83
Views
16
CrossRef citations to date
0
Altmetric
Original Article

Bacterial Bioluminescence Light Emission in the Mixed Function Oxidation of Reduced Flavin and Fatty Aldehyde

&
Pages 163-184 | Published online: 23 Dec 2009

References

  • Hastings J. W., Balny C. The oxygenated bacterial luciferase-flavin intermediate: reaction products via the light and dark pathways. J. Biol. Chem. 1975; 250: 7288
  • Hastings J. W., Nealson K. H. Bacterial bioluminescence. Annu. Rev. Microbiol. 1977; 31: 549
  • Hastings J. W., Weber K., Friedland J., Eberhard A., Mitchell G. W., Gunsalus A. Structurally-distinct bacterial luciferases. Biochemistry 1969; 8: 4681
  • Nakamura T., Matsuda K. Studies on luciferase from Photobacterium phosphoreum. I. Purification and physiochemical properties. J. Biochem. 1971; 70: 35
  • Balakrishnan C. V., Langerman N. The isolation of a bacterial glycoprotein with luciferase activity. Arch. Biochem. Biophys. 1977; 181: 680
  • Hastings J. W., Wilson T. B. Bioluminescence and chemiluminescence. Photochem. Photobiol. 1976; 23: 461
  • Harvey E. N. Bioluminescence. Academic Press, New York 1952
  • Hayaishi O. Molecular Mechanisms of Oxygen Activation. Academic Press, New York 1974
  • Cormier M. J., Lee J., Wampler J. E. Bioluminescence: recent advances. Annu. Rev. Biochem. 1975; 44: 255
  • McElroy W. D., DeLuca M. Chemical enzymatic mechanisms of firefly luminescence. Chemiluminescence and Bioluminescence, M. J. Cormier, D. M. Hercules, J. Lee. Plenum Publishing, New York 1973; 285
  • Strehler B. L., McElroy W. D. Assay of adenosine triphosphate. Methods in Enzymology, S. P. Colowick, N. O. Kaplan. Academic Press, New York 1957; Vol. 3: 871
  • McCapra F., Chang Y. C. The chemiluminescence of a Cypridina luciferin analogue. Chem. Commun. 1967; 1011
  • Plant P. J., White E. H., McElroy W. D. The decarboxylation of luciferin in firefly bioluminescence. Biochem. Biophys. Res. Commun. 1968; 31: 98
  • Stone H. The enzyme catalyzed oxidation of Cypridina luciferin. Biochem. Biophys. Res. Commun. 1968; 31: 386
  • Wilson T. Chemiluminescence in the liquid phase: thermal cleavage of dioxetanes. Chemical Kinetics, International Review of Science, Physical Chemistry Series Two, D. R. Herschbach. Butterworth, London 1976; Vol. 9: 265
  • Shimomura O., Johnson F. H. Exchange of oxygen between solvent H2O and the CO2 produced in Cypridina bioluminescence. Biochem. Biophys. Res. Commun. 1973; 51: 558
  • Shimomura O., Johnson F. H. Influence of buffer system and pH on the amount of oxygen exchanged between solvent H2O and the CO2 produced in the aerobic oxidation of Cypridina luciferin catalyzed by Cypridina luciferase. Anal. Biochem. 1975; 64: 601
  • DeLuca M., Dempsey M. E., Hori K., Cormier M. J. Source of oxygen in the CO2 produced during chemiluminescence of firefly luciferyl-adenylate and Renilla luciferin. Biochem. Biophys. Res. Commun. 1976; 69: 262
  • Tsuji F. E., DeLuca M., Boyer P. D., Endo S., Akutagawa M. Mechanism of the enzyme-catalyzed oxidation of Cypridina and firefly luciferins studied by means of 17O2 and H218O1. Biochem. Biophys. Res. Commun. 1977; 74: 606
  • Shimomura O., Goto T., Johnson F. H. Source of oxygen in the CO2 produced in the bioluminescent oxidation of firefly luciferin. Proc. Natl. Acad. Sci. U.S.A. 1977; 74: 2799
  • Hastings J. W., Mitchell G. Endosymbiotic bioluminescent bacteria from the light organ of the pony fish. Biol. Bull., (Woods Hole, Mass.) 1971; 141: 261
  • Morin J. G., Harrington A., Krieger N., Nealson K. H., Baldwin T. O., Hastings J. W. Light for all reasons. Science 1975; 180: 74
  • Eberhard A. Inhibition and activation of bacterial luciferase synthesis. J. Bacteriol. 1972; 109: 1101
  • Magner J., Eberhard A., Nealson K. Characterization of bioluminescent bacteria by studies of their inducers of luciferase synthesis. Biol. Bull. (Woods Hole, Mass.) 1972; 143: 469
  • Nealson K. H. Autoinduction of bacterial luciferase: occurrence, mechanism and significance. Arch. Microbiol.
