137
Views
11
CrossRef citations to date
0
Altmetric
Review Article

KATP channels process nucleotide signals in muscle thermogenic response

, , &
Pages 506-519 | Received 29 May 2010, Accepted 02 Aug 2010, Published online: 07 Oct 2010

References

  • Abraham MR, Selivanov VA, Hodgson D, Pucar D, Zingman LV, Wieringa B, Dzeja PP, Alekseev AE and Terzic A. 2002. Coupling of cell energetics with membrane metabolic sensing: Integrative signaling through creatine kinase phosphotransfer disrupted by M-CK gene knockout. J Biol Chem 277:24427–24434.
  • Aguilar-Bryan L, Bryan J and Nakazaki M. 2001. Of mice and men: KATP channels and insulin secretion. Recent Prog Horm Res 56:47–68.
  • Aittoniemi J, Fotinou C, Craig TJ, de Wet H, Proks P and Ashcroft FM. 2009. SUR1: a unique ATP-binding cassette protein that functions as an ion channel regulator. Philos Trans R Soc Lond B Biol Sci, 364:257–267.
  • Allard B, Lazdunski M and Rougier O. 1995. Activation of ATP-dependent K+ channels by metabolic poisoning in adult mouse skeletal muscle: role of intracellular Mg2+ and pH. J Physiol 485:283–296.
  • Alekseev AE, Hodgson DM, Karger AB, Park S, Zingman LV and Terzic A. 2005. ATP-sensitive K+ channel channel/enzyme multimer: metabolic gating in the heart. J Mol Cell Cardiol 38:895–905.
  • Alekseev AE, Reyes S, Yamada S, Hodgson-Zingman DM, Sattiraju S, Zhu Z, Sierra A, Gerbin M, Coetzee WA, Goldhamer DJ, Terzic A and Zingman LV. 2010. Sarcolemmal ATP-sensitive K+ channels control energy expenditure determining body weight. Cell Metab 11:58–69.
  • Arrell DK, Zlatkovic J, Kane GC, Yamada S and Terzic A. 2009. ATP-sensitive K+ channel knockout induces cardiac proteome remodeling predictive of heart disease susceptibility. J Proteome Res 8:4823–4834.
  • Ashcroft FM. 2005. ATP-sensitive potassium channelopathies: focus on insulin secretion. J Clin Invest 115:2047–2058.
  • Babenko AP, Aguilar-Bryan L and Bryan J. 1998. A view of SUR/KIR6.X, KATP channels. Annu Rev Physiol 60:667–687.
  • Balakrishnan L, Venter H, Shilling RA and van Veen HW. 2004. Reversible transport by the ATP-binding cassette multidrug export pump LmrA: ATP synthesis at the expense of downhill ethidium uptake. J Biol Chem 279:11273–11280.
  • Baukrowitz T, Schulte U, Oliver D, Herlitze S, Krauter T, Tucker SJ, Ruppersberg JP and Fakler B. 1998. PIP2 and PIP as determinants for ATP inhibition of KATP channels. Science 282:1141–1144.
  • Bienengraeber M, Alekseev AE, Abraham MR, Carrasco AJ, Moreau C, Vivaudou M, Dzeja PP and Terzic A. 2000. ATPase activity of the sulfonylurea receptor: a catalytic function for the KATP channel complex. FASEB J 14:1943–1952.
  • Bienengraeber M, Olson TM, Selivanov VA, Kathmann EC, O’Cochlain F, Gao F, Karger AB, Ballew JD, Hodgson DM, Zingman LV, Pang YP, Alekseev AE and Terzic A. 2004. ABCC9 mutations identified in human dilated cardiomyopathy disrupt catalytic KATP channel gating. Nat Genet 36:382–387.
  • Bittl JA, DeLayre J and Ingwall JS. 1987. Rate equation for creatine kinase predicts the in vivo reaction velocity: 31P NMR surface coil studies in brain, heart, and skeletal muscle of the living rat. Biochemistry 26:6083–6090.
