expression patterns and cell fate. J Cell Biol 173:533–544.
  • Ko LJ, Shieh SY, Chen X, Jayaraman L, Tamai K, Taya Y, Prives C and Pan ZQ. 1997. p53 is phosphorylated by CDK7-cyclin H in a p36MAT1-dependent manner. Mol Cell Biol 17:7220–7229.
  • Kobet E, Zeng X, Zhu Y, Keller D and Lu H. 2000. MDM2 inhibits p300-mediated p53 acetylation and activation by forming a ternary complex with the two proteins. Proc Natl Acad Sci USA 97:12547–12552.
  • Krummel KA, Lee CJ, Toledo F and Wahl GM. 2005. The C-terminal lysines fine-tune P53 stress responses in a mouse model but are not required for stability control or transactivation. Proc Natl Acad Sci USA 102:10188–10193.
  • Kruse JP and Gu W. 2009. MSL2 promotes Mdm2-independent cytoplasmic localization of p53. J Biol Chem 284:3250–3263.
  • Kubbutat MH, Jones SN and Vousden KH. 1997. Regulation of p53 stability by Mdm2. Nature 387:299–303.
  • Kulikov R, Boehme KA and Blattner C. 2005. Glycogen synthase kinase 3-dependent phosphorylation of Mdm2 regulates p53 abundance. Mol Cell Biol 25:7170–7180.
  • Kulikov R, Winter M and Blattner C. 2006. Binding of p53 to the central domain of Mdm2 is regulated by phosphorylation. J Biol Chem 281:28575–28583.
  • Kurash JK, Lei H, Shen Q, Marston WL, Granda BW, Fan H, Wall D, Li E and Gaudet F. 2008. Methylation of p53 by Set7/9 mediates p53 acetylation and activity in vivo. Mol Cell 29:392–400.
  • Kurki S, Latonen L and Laiho M. 2003. Cellular stress and DNA damage invoke temporally distinct Mdm2, p53 and PML complexes and damage-specific nuclear relocalization. J Cell Sci 116:3917–3925.
  • Kurki S, Peltonen K, Latonen L, Kiviharju TM, Ojala PM, Meek D and Laiho M. 2004. Nucleolar protein NPM interacts with HDM2 and protects tumor suppressor protein p53 from HDM2-mediated degradation. Cancer Cell 5:465–475.
  • Laine A and Ronai Z. 2007. Regulation of p53 localization and transcription by the HECT domain E3 ligase WWP1. Oncogene 26:1477–1483.
  • Laine A, Topisirovic I, Zhai D, Reed JC, Borden KL and Ronai Z. 2006. Regulation of p53 localization and activity by Ubc13. Mol Cell Biol 26:8901–8913.
  • Lambert PF, Kashanchi F, Radonovich MF, Shiekhattar R and Brady JN. 1998. Phosphorylation of p53 serine 15 increases interaction with CBP. J Biol Chem 273:33048–33053.
  • Laptenko O and Prives C. 2006. Transcriptional regulation by p53: one protein, many possibilities. Cell Death Differ 13:951–961.
  • Le Cam L, Linares LK, Paul C, Julien E, Lacroix M, Hatchi E, Triboulet R, Bossis G, Shmueli A, Rodriguez MS, Coux O and Sardet C. 2006. E4F1 is an atypical ubiquitin ligase that modulates p53 effector functions independently of degradation. Cell 127:775–788.
  • Lee D, Kim JW, Seo T, Hwang SG, Choi EJ and Choe J. 2002. SWI/SNF complex interacts with tumor suppressor p53 and is necessary for the activation of p53-mediated transcription. J Biol Chem 277:22330–22337.
  • Lee J, Beliakoff J and Sun Z. 2007. The novel PIAS-like protein hZimp10 is a transcriptional co-activator of the p53 tumor suppressor. Nucleic Acids Res 35:4523–4534.
  • Lee MH, Lee SW, Lee EJ, Choi SJ, Chung SS, Lee JI, Cho JM, Seol JH, Baek SH, Kim KI, Chiba T, Tanaka K, Bang OS and Chung CH. 2006. SUMO-specific protease SUSP4 positively regulates p53 by promoting Mdm2 self-ubiquitination. Nat Cell Biol 8:1424–1431.
  • Leng RP, Lin Y, Ma W, Wu H, Lemmers B, Chung S, Parant JM, Lozano G, Hakem R and Benchimol S. 2003. Pirh2, a p53-induced ubiquitin-protein ligase, promotes p53 degradation. Cell 112:779–791.
  • Leung KM, Po LS, Tsang FC, Siu WY, Lau A, Ho HT and Poon RY. 2002. The candidate tumor suppressor ING1b can stabilize p53 by disrupting the regulation of p53 by MDM2. Cancer Res 62:4890–4893.
  • Leveillard T and Wasylyk B. 1997. The MDM2 C-terminal region binds to TAFII250 and is required for MDM2 regulation of the cyclin A promoter. J Biol Chem 272:30651–30661.
  • Leveillard T, Andera L, Bissonnette N, Schaeffer L, Bracco L, Egly JM and Wasylyk B. 1996. Functional interactions between p53 and the TFIIH complex are affected by tumour-associated mutations. EMBO J 15:1615–1624.