  • Katznelson R., Ulitzur S. Control of luciferase in a newly isolated strain of Photobacterium leiognathi. Arch. Microbiol. 1977; 115: 347
  • Watanabe T., Mimara N., Takimoto A., Nakamura T. Luminescence and respiratory activities of Photobacterium phosphoreum. J. Biochem. 1975; 77: 1147
  • Nealson K. H., Platt T., Hastings J. W. The cellular control of the synthesis and activity of the bacterial luminescent system. J. Bacteriol. 1970; 104: 313
  • Coffey J. J. Inducible synthesis of bacterial luciferase: specificity and kinetics of induction. J. Bacteriol. 1967; 94: 1638
  • Waters C. A., Hastings J. W. Mutants of luminous bacteria with an altered control of luciferase synthesis. J. Bacteriol. 1977; 131: 519
  • Nealson K. H. Mutational and Biochemical Studies of Bacterial Bioluminescence. Ph.D. thesis, The University of Chicago, , Ill. 1969
  • Waters C. A. Studies on the Cellular Control of Bacterial Bioluminescence. Ph.D. thesis, Harvard University, Cambridge, Mass. 1974
  • Nealson K., Eberhard A., Hastings J. W. Catabolite repression of bacterial bioluminescence: functional implications. Proc. Natl. Acad. Sci. U.S.A. 1972; 69: 1073
  • Nealson K. H., Hastings J. W. Mutants escaping catabolite repression of the bioluminescent system in the marine bacterium Photobacterium fischeri (strain MAV). Bacteriol. Proc. 1972; 141
  • Lin P., Saier M. H., Jr., Nealson K. H. Regulation of the synthesis of the bioluminescent system in Beneckea harveyi. Fed. Proc. 1976; 35: 1361
  • Ulitzur S., Yashphe J. An adenosine 3',5'-monophosphate-requiring mutant of the luminous bacteria Beneckea harveyi. Biochim. Biophys. Acta 1975; 404: 321
  • Ulitzur S., Yashphe J., Hastings J. W. Inhibition and stimulation of the bioluminescent system in Beneckea harveyi by 3',5'-cyclic GMP. Proc. Natl. Acad. Sci. U.S.A. 1976; 73: 4454
  • Nealson K. H., Hastings J. W. Low oxygen is optimal for luciferase synthesis in some bacteria: ecological implications. Arch. Microbiol. 1977; 112: 9
  • Hastings J. W. Oxygen concentration and bioluminescence intensity. I. Bacteria and fungi. J. Cell. Comp. Physiol. 1952; 39: 1
  • Cormier M. J., Totter J. R. Bioluminescence. Annu. Rev. Biochem. 1964; 33: 431
  • Hastings J. W., Riley W. H., Massa J. The purification, properties, and chemiluminescent quantum yield of bacterial luciferase. J. Biol. Chem. 1965; 240: 1473
  • Ne'eman Z., Ulitzur S., Branton D., Hastings J. W. Membrane polypeptides co-induced with the bacterial bioluminescent system. J. Biol. Chem. 1977; 252: 5150
  • Gunsalus-Miguel A., Meighen E. A., Nicoli M. Z., Nealson K. H., Hastings J. W. Purification and properties of bacterial luciferases. J. Biol. Chem. 1972; 247: 398
  • Baldwin T. O., Nicoli M. Z., Becvar J. E., Hastings J. W. Bacterial luciferase: binding of oxidized flavin mononucleotide. J. Biol. Chem. 1975; 250: 2763
  • Friedland J. M., Hastings J. W. The non-identical subunits of bacterial luciferase: their isolation and recombination to form active enzyme. Proc. Natl. Acad. Sci. U.S.A. 1967; 58: 2336
  • Baldwin T. O., Nicoli M. Z., Powers D. A., Hastings J. W. N- and C-terminal amino acid sequences of the subunits of bacterial luciferase. Biophys. J. 1975; 15: 55a
  • Meighen E. A., Smillie L. B., Hastings J. W. Subunit homologies in bacterial luciferases. Biochemistry 1970; 9: 4949
  • Michaliszyn G. A., Meighen E. A. Induced polypeptide synthesis during the development of bacterial bioluminescence. J. Biol. Chem. 1976; 251: 2541