  • Booth FW, Chakravarthy MV, Gordon SE and Spangenburg EE. 2002. Waging war on physical inactivity: using modern molecular ammunition against an ancient enemy. J Appl Physiol 93:3–30.
  • Boyer PD. 1997. The ATP synthase – a splendid molecular machine. Ann Rev Biochem 66:717–749.
  • Boyer PD, Cross RL and Momsen W. 1973. A new concept for energy coupling in oxidative phosphorylation based on a molecular explanation of oxygen exchange reaction. Proc Nat Acad Sci USA 70:2837–2839.
  • Bramkamp M, Altendorf K and Greie J-C. 2007. Common patterns and unique features of P-type ATPases: a comparative view on the KdpFABC complex from Escherichia coli. Mol Membr Biol 24:375–386.
  • Brand MD and Esteves TC. 2005. Physiological functions of the mitochondrial uncoupling proteins UCP2 and UCP3. Cell Metab 2:85–93.
  • Carrasco A, Dzeja P, Alekseev A, Pucar D, Zingman L, Abraham M, Hodgson D, Bienengraeber M, Puceat M, Janssen E, Wieringa B and Terzic A. 2001. Adenylate kinase phosphotransfer communicates cellular energetic signals to ATP-sensitive potassium channels. Proc Natl Acad Sci USA 98:7623–7628.
  • Celi FS. 2009. Brown adipose tissue – when it pays to be inefficient. N Engl J Med 360:1553–1556.
  • Chan KW, Zhang H and Logothetis DE. 2003. N-terminal transmembrane domain of the SUR controls trafficking and gating of Kir6 channel subunits. EMBO J 22:3833–3843.
  • Chen-Zion M, Bassukevitz Y and Beitner R. 1995. Rapid changes in carbohydrate metabolism in muscle induced by triiodothyronine; the role of glucose 1,6-bisphosphate. Biochem Mol Med 56:19–25.
  • Cifelli C, Bourassa F, Gariépy L, Banas K, Benkhalti M and Renaud J.-M. 2007. KATP channel deficiency in mouse flexor digitorum brevis causes fibre damage and impairs Ca2+ release and force development during fatigue in vitro. J Physiol 582:843–857.
  • Cifelli C, Boudreault L, Gong B, Bercier JP and Renaud J-M. 2008. Contractile dysfunctions in ATP-dependent K+ channel-deficient mouse muscle during fatigue involve excessive depolarization and Ca2+ influx through L-type Ca2+ channels. Exp Physiol 93:1126–1138.
  • Clement JP, Kunjilwar K, Gonzalez G, Schwanstecher M, Panten U, Aguilar-Bryan L and Bryan J. 1997. Association and stoichiometry of KATP channel subunits. Neuron 18:827–838.
  • Cook DL and Hales CN. 1984. Intracellular ATP directly blocks K+ channels in pancreatic β-cells. Nature 311:271–273.
  • Craig TJ, Ashcroft FM and Proks P. 2008. How ATP inhibits the open KATP channel. J Gen Physiol 132:131–44.
  • Crawford RM, Ranki JH, Botting CH, Budas GR and Jovanovic A. 2002. Creatine kinase is physically associated with the cardiac ATP-sensitive K+ channel in vivo. FASEB J 16:102–104.
  • Davies NW, Standen NB and Stanfield PR. 1992. The effect of intracellular pH on ATP-dependent potassium channels of frog skeletal muscle. J Physiol 445:549–568.
  • Decking UK, Reffelmann T, Schrader J and Kammermeier H. 1995. Hypoxia-induced activation of KATP channels limits energy depletion in the guinea pig heart. Am J Physiol 269:H734–742.
  • de Wet H, Mikhailov MV, Fotinou C, Dreger M, Craig TJ, Vénien-Bryan C and Ashcroft FM. 2007. Studies of the ATPase activity of the ABC protein SUR1. FEBS J 274:3532–3544.