  • Li AG, Piluso LG, Cai X, Wei G, Sellers WR and Liu X. 2006. Mechanistic insights into maintenance of high p53 acetylation by PTEN. Mol Cell 23:575–587.
  • Li AG, Piluso LG, Cai X, Gadd BJ, Ladurner AG and Liu X. 2007. An acetylation switch in p53 mediates holo-TFIID recruitment. Mol Cell 28:408–421.
  • Li HH, Li AG, Sheppard HM and Liu X. 2004. Phosphorylation on Thr-55 by TAF1 mediates degradation of p53: a role for TAF1 in cell G1 progression. Mol Cell 13:867–878.
  • Li HH, Cai X, Shouse GP, Piluso LG and Liu X. 2007. A specific PP2A regulatory subunit, B56gamma, mediates DNA damage-induced dephosphorylation of p53 at Thr55. EMBO J 26:402–411.
  • Li L, Ljungman M and Dixon JE. 2000. The human Cdc14 phosphatases interact with and dephosphorylate the tumor suppressor protein p53. J Biol Chem 275:2410–2414.
  • Li M, Chen D, Shiloh A, Luo J, Nikolaev AY, Qin J and Gu W. 2002. Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization. Nature 416:648–653.
  • Li M, Brooks CL, Wu-Baer F, Chen D, Baer R and Gu W. 2003. Mono- versus polyubiquitination: differential control of p53 fate by Mdm2. Science 302:1972–1975.
  • Li M, Brooks CL, Kon N and Gu W. 2004. A dynamic role of HAUSP in the p53-Mdm2 pathway. Mol Cell 13:879–886.
  • Li Q, Wang X, Wu X, Rui Y, Liu W, Wang J, Liou YC, Ye Z and Lin SC. 2007. Daxx cooperates with the Axin/HIPK2/p53 complex to induce cell death. Cancer Res 67:66–74.
  • Liang SH and Clarke MF. 2001. Regulation of p53 localization. Eur J Biochem 268:2779–2783.
  • Lim ST, Chen XL, Lim Y, Hanson DA, Vo TT, Howerton K, Larocque N, Fisher SJ, Schlaepfer DD and Ilic D. 2008. Nuclear FAK promotes cell proliferation and survival through FERM-enhanced p53 degradation. Mol Cell 29:9–22.
  • Linares LK, Kiernan R, Triboulet R, Chable-Bessia C, Latreille D, Cuvier O, Lacroix M, Le Cam L, Coux O and Benkirane M. 2007. Intrinsic ubiquitination activity of PCAF controls the stability of the oncoprotein Hdm2. Nat Cell Biol 9:331–338.
  • Liu L, Scolnick DM, Trievel RC, Zhang HB, Marmorstein R, Halazonetis TD and Berger SL. 1999. p53 sites acetylated in vitro by PCAF and p300 are acetylated in vivo in response to DNA damage. Mol Cell Biol 19:1202–1209.
  • Liu Q, Kaneko S, Yang L, Feldman RI, Nicosia SV, Chen J and Cheng JQ. 2004. Aurora-A abrogation of p53 DNA binding and transactivation activity by phosphorylation of serine 215. J Biol Chem 279:52175–52182.
  • Lomax ME, Barnes DM, Hupp TR, Picksley SM and Camplejohn RS. 1998. Characterization of p53 oligomerization domain mutations isolated from Li-Fraumeni and Li-Fraumeni like family members. Oncogene 17:643–649.
  • Louria-Hayon I, Grossman T, Sionov RV, Alsheich O, Pandolfi PP and Haupt Y. 2003. The promyelocytic leukemia protein protects p53 from Mdm2-mediated inhibition and degradation. J Biol Chem 278: 33134–33141
  • Lu H, Fisher RP, Bailey P and Levine AJ. 1997. The CDK7-cycH-p36 complex of transcription factor IIH phosphorylates p53, enhancing its sequence-specific DNA binding activity in vitro. Mol Cell Biol 17:5923–5934.
  • Lu H, Taya Y, Ikeda M and Levine AJ. 1998. Ultraviolet radiation, but not gamma radiation or etoposide-induced DNA damage, results in the phosphorylation of the murine p53 protein at serine-389. Proc Natl Acad Sci USA 95:6399–6402.
  • Lu X, Ma O, Nguyen TA, Jones SN, Oren M and Donehower LA. 2007. The Wip1 Phosphatase acts as a gatekeeper in the p53-Mdm2 autoregulatory loop. Cancer Cell 12: 342–354.
  • Luo J, Su F, Chen D, Shiloh A and Gu W. 2000. Deacetylation of p53 modulates its effect on cell growth and apoptosis. Nature 408:377–381.
  • Luo J, Li M, Tang Y, Laszkowska M, Roeder RG and Gu W. 2004. Acetylation of p53 augments its site-specific DNA binding both in vitro and in vivo. Proc Natl Acad Sci USA 101:2259–2264.
  • Ma J, Martin JD, Zhang H, Auger KR, Ho TF, Kirkpatrick RB, Grooms MH, Johanson KO, Tummino PJ, Copeland RA and Lai Z. 2006. A second p53 binding site in the central domain of Mdm2 is essential for p53 ubiquitination. Biochemistry 45:9238–9245.
