3,870
Views
427
CrossRef citations to date
0
Altmetric
Review Article

Prolyl 4-hydroxylase

&
Pages 106-124 | Received 28 Oct 2009, Accepted 15 Jan 2010, Published online: 04 Mar 2010

References

  • Adefarati AA, Giacobbe RA, Hensens OD and Tkacz JS. 1991. Biosynthesis of l-671,329, and echinocandin-type antibiotic produced by Zalerion arboricola: Origins of some of the unusual amino acids and the dimethylmyristic acid side chain. J Am Chem Soc 113:3542–3545.
  • Aldunate R, Casar JC, Brandan E and Inestrosa NC. 2004. Structural and functional organization of synaptic acetylcholinesterase. Brain Res Rev 47:96–104.
  • Annunen P, Helaakoski T, Myllyharju J, Veijola J, Pihlajaniemi T and Kivirikko, KI. 1997. Cloning of the human prolyl 4-hydroxylase α subunit isoform α(II) and characterization of the type II enzyme tetramer. J Biol Chem 272:17342–17348.
  • Atreya PL and Ananthanarayanan VS. 1991. Interaction of prolyl 4-hydroxylase with synthetic peptide substrates: A conformational model for collagen proline hydroxylation. J Biol Chem 266:2852–2858.
  • Bächinger HP. 1987. The influence of peptidyl-prolyl cis–trans isomerase on the in vitro folding of type III collagen. J Biol Chem 262:17144–17148.
  • Baldwin JE, Field RA, Lawrence CC, Merritt KD and Schofield CJ. 1993. Proline 4-hydroxylase: Stereochemical course of the reaction. Tetrahedron Lett 34:7489–7492.
  • Baldwin JE, Field RA, Lawrence CC, Lee V, Robinson JK and Schofield CJ. 1994. Substrate specificity of proline 4-hydroxylase: Chemical and enzymatic synthesis of 2S,3R,4S-epoxyproline. Tetrahedron Lett 35:4649–4652.
  • Barnes AM, Chang W, Morello R, Cabral WA, Weis M, Eyre DR, Leikin S, Makareeva E, Kuznetsova N, Uveges TE, Ashok A, Flor AW, Mulvihill JJ, Wilson PL, Sundaram UT, Lee B and Marini JC. 2006. Deficiency of cartilage-associated protein in recessive lethal osteogenesis imperfecta. N Engl J Med 355:2757–2764.
  • Bella J, Eaton M, Brodsky B and Berman HM. 1994. Crystal and molecular structure of a collagen-like peptide at 1.9 Å resolution. Science 266:75–81.
  • Berg RA and Prockop DJ. 1973a. The thermal transition of a non-hydroxylated form of collagen. Evidence for a role for hydroxyproline in stabilizing the triple helix of collagen. Biochem Biophys Res Comm 52:115–120.
  • Berg RA and Prockop DJ. 1973b. Affinity column purification of protocollagen proline hydroxylase from chick embryos and further characterization of enzyme. J Biol Chem 248:1175–1182.
  • Berg RA and Prockop DJ. 1973c. Purification of [14C]protocollagen and its hydroxylation by prolyl-hydroxylase. Biochemistry 12:3395–3401.
  • Berisio R, Vitagliano L, Mazzarella L and Zagari A. 2001. Crystal structure of a collagen-like polypeptide with repeating sequence Pro–Hyp–Gly at 1.4 Å resolution: Implications for collagen hydration. Biopolymers 56:8–13.
  • Bhatnagar RS, Rapaka RS and Urry DW. 1978. Interaction of polypeptide models of elastin with prolyl hydroxylase. FEBS Lett 95:61–64.
  • Blasiak LC, Vaillancourt FH, Walsh CT and Drennan CL. 2006. Crystal structure of the non-haem iron halogenase SyrB2 in syringomycin biosynthesis. Nature 440:368–371.
  • Bornstein P. 1967a. The incomplete hydroxylation of individual prolyl residues in collagen. J Biol Chem 242:2572–2574.
  • Bornstein P. 1967b. Comparative sequence studies of rat skin and tendon collagen. I. Evidence for incomplete hydroxylation of individual prolyl residues in the normal proteins. Biochemistry 6:3082–3093.
  • Brahmachari SK and Ananthanarayanan VS. 1979. β-Turns in nascent procollagen are sites of posttranslational enzymatic hydroxylation of proline. Proc Natl Acad Sci USA 76:5119–5123.
  • Bretscher LE, Jenkins CL, Taylor KM, DeRider ML and Raines, RT. 2001. Conformational stability of collagen relies on a stereoelectronic effect. J Am Chem Soc 123:777–778.
  • Bruick RK and McKnight SL. 2001. A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294:1337–1340.
  • Buczek O, Bulaj G and Olivera BM. 2005. Conotoxins and the posttranslational modification of secreted gene products. Cell Mol Life Sci 62:3067–3079.
  • Cabral WA, Chang W, Barnes AM, Weis M, Scott MA, Leikin S, Makareeva E, Kuznetsova NV, Rosenbaum KN, Tifft CJ, Bulas DI, Kozma C, Smith PA, Eyre DR and Marini JC. 2007. Prolyl 3-hydroxylase 1 deficiency causes a recessive metabolic bone disorder resembling lethal/severe osteogenesis imperfecta. Nat Genet 39:359–365.
  • Cardinale GJ and Udenfriend S. 1974. Prolyl hydroxylase. Adv Enzymol Relat Areas Mol Biol 41:245–300.
  • Carpenter KJ. 1986. The History of Scurvy and Vitamin C. Cambridge University Press: New York.