  • Doorey AJ and Barry WH. 1983. The effects of inhibition of oxidative phosphorylation and glycolysis on contractility and high-energy phosphate content in cultured chick heart cells. Circ Res 53:192–201.
  • Drain P, Li L and Wang J. 1998. KATP channel inhibition by ATP requires distinct functional domains of the cytoplasmic C terminus of the pore-forming subunit. Proc Natl Acad Sci USA 95:13953–13958.
  • Dupuis JP, Revilloud J, Moreau CJ and Vivaudou M. 2008. Three C-terminal residues from the sulphonylurea receptor contribute to the functional coupling between the KATP channel subunits SUR2A and Kir6.2. J Physiol 586:3075–3085.
  • Dzeja PP and Terzic A. 1998. Phosphotransfer reactions in the regulation of ATP-sensitive K+ channels. FASEB J 12:523–529.
  • Dzeja P and Terzic A. 2009. Adenylate kinase and AMP signaling networks: Metabolic monitoring, signal communication and body energy sensing. Int J Mol Sci 10:1729–1772.
  • Elliott AC, Smith GL and Allen DG. 1989. Simultaneous measurements of action potential duration and intracellular ATP in isolated ferret hearts exposed to cyanide. Circ Res 64:583–591.
  • Else PL, Turner N and Hulbert AJ. 2004. The evolution of endothermy: role for membranes and molecular activity. Physiol Biochem Zool 77:950–958.
  • Elvir-Mairena JR, Jovanovic A, Gomez LA, Alekseev AE and Terzic A. 1996. Reversal of the ATP-liganded state of ATP-sensitive K+ channels by adenylate kinase activity. J Biol Chem 271:31903–31908.
  • Findlay I and Faivre JF. 1991. ATP-sensitive K channels in heart muscle. Spare channels. FEBS Lett 279:95–97.
  • Ganitkevich V, Mattea V and Benndorf K. 2010. Glycolytic oscillations in single ischemic cardiomyocytes at near anoxia. J Gen Physiol 135:307–319.
  • Ghanassia E, Brun J-F Mercier, J and Raynaud E. 2007. Oxidative mechanisms at rest and during exercise. Clinica Chimica Acta 383:1–20.
  • Gong B, Miki T, Seino S and Renaud J-M. 2000. A KATP channel deficiency affects resting tension, not contractile force, during fatigue in skeletal muscle. Am J Physiol 279:C1351–1358.
  • Gumina RJ, Pucar D, Bast P, Hodgson DM, Kurtz CE, Dzeja PP, Miki T, Seino S and Terzic A. 2003. Knockout of Kir6.2 negates ischemic preconditioning-induced protection of myocardial energetics. Am J Physiol 284:H2106–2139.
  • Gumina RJ, O’Cochlain DF, Kurtz CE, Bast P, Pucar D, Mishra P, Miki T, Seino S, Macura S and Terzic A. 2007. KATP channel knockout worsens myocardial calcium stress load in vivo and impairs recovery in stunned heart. Am J Physiol 292:H1706–1713.
  • Hashemi SM, Hund TJ and Mohler PJ. 2009. Cardiac ankyrins in health and disease. J Mol Cell Cardiol 47:203–209.
  • Himms-Hagen J. 2004. Exercise in a pill: feasibility of energy expenditure targets. Curr Drug Targets CNS Neurol Disord 3:389–409.
  • Hodgson DM, Zingman LV, Kane GC, Perez-Terzic C, Bienengraeber M, Ozcan C, Gumina RJ, Pucar D, O’Coclain F, Mann DL, Alekseev AE and Terzic A. 2003. Cellular remodeling in heart failure disrupts KATP channel-dependent stress tolerance. EMBO J 22:1732–1742.
  • Hosy E, Dérand R, Revilloud J and Vivaudou M. 2007. Remodelling of the SUR-Kir6.2 interface of the KATP channel upon ATP binding revealed by the conformational blocker rhodamine 123. J Physiol 582:27–39.