  • Tu S. C., Makemson J. C., Becvar J. E., Hastings J. W. Bacterial luciferase subunits are synthesized in equal quantities. J. Biol. Chem. 1977; 252: 803
  • Meighen E. A., Nicoli M. Z., Hastings J. W. Hybridization of bacterial luciferase with a variant produced by chemical modification. Biochemistry 1971; 10: 4062
  • Meighen E. A., Nicoli M. Z., Hastings J. W. Functional differences of the nonidentical subunits of bacterial luciferase. Properties of hybrids of native and chemically modified bacterial luciferase. Biochemistry 1971; 10: 4069
  • Nicoli M. Z., Meighen E. A., Hastings J. W. Bacterial luciferase. Chemistry of the reactive sulfhydryl. J. Biol. Chem. 1974; 249: 2385
  • Nicoli M. Z., Hastings J. W. Bacterial luciferase. The hydrophobic environment of the reactive sulfhydryl. J. Biol. Chem. 1974; 249: 2393
  • Hastings J. W., Eberhard A., Baldwin T. O., Nicoli M. Z., Cline T. W., Nealson K. H. Bacterial bioluminescence. Mechanistic implications of active site chemistry of luciferase. Chemiluminescence and Bioluminescence, M. J. Cormier, D. M. Hercules, J. Lee. Plenum Press, New York 1973; 369
  • Cousineau J., Meighen E. Chemical modification of bacterial luciferase with ethoxyformic anhydride: evidence for an essential histidyl residue. Biochemistry 1976; 15: 4992
  • Cousineau J., Meighen E. Sequential chemical modification of a histidyl and a cysteinyl residue in bacterial luciferase. Can. J. Biochem. 1977; 55: 433
  • Meighen E. A., MacKenzie R. E. Flavine specificity of enzyme-substrate intermediates in the bacterial bioluminescent reaction. Structural requirements of the flavine side chain. Biochemistry 1973; 12: 1482
  • Mitchell G., Hastings J. W. The effect of flavin isomers and analogs upon the color of bacterial bioluminescence. J. Biol. Chem. 1969; 244: 2572
  • Baldwin T. O. The binding and spectral alterations of oxidized flavin mononucleotide by bacterial luciferase. Biochem. Biophys. Res. Commun. 1974; 57: 1000
  • Tu S.-C., Hastings J. W., McCormick D. B. Specificity of bacterial luciferase for oxidized and reduced flavins. Fed. Proc. 1977; 36: 832
  • Meighen E. A., Hastings J. W. Binding site determination from kinetic data: reduced flavin mononucleotide binding to bacterial luciferase. J. Biol. Chem. 1971; 246: 7666
  • Tu S.-C., Hastings J. W. Differential effects of 1-anilino-8-naphthalene sulfonate upon binding of oxidized and reduced flavins by bacterial luciferase. Biochemistry 1975; 14: 4310
  • Tu S.-C., Hastings J. W. A fluorescence energy transfer study on the distance between an essential sulfhydryl group and the 8-anilino-1-naphthalenesulfonate site on bacterial luciferase. Biophys. J. 1977; 17: 146
  • Mitchell G. W. Light Induced Protein: a Distinct Bioluminescent Species Isolated from Marine Bacteria. Ph.D. thesis, Harvard University, Cambridge, Mass. 1969
  • Njus D., Baldwin T. O., Hastings J. W. A sensitive assay for proteolytic enzymes using bacterial luciferase as a substrate. Anal. Biochem. 1974; 61: 280
  • Baldwin T. O. Protease hypersensitive bonds in bacterial luciferase. Fed. Proc. 1974; 33: 1441
  • Nicoli M. Z., Baldwin T. O., Becvar J. E., Hastings J. W. The interaction of oxidized flavin mononucleotide with bacterial luciferase. Flavins and Flavoproteins, T. P. Singer. Associated Scientific Publishing, Amsterdam 1976; 87
