722
Views
90
CrossRef citations to date
0
Altmetric
Review Article

Multiple and reversible hydrogenases for hydrogen production by Escherichia coli: dependence on fermentation substrate, pH and the F0F1-ATPase

, , &
Pages 236-249 | Received 24 Nov 2011, Accepted 04 Jan 2012, Published online: 07 Feb 2012

References

  • Alexeeva S, de Kort B, Sawers G, Hellingwerf KJ, de Mattos MJ. 2000. Effects of limited aeration and of the ArcAB system on intermediary pyruvate catabolism in Escherichia coli. J Bacteriol 182:4934–4940.
  • Andrews SC, Berks BC, McClay J, Ambler A, Quail MA, Golby P, Guest JR. 1997. A 12-cistron Escherichia coli operon (hyf) encoding a putative proton-translocating formate hydrogenlyase system. Microbiology (Reading, Engl) 143 (Pt 11):3633–3647.
  • Axley MJ, Grahame DA, Stadtman TC. 1990. Escherichia coli formate-hydrogen lyase. Purification and properties of the selenium-dependent formate dehydrogenase component. J Biol Chem 265:18213–18218.
  • Axley MJ, Grahame DA. 1991. Kinetics for formate dehydrogenase of Escherichia coli formate-hydrogenlyase. J Biol Chem 266:13731–13736.
  • Bagramyan KA, Martirosov SM. 1989. Formation of an ion transport supercomplex in Escherichia coli. An experimental model of direct transduction of energy. FEBS Lett 246:149–152.
  • Bagramyan K, Mnatsakanyan N, Poladian A, Vassilian A, Trchounian A. 2002. The roles of hydrogenases 3 and 4, and the F0F1-ATPase, in H2 production by Escherichia coli at alkaline and acidic pH. FEBS Lett 516:172–178.
  • Bagramyan K, Mnatsakanyan N, Trchounian A. 2003. Formate increases the F0F1-ATPase activity in Escherichia coli growing on glucose under anaerobic conditions at slightly alkaline pH. Biochem Biophys Res Commun 306:361–365.
  • Bagramyan K, Trchounian A. 2003. Structural and functional features of formate hydrogen lyase, an enzyme of mixed-acid fermentation from Escherichia coli. Biochemistry Mosc 68:1159–1170.
  • Ballantine SP, Boxer DH. 1985. Nickel-containing hydrogenase isoenzymes from anaerobically grown Escherichia coli K-12. J Bacteriol 163:454–459.
  • Ballantine SP, Boxer DH. 1986. Isolation and characterisation of a soluble active fragment of hydrogenase isoenzyme 2 from the membranes of anaerobically grown Escherichia coli. Eur J Biochem 156:277–284.
  • Blbulyan S, Avagyan A, Poladyan A, Trchounian A. 2011. Role of different Escherichia coli hydrogenases in H+ efflux and F0F1-ATPase activity during glycerol fermentation at different pH values. Biosci Rep 31:179–184.
  • Blokesch M, Magalon A, Böck A. 2001. Interplay between the specific chaperone-like proteins HybG and HypC in maturation of hydrogenases 1, 2, and 3 from Escherichia coli. J Bacteriol 183:2817–2822.
  • Bock A, Sawers G. (2006). Fermentation. In: Neidhardt FG, (ed). Escherichia coli and Salmonella. Cellular and Molecular Biology. Washington DC: ASM Press. http://www.ecosal.org.
  • Böck A, King PW, Blokesch M, Posewitz MC. 2006. Maturation of hydrogenases. Adv Microb Physiol 51:1–71.
  • Böhm R, Sauter M, Böck A. 1990. Nucleotide sequence and expression of an operon in Escherichia coli coding for formate hydrogenlyase components. Mol Microbiol 4:231–243.
  • Booth IR. (2006). Glycerol, and methylglyoxal metabolism. In: Neidhardt FG, (ed). EcoSal – Escherichia coli and Salmonella. Cellular and molecular biology. Washington DC: ASM Press. http://www.ecosal.org.
  • Boyington JC, Gladyshev VN, Khangulov SV, Stadtman TC, Sun PD. 1997. Crystal structure of formate dehydrogenase H: catalysis involving Mo, molybdopterin, selenocysteine, and an Fe4S4 cluster. Science 275:1305–1308.