  • Inagaki N, Gonoi T, Clement JP 4th, Namba N, Inazawa J, Gonzalez G, Aguilar-Bryan L, Seino S and Bryan J. 1995. Reconstitution of IKATP: an inward rectifier subunit plus the sulfonylurea receptor. Science 270:1166–1170.
  • Inagaki N, Gonoi T, Clement J, Wang CZ, Aguilar-Bryan L, Bryan J and Seino S. 1996. A family of sulfonylurea receptors determines the pharmacological properties of ATP-sensitive K+ channels. Neuron 16:1011–1017.
  • Janssen E, Dzeja PP, Oerlemans F, Simonetti A, Heerschap A, de Haan A, Rush PS, Terjung RR, Wieringa B and Terzic A. 2000. Adenylate kinase 1 gene deletion disrupts muscle energetic economy despite metabolic rearrangement. EMBO J 19:6371–6381.
  • Janssen E, Kuiper J, Hodgson D, Zingman LV, Alekseev AE, Terzic A and Wieringa B. 2004. Two structurally distinct and spatially compartmentalized adenylate kinases are expressed from the AK1 gene in mouse brain. Mol Cell Biochem 256–257:59–72.
  • Jovanović S, Jovanović A and Crawford RM. 2007. M-LDH serves as a regulatory subunit of the cytosolic substrate-channelling complex in vivo. J Mol Biol 371:349–361.
  • Kaasik A, Veksler V, Boehm E, Novotova M, Minajeva A and Ventura-Clapier R. 2001. Energetic crosstalk between organelles: architectural integration of energy production and utilization. Circ Res 89:153–159.
  • Kabakov AY. 1998. Activation of KATP channels by Na/K pump in isolated cardiac myocytes and giant membrane patches. Biophys J 75:2858–2867.
  • Kagawa Y and Hamamoto T. 1997. Intramolecular rotation in ATP synthase: dynamic and crystallographic studies on thermophilic F1. Biochem Biophys Res Commun 240:247–256.
  • Kane GC, Behfar A, Yamada S, Perez-Terzic C, O’Cochlain F, Reyes S, Dzeja PP, Miki T, Seino S and Terzic A. 2004. ATP-sensitive K+ channel knockout compromises the metabolic benefit of exercise training, resulting in cardiac deficits. Diabetes 53:S169–175.
  • Kane GC, Liu XK, Yamada S, Olson TM and Terzic A. 2005. Cardiac KATP channels in health and disease. J Mol Cell Cardiol 38:937–943.
  • Kane GC, Behfar A, Dyer RB, O’Cochlain DF, Liu XK, Hodgson DM, Reyes S, Miki T, Seino S and Terzic A. 2006. KCNJ11 gene knockout of the Kir6.2 KATP channel causes maladaptive remodeling and heart failure in hypertension. Hum Mol Genet 15:2285–2297.
  • Karger AB, Park S, Reyes S, Bienengraeber M, Dyer RB, Terzic A, and Alekseev AE 2008. Role for SUR2A ED domain in allosteric coupling within the KATP channel complex. J Gen Physiol 131:185–196.
  • Kinsey ST and Moerland TS. 2002. Metabolite diffusion in giant muscle fibers of the spiny lobster Panulirus argus. J Exp Biol 205:3377–3386.
  • Kline CF, Kurata HT, Hund TJ, Cunha SR, Koval OM, Wright PJ, Christensen M, Anderson ME, Nichols CG and Mohler PJ. 2009. Dual role of KATP channel C-terminal motif in membrane targeting and metabolic regulation. Proc Natl Acad Sci USA 106:16669–16674.
  • Koster JC, Knopp A, Flagg TP, Markova KP, Sha Q, Enkvetchakul D, Betsuyaku T, Yamada KA and Nichols CG. 2001. Tolerance for ATP-insensitive KATP channels in transgenic mice. Circ Res 89:1022–1029.