  • Mitchell G. W., Hastings J. W. Light-induced bioluminescence. Isolation and characterization of a specific protein involved in the absorption and delayed emission of light. Biochemistry 1970; 9: 2699
  • Cline T. W., Hastings J. W. Temperature-sensitive mutants in the bacterial bioluminescence system. Proc. Natl. Acad. Sci. U.S.A. 1971; 68: 500
  • Cline T. W., Hastings J. W. Mutationally altered bacterial luciferase. Implications for subunit functions. Biochemistry 1972; 11: 3359
  • Cline T. W., Hastings J. W. Bacterial bioluminescence in vivo: control and synthesis of aldehyde factor in temperature conditional luminescence mutants. J. Bacteriol. 1974; 118: 1059
  • Hastings J. W., Gibson Q. H. Intermediates in the bioluminescent oxidation of reduced flavin mononucleotide. J. Biol. Chem. 1963; 238: 2537
  • Gibson Q. H., Hastings J. W. The oxidation of reduced flavin mononucleotide by molecular oxygen. Biochem. J. 1962; 83: 368
  • Becvar J. E., Hastings J. W. Bacterial luciferase requires one reduced flavin for light emission. Proc. Natl. Acad. Sci. U.S.A. 1975; 72: 3374
  • Becvar J. E., Baldwin T. O., Nicoli M. Z., Hastings J. W. The flavin stoichiometry of the bacterial bioluminescence reaction. Flavins and Flavoproteins, T. P. Singer. Associated Scientific Publishing, Amsterdam 1976; 94
  • Watanabe T., Nakamura T. Studies on luciferase from Photobacterium phosphoreum. II. Substrate specificity and stoichiometry of the reaction in vitro. J. Biochem. 1972; 72: 647
  • Tu S.-C., Baldwin T. O., Becvar J. E., Hastings J. W. Bacterial luciferase activity does not require a disulfidedithiol conversion. Arch. Biochem. Biophys. 1977; 179: 342
  • Hastings J. W., Balny C., LePeuch C., Douzou P. Spectral properties of an oxygenated luciferase-flavin intermediate isolated by low-temperature chromatography. Proc. Natl. Acad. Sci. U.S.A. 1973; 70: 3468
  • Becvar J. E., Tu S.-C., Hastings J. W. Light emission from a luciferase-flavin intermediate in the absence of oxygen. Biophys. J. 1977; 17: 146a
  • Balny C., Hastings J. W. Fluorescence and bioluminescence of the oxygenated bacterial luciferase-flavin intermediate. Biochemistry 1975; 14: 4719
  • Becvar J. E., Tu S.-C., Hastings J. W. Spectral and quantum yield studies on a flavoenzyme intermediate in bacterial bioluminescence. Biophys. J. 1976; 16: 100a
  • Faini G. J., DeSa R. J., Lee J. Rapid-scanning stopped-flow study of the oxidation of FMNH2 by O2 catalyzed by bacterial luciferase. Flavins and Flavoproteins, T. P. Singer. Associated Scientific Publishing, Amsterdam 1976; 82
  • Ashizawa N., Nakamura T., Watanabe T. Studies on luciferase from Photobacterium phosphoreum. IX. Further studies on the spectroscopic characteristics of the enzyme-FMN intermediates. J. Biochem. 1977; 81: 1057
  • Yoshida K., Takahashi M., Nakamura T. Intermediates in the bacterial luciferase reaction. Biochem. Biophys. Res. Commun. 1973; 52: 1470
  • Kemal C., Bruice T. C. Simple synthesis of a 4a-hydroperoxy adduct of a 1,5-dihydroflavine: preliminary studies of a model for bacterial luciferase. Proc. Natl. Acad. Sci. U.S.A. 1976; 73: 995
  • Kemal C., Chan T. W., Bruice T. C. Chemiluminescent reactions and electrophilic oxygen donating ability of 4a-hydroperoxyflavins: general synthetic method for the preparation of N5-alkyl-1,5-dihydroflavins. Proc. Natl. Acad. Sci. U.S.A. 1977; 74: 405
  • Eberhard A., Hastings J. W. A postulated mechanism for the bioluminescent oxidation of reduced flavin mononucleotide. Biochem. Biophys. Res. Commun. 1972; 47: 348