  • Choi JW, Sutor SL, Lindquist L, Evans GL, Madden BJ, Bergen HR, III Hefferan, TE, Yaszemski MJ and Bram RJ. 2009. Severe osteogenesis imperfecta in cyclophilin B-deficient mice. PLoS Genet 5:e1000750.
  • Chopra RK and Ananthanarayanan VS. 1982. Conformational implications of enzymatic proline hydroxylation in collagen. Proc Natl Acad Sci USA 79:7180–7184.
  • Choudhary A, Gandla D, Krow GR and Raines RT. 2009. Nature of amide carbonyl–carbonyl interactions in proteins. J Am Chem Soc 131:7244–7246.
  • Chowdhury R, Hardy A and Schofield CJ. 2008. The human oxygen sensing machinery and its manipulation. Chem Soc Rev 37:1308–1319.
  • Chowdhury R, McDonough MA, Mecinovic J, Loenarz C, Flashman E, Hewitson KS, Domene C and Schofield CJ. 2009. Structural basis for binding of hypoxia-inducible factor to the oxygen-sensing prolyl hydroxylases. Structure 17:981–989.
  • Clifton IJ, Hsueh L-C, Baldwin JE, Harlos K and Schofield CJ. 2001. Structure of proline 3-hydroxylase. Eur J Biochem 268:6625–6636.
  • Costas M, Mehn MP, Jensen MP, Que L, Jr. 2004. Dioxygen activation at mononuclear nonheme iron active sites: Enzymes, models, and intermediates. Chem Rev 104:939–986.
  • Counts DF, Cardinale GJ and Udenfriend S. 1978. Prolyl hydroxylase half reaction—peptidyl prolyl-independent decarboxylation of α-ketoglutarate. Proc Natl Acad Sci USA 75:2145–2149.
  • Culpepper MA, Scott EE and Limburg J. 2010. Crystal structure of prolyl 4-hydroxylase from Bacillus anthracis. Biochemistry 49:124–133.
  • Cummins EP, Berra E, Comerford KM, Ginouves A, Fitzgerald KT, Seeballuck F, Godson C, Nielsen JE, Moynagh P, Pouyssegur J and Taylor CT. 2006. Prolyl hydroxylase-1 negatively regulates IκB kinase-β, giving insight into hypoxia-induced NFκB activity. Proc Natl Acad Sci USA 103:18154–18159.
  • de Jong L and Kemp, A. 1984. Stoichiometry and kinetics of the prolyl 4-hydroxylase partial reaction. Biochim Biophys Acta 787:105–111.
  • de Jong L, Albracht SP and Kemp A. 1982. Prolyl 4-hydroxylase activity in relation to the oxidation state of enzyme-bound iron. The role of ascorbate in peptidyl proline hydroxylation. Biochim Biophys Acta 704:326–332.
  • de Jong L, van der Kraan I and de Waal A. 1991. The kinetics of the hydroxylation of procollagen by prolyl 4-hydroxylase. Proposal for a processive mechanism of binding of the dimeric hydroxylating enzyme in relation to the high kcat/Km ratio and a conformational requirement for hydroxylation of –X–Pro–Gly– sequences. Biochim Biophys Acta 1079:103–111.
  • Deprez P, Inestrosa NC and Krejci E. 2003. Two different heparin-binding domains in the triple-helical domain of ColQ, the collagen tail subunit of synaptic acetylcholinesterase. J Biol Chem 278:23233–23242.
  • DeRider ML, Wilkens SJ, Waddell MJ, Bretscher LE, Weinhold F, Raines RT and Markley JL. 2002. Collagen stability: Insights from NMR spectroscopic and hybrid density functional computational investigations of the effect of electronegative substituents on prolyl ring conformations. J Am Chem Soc 124:2497–2505.
  • De Vreese L. 2008. Casual (mis)understanding and the search for scientific explanations: A case study from the history of medicine. Stud Hist Phil Biol & Biomed Sci 39:14–24.
  • de Waal A and de Jong L. 1988. Processive action of the two peptide binding sites of prolyl 4-hydroxylase in the hydroxylation of procollagen. Biochemistry 27:150–155.
  • Diegelmann RF, Ondregjickova O and Katz E. 1969. Oxygen-18 and fluoroproline studies on the synthesis of hydroxyproline and oxoproline in actinomycin. Arch Biochem Biophys 131:276–287.
  • Dunn DM and Franzblau C. 1982. Effects of ascorbate on insoluble elastin accumulation and cross-link formation in rabbit pulmonary artery smooth muscle cultures. Biochemistry 21:4195–4202.
  • Eberhardt ES, Panasik N, Jr and Raines RT. 1996. Inductive effects on the energetics of prolyl peptide bond isomerization: Implications for collagen folding and stability. J Am Chem Soc 118:12261–12266.
  • Ehrismann D, Flashman E, Genn DN, Mathioudakis N, Hewitson KS, Ratcliffe PJ and Schofield CJ. 2007. Studies on the activity of the hypoxia-inducible-factor hydroxylases using an oxygen consumption assay. Biochem J 401:227–234.
  • Elkins JM, Hewitson KS, McNeill LA, Seibel JF, Schlemminger I, Pugh CW, Ratcliffe PJ and Schofield, CJ. 2003. Structure of factor-inhibiting hypoxia-inducible factor (HIF) reveals mechanism of oxidative modification of HIF-1α. J Biol Chem 278:1802–1806.
  • Eriksson M, Myllyharju J, Tu H, Hellman M and Kivirikko KI. 1999. Evidence for 4-hydroxyproline in viral proteins. Characterization of a viral prolyl 4-hydroxylase and its peptide substrates. J Biol Chem 274:22131–22134.