  • Koyano T, Kakei M, Nakashima H, Yoshinaga M, Matsuoka T and Tanaka H. 1993. ATP-regulated K+ channels are modulated by intracellular H+ in guinea-pig ventricular cells. J Physiol 463:747–766.
  • Läuger P. 1991a. Electrogenic ion pumps, pp. 168–249. In: Distinguished Lecture Series of the Society of General Physiologists, vol. 5. Sunderland, MA, Sinauer Associates, Inc., Publishers.
  • Läuger P. 1991b. Electrogenic ion pumps, pp. 191–192. In: Distinguished Lecture Series of the Society of General Physiologists, vol. 5. Sunderland, MA, Sinauer Associates, Inc., Publishers.
  • Lawson JW and Veech RL. 1979. Effects of pH and free Mg2+ on the Keq of the creatine kinase reaction and other phosphate hydrolyses and phosphate transfer reactions. J Biol Chem 254:6528–6537.
  • Lederer WJ and Nichols CG. 1989. Nucleotide modulation of the activity of rat heart ATP-sensitive K+ channels in isolated membrane patches. J Physiol 419:193–211.
  • Lederer WJ, Niggli E and Hadley RW. 1990. Sodium-calcium exchange in excitable cells: fuzzy space. Science 248:283.
  • Lefer DJ, Nichols CG and Coetzee WA. 2009. Sulfonylurea receptor 1 subunits of ATP-sensitive potassium channels and myocardial ischemia/reperfusion injury. Trends Cardiovasc Med 19:61–67.
  • Levine JA. 2007. Nonexercise activity thermogenesis – liberating the life-force. J Intern Med 262:273–287.
  • Li B, Nolte LA, Ju J-S Han, DH, Coleman T, Holloszy JO and Semenkovich CF. 2000. Skeletal muscle respiratory uncoupling prevents diet-induced obesity and insulin resistance in mice. Nat Med 6:1115–1120.
  • Liu XK, Yamada S, Kane GC, Alekseev AE, Hodgson DM, O’Cochlain F, Jahangir A, Miki T, Seino S and Terzic A. 2004. Genetic disruption of Kir6.2, the pore-forming subunit of ATP-sensitive K+ channel, predisposes to catecholamine-induced ventricular dysrhythmia. Diabetes 53 Suppl 3:S165–168.
  • Lorenz E and Terzic A. 1999. Physical association between recombinant cardiac ATP-sensitive K+ channel subunits Kir6.2 and SUR2A. J Mol Cell Cardiol 31:425–434.
  • Masia R, Enkvetchakul D and Nichols CG. 2005. Differential nucleotide regulation of KATP channels by SUR1 and SUR2A. J Mol Cell Cardiol 39:491–501.
  • Matsuo M, Kioka N, Amachi T and Ueda K. 1999. ATP binding properties of the nucleotide-binding folds of SUR1. J Biol Chem 274:37479–37482.
  • Matsuo M, Tanabe K, Kioka N, Amachi T and Ueda K. 2000. Different binding properties and affinities for ATP and ADP among sulfonylurea receptor subtypes, SUR1, SUR2A, and SUR2B. J Biol Chem 275:28757–28763.
  • McArdle WD, Katch FI and Katch VL. 1996. Human energy expenditure during rest and physical activity, pp. 151–164. In: Balado D, ed. Exercise Physiology, 4th edn. Baltimore, MD: Williams and Wilkins.
  • Meyer RA, Sweeney HL and Kushmerick MJ. 1984. A simple analysis of the “phosphocreatine shuttle”. Am J Physiol 246:C365–377.
  • Mikhailov MV and Ashcroft SJ. 2000. Interactions of the sulfonylurea receptor 1 subunit in the molecular assembly of beta-cell KATP channels. J Biol Chem 275:3360–3364.