  • Brøndsted L, Atlung T. 1994. Anaerobic regulation of the hydrogenase 1 (hya) operon of Escherichia coli. J Bacteriol 176:5423–5428.
  • Clark DP. 1989. The fermentation pathways of Escherichia coli. FEMS Microbiol Rev 5:223–234.
  • Cox JC, Edwards ES, DeMoss JA. 1981. Resolution of distinct selenium-containing formate dehydrogenases from Escherichia coli. J Bacteriol 145:1317–1324.
  • Das D, Veziroglu TN. 2001. Hydrogen production by biological processes: a survey of literature. Int J Hydrogen Energy 26:13–28.
  • Dharmadi Y, Murarka A, Gonzalez R. 2006. Anaerobic fermentation of glycerol by Escherichia coli: a new platform for metabolic engineering. Biotechnol Bioeng 94:821–829.
  • Domka J, Lee J, Bansal T, Wood TK. 2007. Temporal gene-expression in Escherichia coli K-12 biofilms. Environ Microbiol 9:332–346.
  • Dubini A, Pye RL, Jack RL, Palmer T, Sargent F. 2002. How bacteria get energy from hydrogen: a genetic analysis of periplasmic hydrogen oxidation in Escherichia coli. Int J Hydrogen Energy 27:1413–1420.
  • Forzi L, Sawers RG. 2007. Maturation of [NiFe]-hydrogenases in Escherichia coli. Biometals 20:565–578.
  • Gladyshev VN, Boyington JC, Khangulov SV, Grahame DA, Stadtman TC, Sun PD. 1996. Characterization of crystalline formate dehydrogenase H from Escherichia coli. Stabilization, EPR spectroscopy, and preliminary crystallographic analysis. J Biol Chem 271:8095–8100.
  • Gonzalez R, Murarka A, Dharmadi Y, Yazdani SS. 2008. A new model for the anaerobic fermentation of glycerol in enteric bacteria: trunk and auxiliary pathways in Escherichia coli. Metab Eng 10:234–245.
  • Hakobyan M, Sargsyan H, Bagramyan K. 2005. Proton translocation coupled to formate oxidation in anaerobically grown fermenting Escherichia coli. Biophys Chem 115:55–61.
  • Hasona A, Self WT, Ray RM, Shanmugam KT. 1998. Molybdate-dependent transcription of hyc and nar operons of Escherichia coli requires MoeA protein and ModE-molybdate. FEMS Microbiol Lett 169:111–116.
  • Hayes ET, Wilks JC, Sanfilippo P, Yohannes E, Tate DP, Jones BD, Radmacher MD, BonDurant SS, Slonczewski JL. 2006. Oxygen limitation modulates pH regulation of catabolism and hydrogenases, multidrug transporters, and envelope composition in Escherichia coli K-12. BMC Microbiol 6:89.
  • Hopper S, Babst M, Schlensog V, Fischer HM, Hennecke H, Böck A. 1994. Regulated expression in vitro of genes coding for formate hydrogenlyase components of Escherichia coli. J Biol Chem 269:19597–19604.
  • Hopper S, Böck A. 1995. Effector-mediated stimulation of ATPase activity by the σ 54-dependent transcriptional activator FHLA from Escherichia coli. J Bacteriol 177:2798–2803.
  • Hopper S, Korsa I, Böck A. 1996. The nucleotide concentration determines the specificity of in vitro transcription activation by the σ 54-dependent activator FhlA. J Bacteriol 178:199–203.
  • Hu H, Wood TK. 2010. An evolved Escherichia coli strain for producing hydrogen and ethanol from glycerol. Biochem Biophys Res Commun 391:1033–1038.
  • Hube M, Blokesch M, Böck A. 2002. Network of hydrogenase maturation in Escherichia coli: role of accessory proteins HypA and HybF. J Bacteriol 184:3879–3885.
  • Kholodenko BN, Lyubarev AE, Kurganov BI. 1992. Control of the metabolic flux in a system with high enzyme concentrations and moiety-conserved cycles. The sum of the flux control coefficients can drop significantly below unity. Eur J Biochem 210:147–153.