  • Fischer E. 1902. Über eine neue Aminosäure aus Leim. Chem Ber 35:2660–2665.
  • Fraisl P, Aragonés J and Carmeliet P. 2009. Inhibition of oxygen sensors as a therapeutic strategy for ischaemic and inflammatory disease. Nat Rev Drug Discov 8:139–152.
  • Franzke CW, Bruckner P and Bruckner-Tuderman L. 2005. Collagenous transmembrane proteins: Recent insights into biology and pathology. J Biol Chem 280:4005–4008.
  • Friedman L, Higgin JJ, Moulder G, Barstead R, Raines RT and Kimble J. 2000. Prolyl 4-hydroxylase is required for viability and morphogenesis in Caenorhabditis elegans. Proc Natl Acad Sci USA 97:4736–4741.
  • Fujita Y, Gottlieb A, Peterkofsky B, Udenfriend S and Witkop B. 1964. The preparation of cis- and trans-4-H3-l-prolines and their use in studying the mechanism of enzymatic hydroxylation in chick embryos. J Am Chem Soc 86:4709–4716.
  • Gill AC, Ritchie MA, Hunt LG, Steane SE, Davies KG, Bocking SP, Rhie AG, Bennett AD and Hope J. 2000. Post-translational hydroxylation at the N-terminus of the prion protein reveals presence of PPII structure in vivo. EMBO J 19:5324–5331.
  • Gorres KL and Raines RT. 2009. Direct and continuous assay for prolyl 4-hydroxylase. Anal Biochem 386:181–185.
  • Gorres KL, Edupuganti R, Krow GR and Raines RT. 2008. Conformational preferences of substrates for human prolyl 4-hydroxylase. Biochemistry 47:9447–9455.
  • Gorres KL, Pua KH and Raines RT. 2009. Stringency of the 2-His–1-Asp active-site motif in prolyl 4-hydroxylase. PLoS ONE 4:e7635.
  • Groves JT and McClusky GA. 1976. Aliphatic hydroxylation via oxygen rebound. Oxygen transfer catalyzed by iron. J Am Chem Soc 98:859–861.
  • Gryder RM, Lamon M and Adams E. 1975. Sequence position of 3-hydroxyproline in basement membrane collagen. J Biol Chem 250:2470–2474.
  • Halme J, Kivirikko KI and Simons K. 1970. Isolation and partial characterization of highly purified protocollagen proline hydroxylase. Biochim Biophys Acta 198:460–470.
  • Hara R and Kino K. 2009. Characterization of novel 2-oxoglutarate dependent dioxygenases converting l-proline to cis-4-hydroxy-l-proline. Biochem Biophys Res Commun 379:882–886.
  • Helaakoski T, Vuori K, Myllyä R, Kivirikko KI and Pihlajaniemi T. 1989. Molecular cloning of the α-subunit of human prolyl 4-hydroxylase: The complete cDNA-derived amino acid sequence and evidence for alternative splicing of RNA transcripts. Proc Natl Acad Sci USA 86:4392–4396.
  • Helaakoski T, Annunen P, Vuori K, Macneil IA, Pihlajaniemi T and Kivirikko KI. 1995. Cloning, baculovirus expression, and characterization of a second mouse prolyl 4-hydroxylase α-subunit isoform: Formation of an α2β2 tetramer with the protein disulfide-isomerase/β subunit. Proc Natl Acad Sci USA 92:4427–4431.
  • Hieta R and Myllyharju J. 2002. Cloning and characterization of a low molecular weight prolyl 4-hydroxylase from Arabidopsis thaliana. Effective hydroxylation of proline-rich, collagen-like, and hypoxia-inducible transcription factor α-like peptides. J Biol Chem 277:23965–23971.
  • Hirsilä M, Koivunen P, Günzler V, Kivirikko KI and Myllyharju, J. 2003. Characterization of the human prolyl 4-hydroxylases that modify the hypoxia-inducible factor. J Biol Chem 278:30772–30780.
  • Hodges JA and Raines RT. 2005. Stereoelectronic and steric effects in the collagen triple helix: Toward a code for strand association. J Am Chem Soc 127:15923–15932.
  • Holmgren SK, Taylor KM, Bretscher LE and Raines RT. 1998. Code for collagen’s stability deciphered. Nature 392:666–667.
  • Holmgren SK, Bretscher LE, Taylor KM and Raines RT. 1999. A hyperstable collagen mimic. Chem Biol 6:63–70.
  • Holster T, Pakkanen O, Soininen R, Sormunen R, Nokelainen M, Kivirikko KI and Myllyharju J. 2007. Loss of assembly of the main basement membrane collagen, Type IV, but not fibril-forming collagens and embryonic death in collagen prolyl 4-hydroxylase I null mice. J Biol Chem 282:2512–2519.
  • Hon WC, Wilson MI, Harlos K, Claridge TD, Schofield CJ, Pugh CW, Maxwell PH, Ratcliffe PJ, Stuart DI and Jones EY. 2002. Structural basis for the recognition of hydroxyproline in HIF-1α by pVHL. Nature 417:975–978.
  • Horng J-C and Raines RT. 2006. Stereoelectronic effects on polyproline conformation. Protein Sci 15:74–83.
  • Huang F and Du W. 2009. Solution structure of Hyp10Pro variant of conomarphin, a cysteine-free and d-amino-acid containing conopeptide. Toxicon 54:153–160.