  • Maestro R, Dei Tos AP, Hamamori Y, Krasnokutsky S, Sartorelli V, Kedes L, Doglioni C, Beach DH and Hannon GJ. 1999. Twist is a potential oncogene that inhibits apoptosis. Genes Dev 13:2207–2217.
  • Maheswaran S, Park S, Bernard A, Morris JF, Rauscher FJ, 3rd Hill, DE and Haber DA 1993. Physical and functional interaction between WT1 and p53 proteins. Proc Natl Acad Sci USA 90:5100–5104.
  • Maltzman W and Czyzyk L. 1984. UV irradiation stimulates levels of p53 cellular tumor antigen in nontransformed mouse cells. Mol Cell Biol 4:1689–1694.
  • Mantovani F, Tocco F, Girardini J, Smith P, Gasco M, Lu X, Crook T and Del Sal G. 2007. The prolyl isomerase Pin1 orchestrates p53 acetylation and dissociation from the apoptosis inhibitor iASPP. Nat Struct Mol Biol 14:912–920.
  • Marchenko ND, Wolff S, Erster S, Becker K and Moll UM. 2007. Monoubiquitylation promotes mitochondrial p53 translocation. EMBO J 26:923–934.
  • Maya R, Balass M, Kim ST, Shkedy D, Leal JF, Shifman O, Moas M, Buschmann T, Ronai Z, Shiloh Y, Kastan MB, Katzir E and Oren M. 2001. ATM-dependent phosphorylation of Mdm2 on serine 395: role in p53 activation by DNA damage. Genes Dev 15:1067–1077.
  • Mayo LD and Donner DB. 2001. A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc Natl Acad Sci USA 98:11598–11603.
  • Mayo LD, Turchi JJ and Berberich SJ. 1997. Mdm-2 phosphorylation by DNA-dependent protein kinase prevents interaction with p53. Cancer Res 57:5013–5016.
  • McKinney K and Prives C. 2002. Efficient specific DNA binding by p53 requires both its central and C-terminal domains as revealed by studies with high-mobility group 1 protein. Mol Cell Biol 22:6797–6808.
  • Mendrysa SM, McElwee MK, Michalowski J, O’Leary KA, Young KM and Perry ME. 2003. mdm2 Is critical for inhibition of p53 during lymphopoiesis and the response to ionizing irradiation. Mol Cell Biol 23: 462–472.
  • Meulmeester E, Frenk R, Stad R, de Graaf P, Marine JC, Vousden KH and Jochemsen AG. 2003. Critical role for a central part of Mdm2 in the ubiquitylation of p53. Mol Cell Biol 23:4929–4938.
  • Mihara M, Erster S, Zaika A, Petrenko O, Chittenden T, Pancoska P and Moll UM. 2003. p53 has a direct apoptogenic role at the mitochondria. Mol Cell 11:577–590.
  • Milne DM, Campbell LE, Campbell DG and Meek DW. 1995. p53 is phosphorylated in vitro and in vivo by an ultraviolet radiation-induced protein kinase characteristic of the c-Jun kinase, JNK1. J Biol Chem 270:5511–5518.
  • Mirnezami AH, Campbell SJ, Darley M, Primrose JN, Johnson PW and Blaydes JP. 2003. Hdm2 recruits a hypoxia-sensitive corepressor to negatively regulate p53-dependent transcription. Curr Biol 13:1234–1239.
  • Miyauchi Y, Yogosawa S, Honda R, Nishida T and Yasuda H. 2002. Sumoylation of Mdm2 by protein inhibitor of activated STAT (PIAS) and RanBP2 enzymes. J Biol Chem 277:50131–50136.
  • Moll UM, Marchenko N and Zhang XK. 2006. p53 and Nur77/TR3 – transcription factors that directly target mitochondria for cell death induction. Oncogene 25:4725–4743.
  • Moller A, Sirma H, Hofmann TG, Rueffer S, Klimczak E, Droge W, Will H and Schmitz ML. 2003. PML is required for homeodomain-interacting protein kinase 2 (HIPK2)-mediated p53 phosphorylation and cell cycle arrest but is dispensable for the formation of HIPK domains. Cancer Res 63:4310–4314.
  • Montes de Oca Luna R, Wagner DS and Lozano G. 1995. Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 378:203–206.
  • Nag A, Bagchi S and Raychaudhuri P. 2004. Cul4A physically associates with MDM2 and participates in the proteolysis of p53. Cancer Res 64:8152–8155.
  • Nag A, Germaniuk-Kurowska A, Dimri M, Sassack MA, Gurumurthy CB, Gao Q, Dimri G, Band H and Band V. 2007. An essential role of human Ada3 in p53 acetylation. J Biol Chem 282:8812–8820.
  • Nakanishi M, Ozaki T, Yamamoto H, Hanamoto T, Kikuchi H, Furuya K, Asaka M, Delia D and Nakagawara A. 2007. NFBD1/MDC1 associates with p53 and regulates its function at the crossroad between cell survival and death in response to DNA damage. J Biol Chem 282:22993–23004.
  • Neilsen PM, Cheney KM, Li CW, Chen JD, Cawrse JE, Schulz RB, Powell JA, Kumar R and Callen DF. 2008. Identification of ANKRD11 as a p53 coactivator. J Cell Sci 121:3541–3552.