  • Kim S, Seol E, Oh YK, Wang GY, Park S. 2009. Hydrogen production and metabolic fux analysis of metabolically engineered Escherichia coli strains. Int J Hydrogen Energy 34:7417–7427.
  • Kim YJ, Lee HS, Kim ES, Bae SS, Lim JK, Matsumi R, Lebedinsky AV, Sokolova TG, Kozhevnikova DA, Cha SS, Kim SJ, Kwon KK, Imanaka T, Atomi H, Bonch-Osmolovskaya EA, Lee JH, Kang SG. 2010. Formate-driven growth coupled with H2 production. Nature 467:352–355.
  • King PW, Przybyla AE. 1999. Response of hya expression to external pH in Escherichia coli. J Bacteriol 181:5250–5256.
  • Kirakosyan G, Trchounian K, Vardanyan Z, Trchounian A. 2008. Copper (II) ions affect Escherichia coli membrane vesicles’ SH-groups and a disulfide-dithiol interchange between membrane proteins. Cell Biochem Biophys 51:45–50.
  • Kistler WS, Lin EC. 1971. Anaerobic L-glycerophosphate dehydrogenase of Escherichia coli: its genetic locus and its physiological role. J Bacteriol 108:1224–1234.
  • Kovács AT, Rákhely G, Balogh J, Maróti G, Fülöp A, Kovács KL. 2005. Anaerobic regulation of hydrogenase transcription in different bacteria. Biochem Soc Trans 33:36–38.
  • Künkel A, Vorholt JA, Thauer RK, Hedderich R. 1998. An Escherichia coli hydrogenase-3-type hydrogenase in methanogenic archaea. Eur J Biochem 252:467–476.
  • Laurinavichene TV, Chanal A, Wu LF, Tsygankov AA. 2001. Effect of O2, H2 and redox potential on the activity and synthesis of hydrogenase 2 in Escherichia coli. Res Microbiol 152:793–798.
  • Laurinavichene TV, Tsygankov AA. 2001. H2 consumption by Escherichia coli coupled via hydrogenase 1 or hydrogenase 2 to different terminal electron acceptors. FEMS Microbiol Lett 202:121–124.
  • Laurinavichene TV, Zorin NA, Tsygankov AA. 2002. Effect of redox potential on activity of hydrogenase 1 and hydrogenase 2 in Escherichia coli. Arch Microbiol 178:437–442.
  • Leonhartsberger S, Korsa I, Böck A. 2002. The molecular biology of formate metabolism in enterobacteria. J Mol Microbiol Biotechnol 4:269–276.
  • Lin EC, Iuchi S. 1991. Regulation of gene expression in fermentative and respiratory systems in Escherichia coli and related bacteria. Annu Rev Genet 25:361–387.
  • Lukey MJ, Parkin A, Roessler MM, Murphy BJ, Harmer J, Palmer T, Sargent F, Armstrong FA. 2010. How Escherichia coli is equipped to oxidize hydrogen under different redox conditions. J Biol Chem 285:3928–3938.
  • Lyubarev AE, Kurganov BI. 1989. Supramolecular organization of tricarboxylic acid cycle enzymes. BioSystems 22:91–102.
  • Maeda T, Sanchez-Torres V, Wood TK. 2007a. Escherichia coli hydrogenase 3 is a reversible enzyme possessing hydrogen uptake and synthesis activities. Appl Microbiol Biotechnol 76:1035–1042.
  • Maeda T, Sanchez-Torres V, Wood TK. 2007b. Enhanced hydrogen production from glucose by metabolically engineered Escherichia coli. Appl Microbiol Biotechnol 77:879–890.
  • Maeda T, Vardar G, Self WT, Wood TK. 2007c. Inhibition of hydrogen uptake in Escherichia coli by expressing the hydrogenase from the cyanobacterium Synechocystis sp. PCC 6803. BMC Biotechnol 7:25.
  • Maeda T, Sanchez-Torres V, Wood TK. 2008a. Protein engineering of hydrogenase 3 to enhance hydrogen production. Appl Microbiol Biotechnol 79:77–86.