  • Hutton JJ, Jr and Udenfriend S. 1966. Soluble collagen proline hydroxylase and its substrates in several animal tissues. Proc Natl Acad Sci USA 56:198–202.
  • Hutton JJ, Jr Trappel, AL and Udenfriend S. 1966. Requirements for α-ketoglutarate, ferrous iron and ascorbate by collagen proline hydroxylase. Biochem Biophys Res Commun 24:179–184.
  • Hutton JJ, Jr Kaplan, A and Udenfriend S. 1967. Conversion of the amino acid sequence Gly–Pro–Pro in protein to Gly–Pro–Hyp by collagen proline hydroxylase. Arch Biochem Biophys 121:384–391.
  • Inouye K, Sakakibara S and Prockop DJ. 1976. Effects of the stereo-configuration of the hydroxyl group in 4-hydroxyproline on the triple-helical structures formed by homogenous peptides resembling collagen. Biochim Biophys Acta 420:133–141.
  • Ishikawa Y, Wirz J, Vranka JA, Nagata K and Bächinger HP. 2009. Biochemical characterization of the prolyl 3-hydroxylase 1/CRTAP/cyclophilin B complex. J Biol Chem 284:17641–17647.
  • Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, Kriegsheim A, Hebestreit HF, Mukherji M, Schofield CJ, Maxwell PH, Pugh CW and Ratcliffe PJ. 2001. Targeting of HIF-α to the von Hippel–Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292:468–472.
  • Jenkins CL and Raines RT. 2002. Insights on the conformational stability of collagen. Nat Prod Rep 19:49–59.
  • Jenkins CL, Bretscher LE, Guzei IA and Raines RT. 2003. Effect of 3-hydroxyproline residues on collagen stability. J Am Chem Soc 125:6422–6427.
  • Kaelin WG, Jr and Ratcliffe PJ. 2008. Oxygen sensing by metazoans: The central role of the HIF hydroxylase pathway. Mol Cell 30:393–402.
  • Kaska DD, Günzler V, Kivirikko KI and Myllylä, R. 1987. Characterization of a low-relative-molecular-mass prolyl 4-hydroxylase from the green alga Chlamydomonas reinhardii. Biochem J 241:483–490.
  • Katz E, Prockop DJ and Udenfriend S. 1962. Precursors of the hydroxyproline and ketoproline in actinomycin. J Biol Chem 237:1585–1588.
  • Katz E, Kamal F and Mason K. 1979. Biosynthesis of trans-4-hydroxy-l-proline by Streptomyces griseoviridus. J Biol Chem 254:6684–6690.
  • Ke Q and Costa M. 2006. Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol 70:1469–1480.
  • Kersteen EA and Raines RT. 2003. Catalysis of protein folding by protein disulfide isomerase and small-molecule mimics. Antioxid Redox Signal 5:413–424.
  • Kersteen EA, Higgin JJ and Raines RT. 2004. Production of human prolyl 4-hydroxylase in Escherichia coli. Protein Exp Purif 38:279–291.
  • Keskiaho K, Hieta R, Sormunen R and Myllyharju J. 2007. Chlamydomonas reinhardtii has multiple prolyl 4-hydroxylases, one of which is essential for proper cell wall assembly. Plant Cell 19:256–269.
  • Kieliszewski MJ. 2001. The latest hype on Hyp–O-glycosylation codes. Phytochemistry 57:391–323.
  • Kieliszewski MJ and Lamport DTA. 1994. Extensin: Repetitive motifs, functional sites, post-translational codes, and phylogeny. Plant J 5:157–172.
  • Kieliszewski MJ and Shpak E. 2001. Synthetic genes for the elucidation of glycosylation codes for arabinogalactain-proteins and other hydroxyproline-rich glycoproteins. Cell Mol Life Sci 58:1386–1398.
  • Kim W, McMillan RA, Snyder JP and Conticello VP. 2005. A stereoelectronic effect on turn formation due to proline substitution in elastin-mimetic polypeptides. J Am Chem Soc 127:18121–18132.
  • Kishore U, Greenhough TJ, Waters P, Shrive AK, Ghai R, Kamran MF, Bernal AL, Reid KB, Madan T and Chakraborty T. 2006. Surfactant proteins SP-A and SP-D: Structure, function and receptors. Mol Immunol 43:1293–1315.
  • Kivirikko KI and Prockop DJ. 1967. Enzymatic hydroxylation of proline and lysine in protocollagen. Proc Natl Acad Sci USA 57:782–789.
  • Kivirikko KI, Suga K, Kishida Y, Sakakibara S and Prockop DJ. 1971. Asymmetry in the hydroxylation of (Pro–Pro–Gly)5 by protocollagen proline hydroxylase. Biochem Biophys Res Commun 45:1591–1596.
  • Kivirikko KI, Kishida Y, Sakakibara S and Prockop DJ. 1972. Hydroxylation of (X–Pro–Gly)n by protocollagen proline hydroxylase. Effect of chain length, helical conformation and amino acid sequence in the substrate. Biochim Biophys Acta 271:347–356.
  • Koditz J, Nesper J, Wottawa M, Stiehl DP, Camenisch G, Franke C, Myllyharju J, Wenger RH and Katschinkski DM. 2007. Oxygen-dependent ATF-4 stability is mediated by the PHD3 oxygen sensor. Blood 110:3610–3617.
  • Koehn FE, Longley RE and Reed JK. 1992. Microcolins A and B, new immunosuppressive peptides from the blue-green alga Lyngbya majuscula. J Nat Prod 55:613–619.
  • Koivu J and Myllylä R. 1986. Protein disulfide-Isomerase retains procollagen prolyl 4-hydroxylase structure in its native conformation. Biochemistry 25:5982–5986.