  • Nie Y, Li HH, Bula CM and Liu X. 2000. Stimulation of p53 DNA binding by c-Abl requires the p53 C terminus and tetramerization. Mol Cell Biol 20:741–748.
  • Ochocka AM, Kampanis P, Nicol S, Allende-Vega N, Cox M, Marcar L, Milne D, Fuller-Pace F and Meek D. 2009. FKBP25, a novel regulator of the p53 pathway, induces the degradation of MDM2 and activation of p53. FEBS Lett 583:621–626.
  • O’Connor DJ, Lam EW, Griffin S, Zhong S, Leighton LC, Burbidge SA and Lu X 1995. Physical and functional interactions between p53 and cell cycle co-operating transcription factors, E2F1 and DP1. EMBO J 14:6184–6192.
  • Ofir-Rosenfeld Y, Boggs K, Michael D, Kastan MB and Oren M. 2008. Mdm2 regulates p53 mRNA translation through inhibitory interactions with ribosomal protein L26. Mol Cell 32:180–189.
  • Ogawara Y, Kishishita S, Obata T, Isazawa Y, Suzuki T, Tanaka K, Masuyama N and Gotoh Y. 2002. Akt enhances Mdm2-mediated ubiquitination and degradation of p53. J Biol Chem 277:21843–21850.
  • Okamoto K, Li H, Jensen MR, Zhang T, Taya Y, Thorgeirsson SS and Prives C. 2002. Cyclin G recruits PP2A to dephosphorylate Mdm2. Mol Cell 9:761–771.
  • O’Keefe K, Li H and Zhang Y. 2003. Nucleocytoplasmic shuttling of p53 is essential for MDM2-mediated cytoplasmic degradation but not ubiquitination. Mol Cell Biol 23:6396–6405.
  • Ou YH, Chung PH, Sun TP and Shieh SY. 2005. p53 C-terminal phosphorylation by CHK1 and CHK2 participates in the regulation of DNA-damage-induced C-terminal acetylation. Mol Biol Cell 16:1684–1695.
  • Parant J, Chavez-Reyes A, Little NA, Yan W, Reinke V, Jochemsen AG and Lozano G. 2001. Rescue of embryonic lethality in Mdm4-null mice by loss of Trp53 suggests a nonoverlapping pathway with MDM2 to regulate p53. Nat Genet 29:92–95.
  • Patel S, George R, Autore F, Fraternali F, Ladbury JE and Nikolova PV. 2008. Molecular interactions of ASPP1 and ASPP2 with the p53 protein family and the apoptotic promoters PUMA and Bax. Nucleic Acids Res 36:5139–5151.
  • Pearson M, Carbone R, Sebastiani C, Cioce M, Fagioli M, Saito S, Higashimoto Y, Appella E, Minucci S, Pandolfi PP and Pelicci PG. 2000. PML regulates p53 acetylation and premature senescence induced by oncogenic Ras. Nature 406:207–210.
  • Polley S, Guha S, Roy NS, Kar S, Sakaguchi K, Chuman Y, Swaminathan V, Kundu T and Roy S. 2008. Differential recognition of phosphorylated transactivation domains of p53 by different p300 domains. J Mol Biol 376:8–12.
  • Pomerantz J, Schreiber-Agus N, Liegeois NJ, Silverman A, Alland L, Chin L, Potes J, Chen K, Orlow I, Lee HW, Cordon-Cardo C and DePinho RA. 1998. The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2’s inhibition of p53. Cell 92:713–723.
  • Popowicz GM, Czarna A, Rothweiler U, Szwagierczak A, Krajewski M, Weber L and Holak TA. 2007. Molecular basis for the inhibition of p53 by Mdmx. Cell Cycle 6:2386–2392.
  • Qu L, Huang S, Baltzis D, Rivas-Estilla AM, Pluquet O, Hatzoglou M, Koumenis C, Taya Y, Yoshimura A and Koromilas AE. 2004. Endoplasmic reticulum stress induces p53 cytoplasmic localization and prevents p53-dependent apoptosis by a pathway involving glycogen synthase kinase-3beta. Genes Dev 18:261–277.
  • Rajagopalan S, Jaulent AM, Wells M, Veprintsev DB and Fersht AR. 2008. 14-3-3 activation of DNA binding of p53 by enhancing its association into tetramers. Nucleic Acids Res 36:5983–5991.
  • Rajendra R, Malegaonkar D, Pungaliya P, Marshall H, Rasheed Z, Brownell J, Liu LF, Lutzker S, Saleem A and Rubin EH. 2004. Topors functions as an E3 ubiquitin ligase with specific E2 enzymes and ubiquitinates p53. J Biol Chem 279:36440–36444.
  • Rodriguez MS, Desterro JM, Lain S, Midgley CA, Lane DP and Hay RT. 1999. SUMO-1 modification activates the transcriptional response of p53. EMBO J 18:6455–6461.
  • Roe JS, Kim H, Lee SM, Kim ST, Cho EJ and Youn HD. 2006. p53 stabilization and transactivation by a von Hippel-Lindau protein. Mol Cell 22:395–405.