  • Maeda T, Sanchez-Torres V, Wood TK. 2008b. Metabolic engineering to enhance bacterial hydrogen production. Microb Biotechnol 1:30–39.
  • Maeda T, Sanchez-Torres V, Wood TK. 2011. Hydrogen production by recombinant Escherichia coli strains. Microb Biotechnol. DOI: 10.1111/j.1751–7915.2011.00282.x.
  • Magalon A, Bock A. 2000. Analysis of the HypC-hycE complex, a key intermediate in the assembly of the metal center of the Escherichia coli hydrogenase 3. J Biol Chem 275:21114–21120.
  • Maier RJ. 2005. Use of molecular hydrogen as an energy substrate by human pathogenic bacteria. Biochem Soc Trans 33:83–85.
  • Martirosov SM, Trchounian AA. 1983. An electrochemical study of energy-dependent potassium accumulation in E. coli. 10. Operation of H+-K+-exchanging mechanisms in unc mutants. Bioelectrochem Bioenerg 11:29–36.
  • Martirosov SM, Trchounian AA. 1986. An electrochemical study of energy-dependent potassium accumulation in E. coli. 11. The Trk system in anaerobically and aerobically grown cells. Bioelectrochem Bioenerg 15:417–426.
  • Martirosov SM, Ogandjanian ES, Trchounian AA. 1988. An electrochemical study of energy-dependent potassium accumulation in E. coli. 12. K+-dependent ATPase activity (Arguments for the structural association of H+-ATPase with K+-ionophore). Bioelectrochem Bioenerg 19:353–357.
  • Maupin JA, Shanmugam KT. 1990. Genetic regulation of formate hydrogenlyase of Escherichia coli: role of the fhlA gene product as a transcriptional activator for a new regulatory gene, fhlB. J Bacteriol 172:4798–4806.
  • Menon NK, Robbins J, Peck HD Jr, Chatelus CY, Choi ES, Przybyla AE. 1990. Cloning and sequencing of a putative Escherichia coli [NiFe] hydrogenase-1 operon containing six open reading frames. J Bacteriol 172:1969–1977.
  • Menon NK, Robbins J, Wendt JC, Shanmugam KT, Przybyla AE. 1991. Mutational analysis and characterization of the Escherichia coli hya operon, which encodes [NiFe] hydrogenase 1. J Bacteriol 173:4851–4861.
  • Menon NK, Chatelus CY, Dervartanian M, Wendt JC, Shanmugam KT, Peck HD Jr, Przybyla AE. 1994. Cloning, sequencing, and mutational analysis of the hyb operon encoding Escherichia coli hydrogenase 2. J Bacteriol 176:4416–4423.
  • Mnatsakanyan N, Bagramyan K, Vassilian A, Nakamoto RK, Trchounian A. 2002a. F0 cysteine, bCys21, in the Escherichia coli ATP synthase is involved in regulation of potassium uptake and molecular hydrogen production in anaerobic conditions. Biosci Rep 22:421–430.
  • Mnatsakanyan N, Vassilian A, Navasardyan L, Bagramyan K, Trchounian A. 2002. Regulation of Escherichia coli formate hydrogenlyase activity by formate at alkaline pH. Curr Microbiol 45:281–286.
  • Mnatsakanyan N, Bagramyan K, Trchounian A. 2004. Hydrogenase 3 but not hydrogenase 4 is major in hydrogen gas production by Escherichia coli formate hydrogenlyase at acidic pH and in the presence of external formate. Cell Biochem Biophys 41:357–366.
  • Momirlan M, Veziroglu TN. 2005. The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet. Int J Hydrogen Energy 33:795–802.
  • Murarka A, Dharmadi Y, Yazdani SS, Gonzalez R. 2008. Fermentative utilization of glycerol by Escherichia coli and its implications for the production of fuels and chemicals. Appl Environ Microbiol 74:1124–1135.
  • Nandi R, Dey S, Sengupta S. 2001. Thiosulphate improves yield of hydrogen production from glucose by the immobilized formate hydrogenlyase system of Escherichia coli. Biotechnol Bioeng 75:492–494.
  • Osz J, Bagyinka C. 2005. An autocatalytic step in the reaction cycle of hydrogenase from Thiocapsa roseopersicina can explain the special characteristics of the enzyme reaction. Biophys J 89:1984–1989.