  • Koivunen P, Tiainen P, Hyvärinen J, Williams KE, Sormunen R, Klaus SJ, Kivirikko KI and Myllyharju J. 2007. An endoplasmic reticulum transmembrane prolyl 4-hydroxylase is induced by hypoxia and acts on hypoxia-inducible factor α. J Biol Chem 282:30544–30552.
  • Koski MK, Hieta R, Bollner C, Kivirikko KI, Myllyharju J and Wierenga RK. 2007. The active site of an algal prolyl 4-hydroxylase has a large structural plasticity. J Biol Chem 282:37112–37123.
  • Koski MK, Hieta R, Hirsilä M, Rönkä A, Myllyharju J and Wierenga RK. 2009. The crystal structure of an algal prolyl 4-hydroxylase complexed with a proline-rich peptide reveals a novel buried tripeptide binding motif. J Biol Chem 284:25290–25301.
  • Kramer RZ, Bella J, Mayville P, Brodsky B and Berman HM. 1999. Sequence dependent conformational variations of collagen triple-helical structure. Nat Struct Biol 6:454–457.
  • Kukkola L, Hieta R, Kivirikko KI and Myllyharju J. 2003. Identification and characterization of a third human, rat, and mouse collagen prolyl 4-hydroxylase isoenzyme. J Biol Chem 278:47685–47693.
  • Kuznetsova AV, Meller J, Schnell PO, Nash JA, Ignacak ML, Sanchez Y, Conaway JW, Conaway RC and Czyzyk-Krzeska MF. 2003. von Hippel–Lindau protein binds hyperphosphorylated large subunit of RNA polymerase II through a proline hydroxylation motif and targets it for ubiquitination. Proc Natl Acad Sci USA 100:2706–2711.
  • Lamberg A, Pihlajaniemi T and Kivirikko KI. 1995. Site-directed mutagenesis of the a subunit of human prolyl 4-hydroxylase. Identification of three histidine residues critical for catalytic activity. J Biol Chem 270:9926–9931.
  • Lassot I, Segeral E, Berlioz-Torrent C, Durand H, Groussin L, Hai T, Benarous R and Margottin-Goguet F. 2001. ATF4 degradation relies on a phosphorylation-dependent interaction with the SCF(bTrCP) ubiquitin ligase. Mol Cell Biol 21:2192–2202.
  • Lawrence CC, Sobey WJ, Field RA, Baldwin JE and Schofield CJ. 1996. Purification and initial characterization of proline 4-hydroxylase from Streptomyces griseoviridus P8648: A 2-oxoacid, ferrous-dependent dioxygenase involved in etamycin biosynthesis. Biochem J 313:185–192.
  • Li D, Hirsilä M, Koivunen P, Brenner MC, Xu L, Yang C, Kivirikko KI and Myllyharju, J. 2004. Many amino acid substitutions in a hypoxia-inducible transcription factor (HIF)-1α-like peptide cause only minor changes in its hydroxylation by the HIF prolyl 4-hydroxylases: Substitution of 3,4-dehydroproline or azetidine-2-carboxylic acid for the proline leads to a high rate of uncoupled 2-oxoglutarate decarboxylation. J Biol Chem 279:55051–55059.
  • Lind J. 1753. A Treatise of the Scurvy in Three Parts. Containing an Inquiry into the Nature, Causes and Cure of that Disease, Together with a Critical and Chronological View of what has been Published on the Subject. A. Millar: London.
  • Liu JD, Carmell MA, Rivas FV, Marsden CG, Thomson JM, Song JJ, Hammond SM, Joshua-Tor L and Hannon GJ. 2004. Argonaute2 is the catalytic engine of mammalian RNAi. Science 305:1437–1441.
  • Loenarz C, Mecinovic J, Chowdhury R, McNeill LA, Flashman E and Schofield CJ. 2009. Evidence for a stereoelectronic effect in human oxygen sensing. Angew Chem Int Ed 48:1784–1787.
  • Lopez-Vera E, Walewska A, Skalicky JJ, Olivera BM and Bulaj G. 2008. Role of hydroxyprolines in the in vitro oxidative folding and biological activity of conotoxins. Biochemistry 47:1741–1751.
  • Ma Y, Shida H and Kawasaki T. 1997. Functional expression of human mannan-binding proteins (MBPs) in human hepatoma cell lines infected by recombinant vaccinia virus: Post-translational modification, molecular assembly, and differentiation of serum and liver MBP. J Biochem 122:810–818.
  • Marc D, Mercey R and Lantier F. 2007. Scavenger, transducer, RNA chaperone? What ligands of the prion protein teach us about its function. Cell Mol Life Sci 64:815–829.
  • McCaldon P and Argos P. 1988. Oligopeptide biases in protein sequences and their use in predicting protein coding regions in nucleotide sequences. Proteins: Struct Funct Genet 4:99–122.
  • McDonough MA, Li V, Flashman E, Chowdhury R, Mohr C, Lienard BM, Zondlo J, Oldham NJ, Clifton IJ, Lewis J, McNeill LA, Kurzeja RJ, Hewitson KS, Yang E, Jordan S, Syed RS and Schofield CJ. 2006. Cellular oxygen sensing: Crystal structure of hypoxia-inducible factor prolyl hydroxylase (PHD2). Proc Natl Acad Sci USA 103:9814–9819.