  • Roth J, Dobbelstein M, Freedman DA, Shenk T and Levine AJ. 1998. Nucleo-cytoplasmic shuttling of the hdm2 oncoprotein regulates the levels of the p53 protein via a pathway used by the human immunodeficiency virus rev protein. EMBO J 17:554–564.
  • Roy S and Tenniswood M. 2007. Site-specific acetylation of p53 directs selective transcription complex assembly. J Biol Chem 282:4765–4771.
  • Roy S, Packman K, Jeffrey R and Tenniswood M. 2005. Histone deacetylase inhibitors differentially stabilize acetylated p53 and induce cell cycle arrest or apoptosis in prostate cancer cells. Cell Death Differ 12:482–491.
  • Saito S, Goodarzi AA, Higashimoto Y, Noda Y, Lees-Miller SP, Appella E and Anderson CW. 2002. ATM mediates phosphorylation at multiple p53 sites, including Ser(46), in response to ionizing radiation. J Biol Chem 277:12491–12494.
  • Saito S, Yamaguchi H, Higashimoto Y, Chao C, Xu Y, Fornace Jr AJ, Appella E and Anderson CW. 2003. Phosphorylation site interdependence of human p53 post-translational modifications in response to stress. J Biol Chem 278:37536–37544.
  • Sakaguchi K, Herrera JE, Saito S, Miki T, Bustin M, Vassilev A, Anderson CW and Appella E. 1998. DNA damage activates p53 through a phosphorylation-acetylation cascade. Genes Dev 12:2831–2841.
  • Sakaguchi K, Saito S, Higashimoto Y, Roy S, Anderson CW and Appella E. 2000. Damage-mediated phosphorylation of human p53 threonine 18 through a cascade mediated by a casein 1-like kinase. Effect on Mdm2 binding. J Biol Chem 275:9278–9283.
  • Samuels-Lev Y, O’Connor DJ, Bergamaschi D, Trigiante G, Hsieh JK, Zhong S, Campargue I, Naumovski L, Crook T and Lu X. 2001. ASPP proteins specifically stimulate the apoptotic function of p53. Mol Cell 8:781–794.
  • Sasaki M, Nie L and Maki CG. 2007. MDM2 binding induces a conformational change in p53 that is opposed by heat-shock protein 90 and precedes p53 proteasomal degradation. J Biol Chem 282:14626–14634.
  • Saville MK, Sparks A, Xirodimas DP, Wardrop J, Stevenson LF, Bourdon JC, Woods YL and Lane DP. 2004. Regulation of p53 by the ubiquitin-conjugating enzymes UbcH5B/C in vivo. J Biol Chem 279:42169–42181.
  • Schmidt D and Muller S. 2002. Members of the PIAS family act as SUMO ligases for c-Jun and p53 and repress p53 activity. Proc Natl Acad Sci USA 99:2872–2877.
  • Schneider-Merck T, Pohnke Y, Kempf R, Christian M, Brosens JJ and Gellersen B. 2006. Physical interaction and mutual transrepression between CCAAT/enhancer-binding protein beta and the p53 tumor suppressor. J Biol Chem 281:269–278.
  • Schon O, Friedler A, Bycroft M, Freund SM and Fersht AR. 2002. Molecular mechanism of the interaction between MDM2 and p53. J Mol Biol 323:491–501.
  • Scotto C, Deloulme JC, Rousseau D, Chambaz E and Baudier J. 1998. Calcium and S100B regulation of p53-dependent cell growth arrest and apoptosis. Mol Cell Biol 18:4272–4281.
  • Sengupta S and Harris CC. 2005. p53: traffic cop at the crossroads of DNA repair and recombination. Nat Rev Mol Cell Biol 6:44–55.
  • She QB, Ma WY and Dong Z. 2002. Role of MAP kinases in UVB-induced phosphorylation of p53 at serine 20. Oncogene 21:1580–1589.
  • Shi X, Kachirskaia I, Yamaguchi H, West LE, Wen H, Wang EW, Dutta S, Appella E and Gozani O. 2007. Modulation of p53 function by SET8-mediated methylation at lysine 382. Mol Cell 27:636–646.
  • Shieh SY, Ahn J, Tamai K, Taya Y and Prives C. 2000. The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites. Genes Dev 14:289–300.
  • Shinozaki T, Nota A, Taya Y and Okamoto K. 2003. Functional role of Mdm2 phosphorylation by ATR in attenuation of p53 nuclear export. Oncogene 22:8870–8880.
  • Shiota M, Izumi H, Onitsuka T, Miyamoto N, Kashiwagi E, Kidani A, Hirano G, Takahashi M, Naito S and Kohno K. 2008. Twist and p53 reciprocally regulate target genes via direct interaction. Oncogene 27:5543–5553.
  • Shouse GP, Cai X and Liu X. 2008. Serine 15 phosphorylation of p53 directs its interaction with B56gamma and the tumor suppressor activity of B56gamma-specific protein phosphatase 2A. Mol Cell Biol 28:448–456.
  • Sionov RV, Coen S, Goldberg Z, Berger M, Bercovich B, Ben-Neriah Y, Ciechanover A and Haupt Y. 2001. c-Abl regulates p53 levels under normal and stress conditions by preventing its nuclear export and ubiquitination. Mol Cell Biol 21:5869–5878.