  • Mikhailov MV, Campbell JD, de Wet H, Shimomura K, Zadek B, Collins RF, Sansom MS, Ford RC and Ashcroft FM. 2005. 3-D structural and functional characterization of the purified KATP channel complex Kir6-2-Sur1. EMBO J 24:4166–4175.
  • Miki T, Nagashima K, Tashiro F, Kotake K, Yoshitomi H, Tamamoto A, Gonoi T, Iwanaga T, Miyazaki J and Seino S. 1998. Defective insulin secretion and enhanced insulin action in KATP channel-deficient mice. Proc Natl Acad Sci USA 95:10402–10406.
  • Miki T, Minami K, Zhang L, Morita M, Gonoi T, Shiuchi T, Minokoshi Y, Renaud J-M and Seino S. 2002. ATP-sensitive potassium channels participate in glucose uptake in skeletal muscle and adipose tissue. Am J Physiol 283:E1178–1184.
  • Minami, K, Morita M, Saraya A, Yano H, Terauchi Y, Miki T, Kuriyama T, Kadowaki T and Seino S. 2003. ATP-sensitive K+ channel-mediated glucose uptake is independent of IRS-1/phosphatidylinositol 3-kinase signaling. Am J Physiol 285:E1289–1296.
  • Moreau C, Prost AL, Dérand R and Vivaudou M. 2005. SUR, ABC proteins targeted by KATP channel openers. J Mol Cell Cardiol 38:951–963.
  • Moses MA, Addison PD, Neligan PC, Ashrafpour H, Huang N, McAllister SE, Lipa JE, Forrest CR and Pang CY. 2005. Inducing late phase of infarct protection in skeletal muscle by remote preconditioning: efficacy and mechanism. Am J Physiol Regul Integr Comp Physiol 289:R1609–1617.
  • Müller V and Grüber G. 2003. ATP synthases: structure, function and evolution of unique energy converters. Cell Mol Life Sci 60:474–494.
  • Nichols CG. 2006. KATP channels as molecular sensors of cellular metabolism. Nature 440:470–476.
  • Nichols CG and Lederer WJ. 1990. The regulation of ATP-sensitive K+ channel activity in intact and permeabilized rat ventricular myocytes. J Physiol 423:91–110.
  • Nichols CG and Lederer WJ. 1991. Adenosine triphosphate-sensitive potassium channels in the cardiovascular system. Am J Physiol 261:H1675–1686.
  • Noma A. 1983. ATP-regulated K+ channels in cardiac muscle. Nature 305:147–148.
  • Olson TM and Terzic A. 2010. Human KATP channelopathies: diseases of metabolic homeostasis. Pflugers Arch. 460:295–306.
  • Olson TM, Alekseev AE, Moreau C, Liu XK, Zingman LV, Miki T, Seino S, Asirvatham SJ, Jahangir A and Terzic A. 2007. KATP channel mutation confers risk for vein of Marshall adrenergic atrial fibrillation. Nat Clin Pract Cardiovasc Med 4:110–116.
  • Park S and Terzic A. 2010. Quaternary Structure of KATP channel SUR2A nucleotide binding domains resolved by synchrotron radiation X-ray scattering. J Struct Biol 169:243–251.
  • Park S, Lim BB, Perez-Terzic C, Mer G and Terzic A. 2008. Interaction of asymmetric ABCC9-encoded nucleotide binding domains determines KATP channel SUR2A catalytic activity. J Proteome Res 7:1721–1728.
  • Pucar D, Dzeja PP, Bast P, Juranic N, Macura S and Terzic A. 2001. Cellular energetics in the preconditioned state: Protective role for phosphotransfer reactions captured by 18O-assisted 31P NMR. J Biol Chem 276:44812–44819.
  • Rainbow RD, James M, Hudman D, Al Johi M, Singh H, Watson PJ, Ashmole I, Davies NW, Lodwick D and Norman RI. 2004. Proximal C-terminal domain of sulphonylurea receptor 2A interacts with pore-forming Kir6 subunits in KATP channels. Biochem J 379:173–181.