  • Mikhaylova O, Ignacak ML, Barankiewicz TJ, Harbaugh SV, Yi Y, Maxwell PH, Schneider M, Van Geyte K, Carmeliet P, Revelo MP, Wyder M, Greis KD, Meller J and Czyzyk-Krzeska MF. 2008. The von Hippel–Lindau tumor suppressor protein and Egl-9-type proline hydroxylases regulate the large subunit of RNA polymerase II in response to oxidative stress. Mol Cell Biol 28:2701–2717.
  • Miller MA, Scott EE and Limburg J. 2008. Expression, purification, crystallization and preliminary X-ray studies of a prolyl-4-hydroxylase protein from Bacillus anthracis. Acta Crystallogr Sect F Struct Biol Cryst Commun 64:788–791.
  • Min JH, Yang H, Ivan M, Gertler F, Kaelin WG, Jr and Pavletich NP. 2002. Structure of an HIF-1α–pVHL complex: Hydroxyproline recognition in signaling. Science 296:1886–1889.
  • Mizuno K, Peyton DH, Hayashi T, Engel J and Bächinger HP. 2008. Effect of the –Gly–3(S)-hydroxyprolyl–4(R)-hydroxyprolyl–tripeptide unit on the stability of collagen model peptides. FEBS J 275:5830–5840.
  • Mocharla R, Mocharla H and Leu RW. 1987. Effects of inhibitors of C1q biosynthesis on macrophage Fc receptor subclass-mediated antibody-dependent cellular cytotoxicity and phagocytosis. Cell Immunol 105:127–135.
  • Morello R, Bertin TK, Chen Y, Hicks J, Tonachini L, Monticone M, Castagnola P, Rauch F, Glorieux FH, Vranka J, Bächinger HP, Pace JM, Schwarze U, Byers PH, Weis M, Fernandes RJ, Eyre DR, Yao Z, Boyce BF and Lee B. 2006. CRTAP is required for prolyl 3-hydroxylation and mutations cause recessive osteogenesis imperfecta. Cell 127:291–304.
  • Mori H, Shibasaki T, Yano K and Ozaki A. 1997. Purification and cloning of a proline 3-hydroxylase, a novel enzyme which hydroxylates free l-proline to cis-3-hydroxy-l-proline. J Bacteriol 179:5677–5683.
  • Muller W, Hanauske-Abel H and Loos M. 1978. Biosynthesis of the first component of complement by human and guinea pig peritoneal macrophages: Evidence for an independent production of the C1 subunits. J Immunol 121:1578–15784.
  • Myllyharju J. 2008. Prolyl 4-hydroxylases, key enzymes in the synthesis of collagens and regulation of the response to hypoxia, and their roles as treatment targets. Annals of Medicine 40:402–417.
  • Myllyharju J and Kivirikko KI. 1997. Characterization of the iron- and 2-oxoglutarate-binding sites of human prolyl 4-hydroxylase. EMBO J 16:1173–1180.
  • Myllyharju J and Kivirikko KI. 2004. Collagens, modifying enzymes and their mutations in humans, flies and worms. Trends in Genetics 20:33–43.
  • Myllyharju J, Kukkola L, Winter AD and Page AP. 2002. The exoskeleton collagens in Caenorhabditis elegans are modified by prolyl 4-hydroxylases with unique combinations of subunits. J Biol Chem 277:29187–29196.
  • Myllylä R, Kuutti-Savolainen ER and Kivirikko KI. 1978. The role of ascorbate in the prolyl hydroxylase reaction. Biochem Biophys Res Commun 83:441–448.
  • Myllylä R, Majamaa K, Günzler V, Hanauske-Abel HM and Kivirikko KI. 1984. Ascorbate is consumed stoichiometrically in the uncoupled reactions catalyzed by prolyl 4-hydroxylase and lysyl hydroxylase. J Biol Chem 259:5403–5405.
  • Nagarajan V, Kamitori S and Okuyama K. 1999. Structure analysis of a collagen-model peptide with a (Pro–Hyp–Gly) sequence repeat. J Biochem (Tokyo) 125:310–318.
  • Neubauer A, Neubauer P and Myllyharju J. 2005. High-level production of human collagen prolyl 4-hydroxylase in Escherichia coli. Matrix Biol 24:59–68.
  • Nietfeld JJ and Kemp A. 1981. The function of ascorbate with respect to prolyl 4-hydroxylase activity. Biochim Biophys Acta 657:159–167.
  • Oehme F, Ellinghaus P, Kolkhof P, Smith TJ, Ramakrishnan S, Hutter J, Schramm M and Flamme I. 2002. Overexpression of PH-4, a novel putative proline 4-hydroxylase, modulates activity of hypoxia-inducible transcription factors. Biochem Biophys Res Commun 296:343–349.
  • Okuyama K, Hongo C, Fukushima R, Wu G, Narita H, Noguchi K, Tanaka Y and Nishino, N. 2004. Crystal structures of collagen model peptides with Pro–Hyp–Gly repeating sequence at 1.26 Å resolution: Implications for proline ring puckering. Biopolymers: Peptide Sci 76:367–377.
  • Panasik N, Jr Eberhardt, ES, Edison AS, Powell DR and Raines RT. 1994. Inductive effects on the structure of proline residues. Int J Pept Protein Res 44:262–269.
  • Pauling L. 1939. The Nature of the Chemical Bond. Cornell University Press: Ithaca, NY.
  • Pearce G, Bhattacharya R, Chen YC, Barona G, Yamaguchi Y and Ryan CA. 2009. Isolation and characterization of hydroxyproline-rich glycopeptide signals in black nightshade leaves. Plant Physiol 150:1422–1433.