  • Pecher A, Zinoni F, Böck A. 1985. The seleno-polypeptide of formic dehydrogenase (formate hydrogen-lyase linked) from Escherichia coli: genetic analysis. Arch Microbiol 141:359–363.
  • Peck HD Jr, Gest H. 1957. Formic dehydrogenase and the hydrogenlyase enzyme complex in coli-aerogenes bacteria. J Bacteriol 73:706–721.
  • Poladyan A, Trchounian A. 2009. Production of molecular hydrogen by mixed-acid fermentation in bacteria and its energetics. In: Trchounian A, (ed). Bacterial Membranes. Utrastructure, Bioelectrochemistry, Bioenergetics and Biophysics. Trivandrum, Kerala, India: Research Signpost. pp. 197–231.
  • Puchkov EO, Kosarev NV, Petukhova NM. 1982. Involvement of K+ in anerobic glycolysis of E. coli. Biokhimiia 47:1522–1525.
  • Raaijmakers HC, Romão MJ. 2006. Formate-reduced E. coli formate dehydrogenase H: The reinterpretation of the crystal structure suggests a new reaction mechanism. J Biol Inorg Chem 11:849–854.
  • Rangarajan ES, Asinas A, Proteau A, Munger C, Baardsnes J, Iannuzzi P, Matte A, Cygler M. 2008. Structure of [NiFe] hydrogenase maturation protein HypE from Escherichia coli and its interaction with HypF. J Bacteriol 190:1447–1458.
  • Redwood MD, Mikheenko IP, Sargent F, Macaskie LE. 2008. Dissecting the roles of Escherichia coli hydrogenases in biohydrogen production. FEMS Microbiol Lett 278:48–55.
  • Richard DJ, Sawers G, Sargent F, McWalter L, Boxer DH. 1999. Transcriptional regulation in response to oxygen and nitrate of the operons encoding the [NiFe] hydrogenases 1 and 2 of Escherichia coli. Microbiology (Reading, Engl) 145 (Pt 10):2903–2912.
  • Riondet C, Cachon R, Waché Y, Alcaraz G, Diviès C. 2000. Extracellular oxidoreduction potential modifies carbon and electron flow in Escherichia coli. J Bacteriol 182:620–626.
  • Rosentel JK, Healy F, Maupin-Furlow JA, Lee JH, Shanmugam KT. 1995. Molybdate and regulation of mod (molybdate transport), fdhF, and hyc (formate hydrogenlyase) operons in Escherichia coli. J Bacteriol 177:4857–4864.
  • Rossmann R, Sawers G, Böck A. 1991. Mechanism of regulation of the formate-hydrogenlyase pathway by oxygen, nitrate, and pH: definition of the formate regulon. Mol Microbiol 5:2807–2814.
  • Rossmann R, Sauter M, Lottspeich F, Böck A. 1994. Maturation of the large subunit (HYCE) of Escherichia coli hydrogenase 3 requires nickel incorporation followed by C-terminal processing at Arg537. Eur J Biochem 220:377–384.
  • Sanchez-Torres V, Maeda T, Wood TK. 2009. Protein engineering of the transcriptional activator FhlA To enhance hydrogen production in Escherichia coli. Appl Environ Microbiol 75:5639–5646.
  • Sargent F, Ballantine SP, Rugman PA, Palmer T, Boxer DH. 1998. Reassignment of the gene encoding the Escherichia coli hydrogenase 2 small subunit – identification of a soluble precursor of the small subunit in a hypB mutant. Eur J Biochem 255:746–754.
  • Sasahara KC, Heinzinger NK, Barrett EL. 1997. Hydrogen sulfide production and fermentative gas production by Salmonella typhimurium require F0F1 ATP synthase activity. J Bacteriol 179:6736–6740.
  • Sauter M, Böhm R, Böck A. 1992. Mutational analysis of the operon (hyc) determining hydrogenase 3 formation in Escherichia coli. Mol Microbiol 6:1523–1532.
  • Sawers G. 1994. The hydrogenases and formate dehydrogenases of Escherichia coli. Antonie Van Leeuwenhoek 66:57–88.