  • Sionov RV, Moallem E, Berger M, Kazaz A, Gerlitz O, Ben-Neriah Y, Oren M and Haupt Y. 1999. c-Abl neutralizes the inhibitory effect of Mdm2 on p53. J Biol Chem 274:8371–8374.
  • Sluss HK, Armata H, Gallant J and Jones SN. 2004. Phosphorylation of serine 18 regulates distinct p53 functions in mice. Mol Cell Biol 24:976–984.
  • Song MS, Song SJ, Kim SY, Oh HJ and Lim DS. 2008. The tumour suppressor RASSF1A promotes MDM2 self-ubiquitination by disrupting the MDM2-DAXX-HAUSP complex. EMBO J 27:1863–1874.
  • Spillare EA, Robles AI, Wang XW, Shen JC, Yu CE, Schellenberg GD and Harris CC. 1999. p53-mediated apoptosis is attenuated in Werner syndrome cells. Genes Dev 13:1355–1360.
  • Srivastava S, Tong YA, Devadas K, Zou ZQ, Sykes VW, Chen Y, Blattner WA, Pirollo K and Chang EH. 1992. Detection of both mutant and wild-type p53 protein in normal skin fibroblasts and demonstration of a shared ‘second hit’ on p53 in diverse tumors from a cancer-prone family with Li-Fraumeni syndrome. Oncogene 7:987–991.
  • Stabach PR, Thiyagarajan MM, Woodfield GW and Weigel RJ. 2006. AP2alpha alters the transcriptional activity and stability of p53. Oncogene 25:2148–2159.
  • Stasinopoulos IA, Mironchik Y, Raman A, Wildes F, Winnard Jr P and Raman V. 2005. HOXA5-twist interaction alters p53 homeostasis in breast cancer cells. J Biol Chem 280:2294–2299.
  • Stavridi ES, Chehab NH, Malikzay A and Halazonetis TD. 2001. Substitutions that compromise the ionizing radiation-induced association of p53 with 14-3-3 proteins also compromise the ability of p53 to induce cell cycle arrest. Cancer Res 61:7030–7033.
  • Stevenson LF, Sparks A, Allende-Vega N, Xirodimas DP, Lane DP and Saville MK. 2007. The deubiquitinating enzyme USP2a regulates the p53 pathway by targeting Mdm2. EMBO J 26:976–986.
  • Stommel JM and Wahl GM. 2004. Accelerated MDM2 auto-degradation induced by DNA-damage kinases is required for p53 activation. EMBO J 23:1547–1556.
  • Stommel JM, Marchenko ND, Jimenez GS, Moll UM, Hope TJ and Wahl GM. 1999. A leucine-rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking. EMBO J 18:1660–1672.
  • Subramanian T and Chinnadurai G. 2003. Association of class I histone deacetylases with transcriptional corepressor CtBP. FEBS Lett 540:255–258.
  • Sui G, Affar el B, Shi Y, Brignone C, Wall NR, Yin P, Donohoe M, Luke MP, Calvo D and Grossman SR. 2004. Yin Yang 1 is a negative regulator of p53. Cell 117:859–872.
  • Sun XX, Dai MS and Lu H. 2008. Mycophenolic acid activation of p53 requires ribosomal proteins L5 and L11. J Biol Chem 283:12387–12392.
  • Sykes SM, Mellert HS, Holbert MA, Li K, Marmorstein R, Lane WS and McMahon SB. 2006. Acetylation of the p53 DNA-binding domain regulates apoptosis induction. Mol Cell 24:841–851.
  • Taira N, Nihira K, Yamaguchi T, Miki Y and Yoshida K. 2007. DYRK2 is targeted to the nucleus and controls p53 via Ser46 phosphorylation in the apoptotic response to DNA damage. Mol Cell 25:725–738.
  • Takagi M, Absalon MJ, McLure KG and Kastan MB. 2005. Regulation of p53 translation and induction after DNA damage by ribosomal protein L26 and nucleolin. Cell 123:49–63.
  • Tanaka T, Ohkubo S, Tatsuno I and Prives C. 2007. hCAS/CSE1L associates with chromatin and regulates expression of select p53 target genes. Cell 130:638–650.
  • Tang J, Qu LK, Zhang J, Wang W, Michaelson JS, Degenhardt YY, El-Deiry WS and Yang X. 2006. Critical role for Daxx in regulating Mdm2. Nat Cell Biol 8:855–862.
  • Tang Y, Luo J, Zhang W and Gu W. 2006. Tip60-dependent acetylation of p53 modulates the decision between cell-cycle arrest and apoptosis. Mol Cell 24:827–839.
  • Tang Y, Zhao W, Chen Y, Zhao Y and Gu W. 2008. Acetylation is indispensable for p53 activation. Cell 133:612–626.
  • Tanimura S, Ohtsuka S, Mitsui K, Shirouzu K, Yoshimura A and Ohtsubo M. 1999. MDM2 interacts with MDMX through their RING finger domains. FEBS Lett 447:5–9.
  • Tao W and Levine AJ. 1999. P19(ARF) stabilizes p53 by blocking nucleo-cytoplasmic shuttling of Mdm2. Proc Natl Acad Sci USA 96:6937–6941.