  • Pekkala M, Hieta R, Bergmann U, Kivirikko KI, Wierenga RK and Myllyharju J. 2004. The peptide-substrate-binding domain of collagen prolyl 4-hydroxylases is a tetratricopeptide repeat domain with functional aromatic residues. J Biol Chem 279:52255–52261.
  • Peterkofsky B and Udenfriend S. 1965. Enzymatic hydroxylation of proline in microsomal polypeptide leading to formation of collagen. Proc Natl Acad Sci USA 53:335–342.
  • Pihlajaniemi T, Helaakoski T, Tasanen K, Myllylä R, Huhtala ML, Koivu J and Kivirikko KI. 1987. Molecular cloning of the β-subunit of human prolyl 4-hydroxylase. This subunit and protein disulfide isomerase are products of the same gen. EMBO J 6:643–649.
  • Pisarewicz K, Mora D, Pflueger FC, Fields GB and Mari F. 2005. Polypeptide chains containing d-γ-hydroxyvaline. J Am Chem Soc 127:6207–6215.
  • Porter RR and Reid KB. 1978. The biochemistry of complement. Nature 275:699–704.
  • Prockop DJ and Juva K. 1965. Synthesis of hydroxyproline in vitro by the hydroxylation of proline in a precursor of collagen. Proc Natl Acad Sci USA 53:661–668.
  • Prockop DJ and Kivirikko KI. 1969. Effect of polymer size on the inhibition of protocollagen proline hydroxylase by polyproline II. J Biol Chem 244:4838–4842.
  • Qi HH, Ongusaha PP, Myllyharju J, Cheng D, Pakkanen O, Shi Y, Lee SW, Peng J and Shi Y. 2008. Prolyl 4-hydroxylation regulates Argonaute 2 stability. Nature 455:421–424.
  • Raines RT. 2006. 2005 Emil Thomas Kaiser Award. Protein Sci 15:1219–1225.
  • Ramshaw JAM, Shah NK and Brodsky B. 1998. Gly–X–Y tripeptide frequencies in collagen: A context for host–guest triple-helical peptides. J Struct Biol 122:86–91.
  • Rao NV and Adams E. 1978. Partial reaction of prolyl hydroxylase. (Gly–Pro–Ala)n stimulates α-ketoglutarate decarboxylation without prolyl hydroxylation. J Biol Chem 253:6327–6330.
  • Rapaka RS, Renugopalakrishman V, Urry DW and Bhatnagar RS. 1978. Hydroxylation of proline in polytripeptide models of collagen: Stereochemistry of polytripeptide–prolyl hydroxylase interaction. Biochemistry 17:2892–2898.
  • Rhoads RE and Udenfriend S. 1968. Decarboxylation of α-ketoglutarate coupled to collagen proline hydroxylase. Proc Natl Acad Sci USA 60:1473–1478.
  • Rhodes RK and Miller EJ. 1978. Physicochemical characterization and molecular organization of the collagen A and B chains. Biochemistry 17:3442–3448.
  • Rosenbloom J and Cywinski A. 1976a. Inhibition of proline hydroxylation does not inhibit secretion of tropoelastin by chick aorta cells. FEBS Lett 65:246–250.
  • Rosenbloom J and Cywinski A. 1976b. Biosynthesis and secretion of tropoelastin by chick aorta cells. Biochem Biophys Res Commun 69:613–620.
  • Ryan CA and Pearce G. 2003. Systemins: A functionally defined family of peptide signals that regulate defensive genes in Solanaceae species. Proc Natl Acad Sci 100:14577–14580.
  • Sakakibara S, Inouye K, Shudo K, Kishida Y, Kobayashi Y and Prockop DJ. 1973. Synthesis of (Pro–Hyp–Gly)n of defined molecular weights. Evidence for the stabilization of collagen triple helix by hydroxyproline. Biochim Biophys Acta 303:198–202.
  • Schofield CJ and Zhang Z. 1999. Structural and mechanistic studies on 2-oxoglutarate-dependent oxygenases and related enzymes. Curr Opin Struct Biol 9:722–731.
  • Sheehan JC, Mania D, Nakamura S, Stock JA and Maeda K. 1968. The structure of telomycin. J Am Chem Soc 90:462–470.
  • Shimizu M, Igasaki T, Yamada M, Yuasa K, Hasegawa J, Kato T, Tsukagoshi H, Nakamura K, Fukuda H and Matsuoka K. 2005. Experimental determination of proline hydroxylation and hydroxyproline arabinogalactosylation motifs in secretory proteins. Plant J 42:877–889.
  • Shoulders MD and Raines RT. 2009. Collagen structure and stability. Annu Rev Biochem 78:929–958.
  • Shoulders MD, Hodges JA and Raines RT. 2006. Reciprocity of steric and stereoelectronic effects in the collagen triple helix. J Am Chem Soc 128:8112–8113.
  • Shoulders MD, Guzei IA and Raines RT. 2008. 4-Chloroprolines: Synthesis, conformational analysis, and effect on the collagen triple helix. Biopolymers 89:443–454.
  • Shoulders MD, Kamer KJ and Raines RT. 2009. Origin of the stability conferred upon collagen by fluorination. Bioorg Med Chem Lett 19:3859–3862.
  • Shoulders MD, Satyshur KA, Forest KT and Raines RT. 2010. Stereoelectronic and steric effects in side chains preorganize a protein main chain. Proc Natl Acad Sci USA 107:559–564.
  • Steinmann B, Bruckner P and Superti-Furga A. 1991. Cyclosporin A slows collagen triple-helix formation in vivo: Indirect evidence for a physiological role of peptidyl-prolyl cis–trans-isomerase. J Biol Chem 266:1299–1303.