  • Sawers RG. 2005. Formate and its role in hydrogen production in Escherichia coli. Biochem Soc Trans 33:42–46.
  • Sawers RG, Ballantine SP, Boxer DH. 1985. Differential expression of hydrogenase isoenzymes in Escherichia coli K-12: evidence for a third isoenzyme. J Bacteriol 164:1324–1331.
  • Sawers RG, Boxer DH. 1986. Purification and properties of membrane-bound hydrogenase isoenzyme 1 from anaerobically grown Escherichia coli K12. Eur J Biochem 156:265–275.
  • Sawers RG, Jamieson DJ, Higgins CF, Boxer DH. 1986. Characterization and physiological roles of membrane-bound hydrogenase isoenzymes from Salmonella typhimurium. J Bacteriol 168:398–404.
  • Schlensog V, Böck A. 1990. Identification and sequence analysis of the gene encoding the transcriptional activator of the formate hydrogenlyase system of Escherichia coli. Mol Microbiol 4:1319–1327.
  • Schlensog V, Lutz S, Böck A. 1994. Purification and DNA-binding properties of FHLA, the transcriptional activator of the formate hydrogenlyase system from Escherichia coli. J Biol Chem 269:19590–19596.
  • Seelert H, Dencher NA. 2011. ATP synthase superassemblies in animals and plants: two or more are better. Biochim Biophys Acta 1807:1185–1197.
  • Self WT, Grunden AM, Hasona A, Shanmugam KT. 1999. Transcriptional regulation of molybdoenzyme synthesis in Escherichia coli in response to molybdenum: ModE-molybdate, a repressor of the modABCD (molybdate transport) operon is a secondary transcriptional activator for the hyc and nar operons. Microbiology (Reading, Engl) 145 (Pt 1):41–55.
  • Self WT, Shanmugam KT. 2000. Isolation and characterization of mutated FhlA proteins which activate transcription of the hyc operon (formate hydrogenlyase) of Escherichia coli in the absence of molybdate(1). FEMS Microbiol Lett 184:47–52.
  • Self WT, Hasona A, Shanmugam KT. 2001. N-terminal truncations in the FhlA protein result in formate- and MoeA-independent expression of the hyc (formate hydrogenlyase) operon of Escherichia coli. Microbiology (Reading, Engl) 147:3093–3104.
  • Self WT, Hasona A, Shanmugam KT. 2004. Expression and regulation of a silent operon, hyf, coding for hydrogenase 4 isoenzyme in Escherichia coli. J Bacteriol 186:580–587.
  • Skibinski DA, Golby P, Chang YS, Sargent F, Hoffman R, Harper R, Guest JR, Attwood MM, Berks BC, Andrews SC. 2002. Regulation of the hydrogenase-4 operon of Escherichia coli by the σ(54)-dependent transcriptional activators FhlA and HyfR. J Bacteriol 184:6642–6653.
  • Stadtman TC, Davis JN, Ching WM, Zinoni F, Böck A. 1991. Amino acid sequence analysis of Escherichia coli formate dehydrogenase (FDHH) confirms that TGA in the gene encodes selenocysteine in the gene product. Biofactors 3:21–27.
  • Suppmann B, Sawers G. 1994. Isolation and characterization of hypophosphite – resistant mutants of Escherichia coli: identification of the FocA protein, encoded by the pfl operon, as a putative formate transporter. Mol Microbiol 11:965–982.
  • Takahata M, Tamura T, Abe K, Mihara H, Kurokawa S, Yamamoto Y, Nakano R, Esaki N, Inagaki K. 2008. Selenite assimilation into formate dehydrogenase H depends on thioredoxin reductase in Escherichia coli. J Biochem 143:467–473.
  • Trchounian A. 1997. Ion exchange in facultative anaerobes: does a proton-potassium pump exist in anaerobic Escherichia coli? Anaerobe 3:355–371.
  • Trchounian A. 2004. Escherichia coli proton-translocating F0F1-ATP synthase and its association with solute secondary transporters and/or enzymes of anaerobic oxidation-reduction under fermentation. Biochem Biophys Res Commun 315:1051–1057.