  • Thompson T, Tovar C, Yang H, Carvajal D, Vu BT, Xu Q, Wahl GM, Heimbrook DC and Vassilev LT. 2004. Phosphorylation of p53 on key serines is dispensable for transcriptional activation and apoptosis. J Biol Chem 279:53015–53022.
  • Tian C, Xing G, Xie P, Lu K, Nie J, Wang J, Li L, Gao M, Zhang L and He F. 2009. KRAB-type zinc-finger protein Apak specifically regulates p53-dependent apoptosis. Nat Cell Biol 11:580–591.
  • Tibbetts RS, Brumbaugh KM, Williams JM, Sarkaria JN, Cliby WA, Shieh SY, Taya Y, Prives C and Abraham RT. 1999. A role for ATR in the DNA damage-induced phosphorylation of p53. Genes Dev 13:152–157.
  • Turenne GA and Price BD. 2001. Glycogen synthase kinase3 beta phosphorylates serine 33 of p53 and activates p53’s transcriptional activity. BMC Cell Biol 2:12.
  • Unger T, Sionov RV, Moallem E, Yee CL, Howley PM, Oren M and Haupt Y. 1999. Mutations in serines 15 and 20 of human p53 impair its apoptotic activity. Oncogene 18:3205–3212.
  • Vaziri H, Dessain SK, Ng Eaton E, Imai SI, Frye RA, Pandita TK, Guarente L and Weinberg RA. 2001. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107:149–159.
  • Vousden KH and Lu X. 2002. Live or let die: the cell’s response to p53. Nat Rev Cancer 2:594–604.
  • Wadhwa R, Yaguchi T, Hasan MK, Mitsui Y, Reddel RR and Kaul SC. 2002. Hsp70 family member, mot-2/mthsp70/GRP75, binds to the cytoplasmic sequestration domain of the p53 protein. Exp Cell Res 274:246–253.
  • Wallace M, Worrall E, Pettersson S, Hupp TR and Ball KL. 2006. Dual-site regulation of MDM2 E3-ubiquitin ligase activity. Mol Cell 23:251–263.
  • Wang C, Ivanov A, Chen L, Fredericks WJ, Seto E, Rauscher FJ 3rd, and Chen J. 2005. MDM2 interaction with nuclear corepressor KAP1 contributes to p53 inactivation. Embo J 24:3279–3290.
  • Wang M, Gu C, Qi T, Tang W, Wang L, Wang S and Zeng X. 2007. BAF53 interacts with p53 and functions in p53-mediated p21-gene transcription. J Biochem 142:613–620.
  • Wang X, Taplick J, Geva N and Oren M. 2004. Inhibition of p53 degradation by Mdm2 acetylation. FEBS Lett 561:195–201.
  • Wang XW, Yeh H, Schaeffer L, Roy R, Moncollin V, Egly JM, Wang Z, Freidberg EC, Evans MK, Taffe BG, Bohr VA, Weeda G, Hoeijmakers JHJ, Forrester K and Harris CC. 1995. p53 modulation of TFIIH-associated nucleotide excision repair activity. Nat Genet 10:188–195.
  • Wang Y and Prives C. 1995. Increased and altered DNA binding of human p53 by S and G2/M but not G1 cyclin-dependent kinases. Nature 376:88–91.
  • Warnock LJ, Knox A, Mee TR, Raines SA and Milner J. 2008. Influence of tetramerisation on site-specific post-translational modifications of p53: comparison of human and murine p53 tumor suppressor protein. Cancer Biol Ther 7:1481–1489.
  • Waterman MJ, Stavridi ES, Waterman JL and Halazonetis TD. 1998. ATM-dependent activation of p53 involves dephosphorylation and association with 14-3-3 proteins. Nat Genet 19:175–178.
  • Weger S, Hammer E and Heilbronn R. 2005. Topors acts as a SUMO-1 E3 ligase for p53 in vitro and in vivo. FEBS Lett 579:5007–5012.
  • Wei G, Li AG and Liu X. 2005. Insights into selective activation of p53 DNA binding by c-Abl. J Biol Chem 280:12271–12278.
  • Wei X, Xu H and Kufe D. 2005. Human MUC1 oncoprotein regulates p53-responsive gene transcription in the genotoxic stress response. Cancer Cell 7:167–178.
  • Winter M, Milne D, Dias S, Kulikov R, Knippschild U, Blattner C and Meek D. 2004. Protein Kinase CK1ä Phosphorylates Key Sites in the Acidic Domain of Murine Double-Minute Clone 2 Protein (MDM2) That Regulate p53 Turnover. Biochemistry 43:16356–16364.
  • Wu Z, Earle J, Saito S, Anderson CW, Appella E and Xu Y. 2002. Mutation of mouse p53 Ser23 and the response to DNA damage. Mol Cell Biol 22:2441–2449.
  • Wulf GM, Liou YC, Ryo A, Lee SW and Lu KP. 2002. Role of Pin1 in the regulation of p53 stability and p21 transactivation, and cell cycle checkpoints in response to DNA damage. J Biol Chem 277:47976–47979.
  • Xia Y, Padre RC, De Mendoza TH, Bottero V, Tergaonkar VB and Verma IM. 2009. Phosphorylation of p53 by IkappaB kinase 2 promotes its degradation by beta-TrCP. Proc Natl Acad Sci USA 106:2629–2634.