  • Rajashree R, Koster JC, Markova KP, Nichols CG and Hofmann PA. 2002. Contractility and ischemic response of hearts from transgenic mice with altered sarcolemmal KATP channels. Am J Physiol 283:H584–590.
  • Renaud JM. 2002. Modulation of force development by Na+, K+, Na+/K+ pump and KATP channel during muscular activity. Can J Appl Physiol 27:296–315.
  • Reyes S, Kane GC, Miki T, Seino S and Terzic A. 2007. KATP channels confer survival advantage in cocaine overdose. Mol Psychiatry 12:1060–1061.
  • Reyes S, Terzic A, Mahoney DW, Redfield MM, Rodeheffer RJ and Olson TM. 2008. KATP channel polymorphism is associated with left ventricular size in hypertensive individuals: a large-scale community-based study. Hum Genet 123:665–667.
  • Reyes S, Kane GC, Zingman LV, Yamada S and Terzic A. 2009a. Targeted disruption of KATP channels aggravates cardiac toxicity in cocaine abuse. Clin Transl Sci 2:361–365.
  • Reyes S, Park S, Johnson BD, Terzic A and Olson TM. 2009b. KATP channel Kir6.2 E23K variant overrepresented in human heart failure is associated with impaired exercise stress response. Hum Genet 126:779–789.
  • Rich TC, Fagan KA, Nakata H, Schaack J, Cooper DM and Karpen JW. 2000. Cyclic nucleotide-gated channels colocalize with adenylyl cyclase in regions of restricted cAMP diffusion. J Gen Physiol 116:147–161.
  • Saks VA, Kaambre T, Sikk P, Eimre M, Orlova E, Paju K, Piirsoo A, Appaix F, Kay L, Regitz-Zagrosek V, Fleck E and Seppet E. 2001. Intracellular energetic units in red muscle cells. Biochem J 356:643–657.
  • Saks V, Monge C and Guzun R. 2009. Philosophical basis and some historical aspects of system biology: from Hegel to Noble – applications for bioenergetic research. Int J Mol Sci 10:1161–1192.
  • Schwappach B, Zerangue N, Jan YN and Jan LY. 2000. Molecular basis for KATP assembly: transmembrane interactions mediate association of a K+ channel with an ABC transporter. Neuron 26:155–167.
  • Seino S. 1999. ATP-sensitive potassium channels: A model of heteromultimeric potassium channel/receptor assemblies. Annu Rev Physiol 61:337–362.
  • Selivanov VA, Alekseev AE, Hodgson DM, Dzeja PP and Terzic A. 2004. Nucleotide-gated KATP channels integrated with creatine and adenylate kinases: amplification, tuning and sensing of energetic signals in the compartmentalized cellular environment. Mol Cell Biochem 256–257:243–256.
  • Shyng SL and Nichols CG. 1998. Membrane phospholipid control of nucleotide sensitivity of KATP channels. Science 282:1138–1141.
  • Shyng SL, Ferrigni T and Nichols CG. 1997. Regulation of KATP channel activity by diazoxide and MgADP: Distinct functions of the two nucleotide binding folds of the sulfonylurea receptor. J Gen Physiol 110:643–654.
  • Song DK and Ashcroft FM. 2001. ATP modulation of ATP-sensitive potassium channel ATP sensitivity varies with the type of SUR subunit. J Biol Chem 276:7143–7149.
  • Spanswick D, Smith MA, Groppi VE, Logan SD and Ashford MLJ. 1997. Leptin inhibits hypothalamic neurons by activation of ATP-sensitive potassium channels. Nature 390:521–525.
  • Sugden MC, Holness MJ, Liu YL, Smith DM, Fryer LG and Kruszynska YT. 1992. Mechanisms regulating cardiac fuel selection in hyperthyroidism. Biochem J 286:513–517.
  • Tarasov AI, Girard CAJ and Ashcroft FM. 2006. ATP sensitivity of the ATP-sensitive K+ channel in intact and permeabilized pancreatic β-cells. Diabetes 55:2446–2454.