  • Takamatsu N, Ohba K, Kondo J, Kondo N and Shiba T. 1993. Hibernation-associated gene regulation of plasma proteins with a collagen-like domain in mammalian hibernators. Mol Cell Biol 13:1516–1521.
  • Tanaka M, Sato K and Uchida T. 1981. Plant prolyl hydroxylase recognizes poly(l-proline) II helix. J Biol Chem 256:11397–11400.
  • Tiainen P, Myllyharju J and Koivunen P. 2005. Characterization of a second Arabidopsis thaliana prolyl 4-hydroxylase with distinct substrate specificity. J Biol Chem 280:1142–1148.
  • Tiainen P, Pasanen A, Sormunen R and Myllyharju J. 2008. Characterization of recombinant human prolyl 3-hydroxylase isoenzyme 2, an enzyme modifying the basement membrane collagen IV. J Biol Chem 283:19432–19439.
  • Tian G, Xiang S, Noiva R, Lennarz WJ and Schindelin H. 2006. The crystal structure of yeast protein disulfide isomerase suggests cooperativity between its active sites. Cell 124:1085–1088.
  • van de Wetering JK, van Golde LM and Batenburg JJ. 2004. Collectins: Players of the innate immune system. Eur J Biochem 271:1229–1249.
  • van der Wel H, Ercan A and West CM. 2005. The Skp1 prolyl hydroxylase from Dictyostelium is related to the hypoxia-inducible factor-α class of animal prolyl 4-hydroxylases. J Biol Chem 280:14645–14655.
  • van Dijk F, Nesbitt IM, Zwikstra EH, Nikkels PGJ, Piersma SR, Fratantoni SA, Jimineza CR, Huizer M, Morsman AC, Cobben JM, van Roij MHH, Elting MW, Verbeke JIML, Wijnaendts LCD, Shaw NJ, Högler W, McKeown C, Sistermans EA, Dalton A, Meijers-Heijboer H and Pals G. 2009. PPIB mutations cause severe osteogenesis imperfecta. Am J Hum Genet 85:521–527.
  • Vickery HB and Schmidt CLA. 1931. The history of the discovery of the amino acids. Chem Rev 9:169–318.
  • Voss T, Eistetter H, Schafer KP and Engel J. 1988. Macromolecular organization of natural and recombinant lung surfactant protein SP 28–36. Structural homology with the complement factor C1q. J Mol Biol 201:219–227.
  • Vranka JA, Sakai LY and Bächinger HP. 2004. Prolyl 3-hydroxylase 1, enzyme characterization and identification of a novel family of enzymes. J Biol Chem 279:23615–23621.
  • Vranka J, Stadler HS and Bächinger JP. 2009. Expression of prolyl 3-hydroxylase genes in embryonic and adult mouse tissues. Cell Struct Funct 34:97–104.
  • Vuori K, Pihlajaniemi T, Myllylä R and Kivirikko KI. 1992a. Site-directed mutagenesis of human protein disulphide isomerase: Effect on the assembly, activity and endoplasmic reticulum retention of human prolyl 4-hydroxylase in Spodoptera frugiperda insect cells. EMBO J 11:4213–4217.
  • Vuori K, Pihlajaniemi T, Marttila M and Kivirikko KI. 1992b. Characterization of the human prolyl 4-hydroxylase tetramer and its multifunctional protein disulfide-isomerase subunit synthesized in a baculovirus expression system. Proc Natl Acad Sci USA 89:7467–7470.
  • Walsh CT. 2006. Posttranslational Modification of Proteins: Expanding Nature’s Inventory. Greenwood Village, CO: Roberts and Co.
  • Walsh CT, Garneau-Tsodikova S, Gatto GJ, Jr. 2005. Protein posttranslational modifications: The chemistry of proteome diversifications. Angew Chem Int Ed 44:7342–7372.
  • West CM, Van Der Wel H, Sassi S and Gaucher EA. 2004. Cytoplasmic glycosylation of protein-hydroxyproline and its relationship to other glycosylation pathways. Biochim Biophys Acta 1673:29–44.
  • West CM, van der Wel H and Blader IJ. 2006. Detection of cytoplasmic glycosylation associated with hydroxyproline. Methods Enzymol 417:389–404.
  • West CM, van der Wel H and Wang ZA. 2007. Prolyl 4-hydroxylase-1 mediates O2 signaling during development of Dictyostelium. Development 134:3349–3358.
  • Winter AD and Page AP. 2000. Prolyl 4-hydroxylase is an essential procollagen-modifying enzyme required for exoskeleton formation and the maintenance of body shape in the nematode Caenorhabditis elegans. Mol Cell Biol 20:4084–4093.
  • Wong C, Fujimori DG, Walsh CT and Drennan CL. 2009. Structural analysis of an open active site conformation of nonheme iron halogenase CytC3. J Am Chem Soc 131:4872–4879.
  • Wu H, Graaf Bd, Mariani C and Cheung AY. 2001. Hydroxyproline-rich glycoproteins in plant reproductive tissues: Structure, functions and regulation. Cell Mol Life Sci 58:1418–1429.
  • Xie L, Xiao K, Whalen EJ, Forrester MT, Freeman RS, Fong G, Gygi SP, Lefkowitz RJ and Stamler JS. 2009. Oxygen-regulated β2-adrenergic receptor hydroxylation by EGLN3 and ubiquitylation by pVHL. Sci Signal 2:ra33.
  • Yuasa K, Toyooka K, Fukuda H and Matsuoka K. 2005. Membrane-anchored prolyl hydroxylase withan export signal from the endoplasmic reticulum. Plant J 41:81–94.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.