  • Xie S, Wu H, Wang Q, Cogswell JP, Husain I, Conn C, Stambrook P, Jhanwar-Uniyal M and Dai W. 2001. Plk3 functionally links DNA damage to cell cycle arrest and apoptosis at least in part via the p53 pathway. J Biol Chem 276:43305–43312.
  • Xirodimas DP, Stephen CW and Lane DP. 2001. Cocompartmentalization of p53 and Mdm2 is a major determinant for Mdm2-mediated degradation of p53. Exp Cell Res 270:66–77.
  • Xirodimas DP, Saville MK, Bourdon JC, Hay RT and Lane DP. 2004. Mdm2-mediated NEDD8 conjugation of p53 inhibits its transcriptional activity. Cell 118:83–97.
  • Xu Y. 2003. Regulation of p53 responses by post-translational modifications. Cell Death Differ 10:400–403.
  • Xu Y, Zhang J and Chen X. 2007. The activity of p53 is differentially regulated by Brm- and Brg1-containing SWI/SNF chromatin remodeling complexes. J Biol Chem 282:37429–37435.
  • Yamasaki S, Yagishita N, Sasaki T, Nakazawa M, Kato Y, Yamadera T, Bae E, Toriyama S, Ikeda R, Zhang L, Fujitani K, Yoo E, Tsuchimochi K, Ohta T, Araya N, Fujita H, Aratani S, Eguchi K, Komiya S, Maruyama I, Higashi N, Sato M, Senoo H, Ochi T, Yokoyama S, Amano T, Kim J, Gay S, Fukamizu A, Nishioka K, Tanaka K and Nakajima T. 2007. Cytoplasmic destruction of p53 by the endoplasmic reticulum-resident ubiquitin ligase ‘Synoviolin’. EMBO J 26:113–122.
  • Yan C, Lu D, Hai T and Boyd DD. 2005. Activating transcription factor 3, a stress sensor, activates p53 by blocking its ubiquitination. EMBO J 24:2425–2435.
  • Yang HY, Wen YY, Chen CH, Lozano G and Lee MH. 2003. 14-3-3 sigma positively regulates p53 and suppresses tumor growth. Mol Cell Biol 23:7096–7107.
  • Yang W, Rozan LM, McDonald ER, 3rd Navaraj, A, Liu JJ, Matthew EM, Wang W, Dicker DT and El-Deiry WS. 2007. CARPs are ubiquitin ligases that promote MDM2-independent p53 and phospho-p53ser20 degradation. J Biol Chem 282:3273–3281.
  • Yu GW, Rudiger S, Veprintsev D, Freund S, Fernandez-Fernandez MR and Fersht AR. 2006. The central region of HDM2 provides a second binding site for p53. Proc Natl Acad Sci USA 103:1227–1232.
  • Yu ZK, Geyer RK and Maki CG. 2000. MDM2-dependent ubiquitination of nuclear and cytoplasmic P53. Oncogene 19:5892–5897.
  • Zacchi P, Gostissa M, Uchida T, Salvagno C, Avolio F, Volinia S, Ronai Z, Blandino G, Schneider C and Del Sal G. 2002. The prolyl isomerase Pin1 reveals a mechanism to control p53 functions after genotoxic insults. Nature 419:853–857.
  • Zhang T and Prives C. 2001. Cyclin a-CDK phosphorylation regulates MDM2 protein interactions. J Biol Chem 276:29702–29710.
  • Zhang Y and Xiong Y. 1999. Mutations in human ARF exon 2 disrupt its nucleolar localization and impair its ability to block nuclear export of MDM2 and p53. Mol Cell 3:579–591.
  • Zhang Z and Zhang R. 2008. Proteasome activator PA28 gamma regulates p53 by enhancing its MDM2-mediated degradation. EMBO J 27:852–864.
  • Zhao LY, Liu J, Sidhu GS, Niu Y, Liu Y, Wang R and Liao D. 2004. Negative regulation of p53 functions by Daxx and the involvement of MDM2. J Biol Chem 279:50566–50579.
  • Zhou BP, Liao Y, Xia W, Zou Y, Spohn B and Hung MC. 2001. HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation. Nat Cell Biol 3:973–982.
  • Zhou X, Yang G, Huang R, Chen X and Hu G. 2007. SVH-B interacts directly with p53 and suppresses the transcriptional activity of p53. FEBS Lett 581:4943–4948.
  • Zhou Y, Zhong Y, Wang Y, Zhang X, Batista DL, Gejman R, Ansell PJ, Zhao J, Weng C and Klibanski A. 2007. Activation of p53 by MEG3 non-coding RNA. J Biol Chem 282:24731–24742.
  • Zhu Q, Yao J, Wani G, Wani MA and Wani AA. 2001. Mdm2 mutant defective in binding p300 promotes ubiquitination but not degradation of p53: evidence for the role of p300 in integrating ubiquitination and proteolysis. J Biol Chem 276:29695–29701.
  • Zilfou JT, Hoffman WH, Sank M, George DL and Murphy M. 2001. The corepressor mSin3a interacts with the proline-rich domain of p53 and protects p53 from proteasome-mediated degradation. Mol Cell Biol 21:3974–3985.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.