  • Becvar J. E., Tu S.-C., Hastings J. W. Peroxide-initiated bioluminescence: an active intermediate from oxidized FMN, H2O2 and bacterial luciferase. Fed. Proc. 1976; 35: 163
  • Watanabe T., Nakamura T. Studies on luciferase from Photobacterium phosphoreum VIII. FMNH2-H2O2 initiated bioluminescence and the thermodynamics of the elementary steps of the luciferase reaction. J. Biochem. 1976; 79: 489
  • Hastings J. W., Gibson Q. H., Friedland J., Spudich J. Molecular mechanisms in bacterial bioluminescence: on energy storage intermediates and the role of aldehyde in the reaction. Bioluminescence in Progress, F. H. Johnson, Y. Haneda. Princeton University Press, Princeton, N.J. 1966; 151
  • Dunn D. K., Michaliszyn G. A., Bogacki I. G., Meighen E. A. Conversion of aldehyde to acid in the bacterial bioluminescent reaction. Biochemistry 1973; 12: 4911
  • McCapra F., Hysert D. W. Bacterial bioluminescence — Identification of fatty acid as product, its quantum yield and a suggested mechanism. Biochem. Biophys. Res. Commun. 1973; 52: 298
  • Shimomura O., Johnson F. H., Kohama Y. Reactions involved in bioluminescence systems of limpet (Latia neritoides) and luminous bacteria. Proc. Natl. Acad. Sci. U.S.A. 1972; 69: 2086
  • Vigny A., Michelson A. M. Studies in bioluminescence. XIII. Bioluminescence bacterienne: mise en evidence et identification du produit de transformation de l'aldehyde. Biochimie 1974; 56: 171
  • Lowe J. N., Ingraham L. L., Alspach J., Rasmussen R. A proposed symmetry forbidden oxidation mechanism for the bacterial luciferase catalyzed reaction. Biochem. Biophys. Res. Commun. 1976; 73: 465
  • Cormier M. J., Lee J., Wampler J. E. Bioluminescence: recent advances. Annu. Rev. Biochem. 1975; 44: 255
  • Eley M., Lee J., Lhoste J.-M., Cormier M. J., Hemmerich P. Bacterial bioluminescence. Comparisons of bioluminescence emission spectra, the fluorescence of luciferase reaction mixtures, and the fluorescence of flavin cations. Biochemistry 1970; 9: 2902
  • Ghisla S., Massey V., Lhoste J.-M., Mayhew S. G. Fluorescence and optical characteristics of reduced flavins and flavoproteins. Biochemistry 1974; 13: 589
  • White D. C., Wardley-Smith B., Adey G. Anesthetics and bioluminescence. Progress in Anesthesiology, Molecular Mechanisms of Anesthesia, B. R. Fink. Raven Press, New York 1975; Vol. 1: 583
  • Hastings J. W. Bioluminescence: from chemical bonds to photons. Energy Transformation in Biological Systems, G. E. W. Wolstenholme, D. W. Fitzsimons. Ciba Foundation Symposium 31, Associated Scientific Publishing, Amsterdam 1975; 125
  • Mangold A., Langerman N. The enthalpy of oxidation of flavin mononucleotide. Temperature dependence of in vitro bacterial luciferase bioluminescence. Arch. Biochem. Biophys. 1975; 169: 126
  • Hastings J. W. Bioluminescence. Annu. Rev. Biochem. 1968; 37: 597
  • Eymers J. G., van Schouwenburg K. L. On the luminescence of bacteria. II. Determination of the oxygen consumed in the light emitting process of Photobacterium phosphoreum. Enzymologia 1937; 1: 328
  • Ulitzur S., Hastings J. W. Growth, luminescence, respiration, and the adenosine triphosphate pool in Beneckea harveyi. J. Bacteriol.
  • Becvar J. E., Tu S.-C., Hastings J. W. The bacterial luciferase intermediate: luminescence without oxygen. Biochemistry
  • Balny C., Hastings J. W., unpublished
  • Presswood R. P., Hastings J. W., unpublished

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.