  • Terzic A and Kurachi Y. 1996. Actin microfilament disrupters enhance KATP channel opening in patches from guinea-pig cardiomyocytes. J Physiol 492:395–404.
  • Thabet M, Miki T, Seino S and Renaud J-M. 2005. Treadmill running causes significant fiber damage in skeletal muscle of KATP channel-deficient mice. Physiol Genomics 22:204–212.
  • Tucker SJ, Gribble FM, Zhao C, Trapp S and Ashcroft FM. 1997. Truncation of Kir6.2 produces ATP-sensitive K+ channels in the absence of the sulphonylurea receptor. Nature 387:179–183.
  • Ueda K, Komine J, Matsuo M, Seino S and Amachi T. 1999. Cooperative binding of ATP and MgADP in the sulfonylurea receptor is modulated by glibenclamide. Proc Natl Acad Sci USA 96:1268–1272.
  • Vivaudou M and Forestier C. 1995. Modification by protons of frog skeletal muscle KATP channels: effects on ion conduction and nucleotide inhibition. J Physiol 486:629–645.
  • Waldman SA, Kraft WK, Nelson TJ and Terzic A. 2009. Clinical pharmacology: a paradigm for individualized medicine. Biomark Med 3:679–684.
  • Weiss J and Hiltbrand B. 1985. Functional compartmentation of glycolytic versus oxidative metabolism in isolated rabbit heart. J Clin Invest 75:436–447.
  • Weiss JN and Korge P. 2001. The cytoplasm: no longer a well-mixed bag. Circ Res 89:108–110.
  • Weiss JN and Lamp ST. 1987. Glycolysis preferentially inhibits ATP-sensitive K+ channels in isolated guinea pig cardiac myocytes. Science 238:67–69.
  • Weiss JN, Venkatesh N and Lamp ST. 1992. ATP-sensitive K+ channels and cellular K+ loss in hypoxic and ischaemic mammalian ventricle. J Physiol 447:649–673.
  • Wijers SL, Schrauwen P, Saris WH, van Marken Lichtenbelt WD. 2008. Human skeletal muscle mitochondrial uncoupling is associated with cold induced adaptive thermogenesis. PLoS One 3:e1777.
  • Yamada M, Isomoto S, Matsumoto S, Kondo C, Shindo T, Horio Y and Kurachi Y. 1997. Sulphonylurea receptor 2B and Kir6.1 form a sulphonylurea-sensitive but ATP-insensitive K+ channel. J Physiol 499:715–720.
  • Yamada S, Kane GC, Behfar A, Liu XK, Dyer RB, Faustino RS, Miki T, Seino S and Terzic A. 2006. Protection conferred by myocardial ATP-sensitive K+ channels in pressure overload-induced congestive heart failure revealed in KCNJ11 Kir6.2-null mutant. J Physiol 577:1053–1065.
  • Zingman LV, Alekseev AE, Bienengraeber M, Hodgson D, Karger AB, Dzeja PP and Terzic A. 2001. Signaling in channel/enzyme multimers: ATPase transitions in SUR module gate ATP-sensitive K+ conductance. Neuron 31:233–45.
  • Zingman LV, Hodgson DM, Bast PH, Kane GC, Perez-Terzic C, Gumina RJ, Pucar D, Bienengraeber M, Dzeja PP, Miki T, Seino S, Alekseev AE and Terzic A. 2002. Kir6.2 is required for adaptation to stress. Proc Natl Acad Sci USA 99:13278–13283.
  • Zingman LV, Hodgson DM, Alekseev AE and Terzic A. 2003. Stress without distress: homeostatic role for KATP channels. Mol Psychiatry 8:253–254.
  • Zingman LV, Alekseev AE, Hodgson-Zingman DM and Terzic A. 2007. ATP-sensitive potassium channels: metabolic sensing and cardioprotection. J Appl Physiol 103:1888–1893.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.