  • Trchounian A, Bagramyan K, Poladian A. 1997. Formate hydrogenlyase is needed for proton-potassium exchange through the F0F1-ATPase and the TrkA system in anaerobically grown and glycolysing Escherichia coli. Curr Microbiol 35:201–206.
  • Trchounian A, Ohanjanyan Y, Bagramyan K, Vardanian V, Zakharyan E, Vassilian A, Davtian M. 1998. Relationship of the Escherichia coli TrkA system of potassium ion uptake with the F0F1-ATPase under growth conditions without anaerobic or aerobic respiration. Biosci Rep 18:143–154.
  • Trchounian AA, Ogandjanian ES, Mironova GD. 1992. An electrochemical study of energy-dependent potassium accumulation in E. coli. 13. On the interaction of the H+-translocating F0F1-ATPase with the Trk proteins in anaerobically grown cells. Bioelectrochem Bioenerg 27:367–372.
  • Trchounian AA, Vassilian AV. 1994. Relationship between the F0F1-ATPase and the K(+)-transport system within the membrane of anaerobically grown Escherichia coli. N,N’-dicyclohexylcarbodiimide-sensitive ATPase activity in mutants with defects in K(+)-transport. J Bioenerg Biomembr 26:563–571.
  • Trchounian A, Kobayashi H.. 1999. Kup is the major K+ uptake system in Escherichia coli upon hyper-osmotic stress at a low pH. FEBS Lett 447:144–148.
  • Trchounian A, Kobayashi H.. 2000. K+ uptake by fermenting Escherichia coli cells: pH dependent mode of the TrkA system operating. Biosci Rep 20:277–288.
  • Trchounian K, Poladyan A, Trchounian A. 2009. Relation of potassium uptake to proton transport and activity of hydrogenases in Escherichia coli, grown at a low pH. Biochemistry (Moscow): A Membr Cell Biology 3:144–151.
  • Trchounian K, Trchounian A. 2009. Hydrogenase 2 is most and hydrogenase 1 is less responsible for H2 production by Escherichia coli under glycerol fermentation at neutral and slightly alkaline pH. Int J Hydrogen Energy 34:8839–8845.
  • Trchounian K, Pinske C, Sawers RG, Trchounian A. 2011a. Dependence on the F(0)F (1)-ATP synthase for the activities of the hydrogen-oxidizing hydrogenases 1 and 2 during glucose and glycerol fermentation at high and low pH in Escherichia coli. J Bioenerg Biomembr 43:645–650.
  • Trchounian K, Pinske C, Sawers G, Trchounian A. 2011b. Characterization of Escherichia coli [NiFe]-hydrogenase distribution during fermentative growth at different pHs. Cell Biochem Biophys Epub Nov 18. DOI: 10.1007/s12013-011–9325-y.
  • Trchounian K, Sanchez-Torres V, Wood TK, Trchounian A. 2011c. Escherichia coli hydrogenase activity and H2 production under glycerol fermentation at a low pH. Int J Hydrogen Energy 36:4323–4331.
  • Unden G, Achebach S, Holighaus G, Tran HG, Wackwitz B, Zeuner Y. 2002. Control of FNR function of Escherichia coli by O2 and reducing conditions. J Mol Microbiol Biotechnol 4:263–268.
  • Varga ME, Weiner JH. 1995. Physiological role of GlpB of anaerobic glycerol-3-phosphate dehydrogenase of Escherichia coli. Biochem Cell Biol 73:147–153.
  • Verma S, Xiong Y, Mayer MU, Squier TC. 2007. Remodeling of the bacterial RNA polymerase supramolecular complex in response to environmental conditions. Biochemistry 46:3023–3035.
  • Vignais PM, Colbeau A. 2004. Molecular biology of microbial hydrogenases. Curr Issues Mol Biol 6:159–188.
  • Wu LF, Mandrand-Berthelot MA. 1987. Regulation of the fdhF gene encoding the selenopolypeptide for benzyl viologen-linked formate dehydrogenase in Escherichia coli. Mol Gen Genet 209:129–134.
  • Zbell AL, Maier RJ. 2009. Role of the Hya hydrogenase in recycling of anaerobically produced H2 in Salmonella enterica serovar Typhimurium. Appl Environ Microbiol 75:1456–1459.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.