1,942
Views
81
CrossRef citations to date
0
Altmetric
Review Article

Kinetic control of translation initiation in bacteria

&
Pages 334-348 | Received 05 Jan 2012, Accepted 19 Mar 2012, Published online: 19 Apr 2012

References

  • Allen GS, Frank J. 2007. Structural insights on the translation initiation complex: ghosts of a universal initiation complex. Mol Microbiol 63:941–950.
  • Allen GS, Zavialov A, Gursky R, Ehrenberg M, Frank J. 2005. The cryo-EM structure of a translation initiation complex from Escherichia coli. Cell 121:703–712.
  • Allert M, Cox JC, Hellinga HW. 2010. Multifactorial determinants of protein expression in prokaryotic open reading frames. J Mol Biol 402:905–918.
  • Antoun A, Pavlov MY, Andersson K, Tenson T, Ehrenberg M. 2003. The roles of initiation factor 2 and guanosine triphosphate in initiation of protein synthesis. EMBO J 22:5593–5601.
  • Antoun A, Pavlov MY, Lovmar M, Ehrenberg M. 2006a. How initiation factors maximize the accuracy of tRNA selection in initiation of bacterial protein synthesis. Mol Cell 23:183–193.
  • Antoun A, Pavlov MY, Lovmar M, Ehrenberg M. 2006b. How initiation factors tune the rate of initiation of protein synthesis in bacteria. EMBO J 25:2539–2550.
  • Baudet M, Ortet P, Gaillard JC, Fernandez B, Guérin P, Enjalbal C, Subra G, de Groot A, Barakat M, Dedieu A, Armengaud J. 2010. Proteomics-based refinement of Deinococcus deserti genome annotation reveals an unwonted use of non-canonical translation initiation codons. Mol Cell Proteomics 9:415–426.
  • Belotserkovsky JM, Dabbs ER, Isaksson LA. 2011. Mutations in 16S rRNA that suppress cold-sensitive initiation factor 1 affect ribosomal subunit association. FEBS J 278:3508–3517.
  • Bernstein JA, Khodursky AB, Lin PH, Lin-Chao S, Cohen SN. 2002. Global analysis of mRNA decay and abundance in Escherichia coli at single-gene resolution using two-color fluorescent DNA microarrays. Proc Natl Acad Sci USA 99:9697–9702.
  • Binns N, Masters M. 2002. Expression of the Escherichia coli pcnB gene is translationally limited using an inefficient start codon: a second chromosomal example of translation initiated at AUU. Mol Microbiol 44:1287–1298.
  • Biou V, Shu F, Ramakrishnan V. 1995. X-ray crystallography shows that translational initiation factor IF3 consists of two compact α/β domains linked by an alpha-helix. EMBO J 14:4056–4064.
  • Boelens R, Gualerzi CO. 2002. Structure and function of bacterial initiation factors. Curr Protein Pept Sci 3:107–119.
  • Boni IV, Isaeva DM, Musychenko ML, Tzareva NV. 1991. Ribosome-messenger recognition: mRNA target sites for ribosomal protein S1. Nucleic Acids Res 19:155–162.
  • Calogero RA, Pon CL, Canonaco MA, Gualerzi CO. 1988. Selection of the mRNA translation initiation region by Escherichia coli ribosomes. Proc Natl Acad Sci USA 85:6427–6431.
  • Canonaco MA, Calogero RA, Gualerzi CO. 1986. Mechanism of translational initiation in prokaryotes. Evidence for a direct effect of IF2 on the activity of the 30 S ribosomal subunit. FEBS Lett 207:198–204.
  • Canonaco MA, Gualerzi CO, Pon CL. 1989. Alternative occupancy of a dual ribosomal binding site by mRNA affected by translation initiation factors. Eur J Biochem 182:501–506.
  • Carter AP, Clemons WM Jr, Brodersen DE, Morgan-Warren RJ, Hartsch T, Wimberly BT, Ramakrishnan V. 2001. Crystal structure of an initiation factor bound to the 30S ribosomal subunit. Science 291:498–501.
  • Caserta E, Tomsic J, Spurio R, La Teana A, Pon CL, Gualerzi CO. 2006. Translation initiation factor IF2 interacts with the 30 S ribosomal subunit via two separate binding sites. J Mol Biol 362:787–799.
  • Chang B, Halgamuge S, Tang SL. 2006. Analysis of SD sequences in completed microbial genomes: non-SD-led genes are as common as SD-led genes. Gene 373:90–99.
  • Dallas A, Noller HF. 2001. Interaction of translation initiation factor 3 with the 30S ribosomal subunit. Mol Cell 8:855–864.
  • de Smit MH, van Duin J. 1994. Translational initiation on structured messengers. Another role for the Shine–Dalgarno interaction. J Mol Biol 235:173–184.
  • Debey P, Hui Bon Hoa G, Douzou P, Godefroy-Colburn T, Graffe M, Grunberg-Manago M. 1975. Ribosomal subunit interaction as studied by light scattering. Evidence of different classes of ribosome preparations. Biochemistry 14:1553–1559.
  • Dreyfus M. 1988. What constitutes the signal for the initiation of protein synthesis on Escherichia coli mRNAs? J Mol Biol 204:79–94.
  • Fabbretti A, Pon CL, Hennelly SP, Hill WE, Lodmell JS, Gualerzi CO. 2007. The real-time path of translation factor IF3 onto and off the ribosome. Mol Cell 25:285–296.
  • Garcia C, Fortier PL, Blanquet S, Lallemand JY, Dardel F. 1995. Solution structure of the ribosome-binding domain of E. coli translation initiation factor IF3. Homology with the U1A protein of the eukaryotic spliceosome. J Mol Biol 254:247–259.
  • Geissmann T, Marzi S, Romby P. 2009. The role of mRNA structure in translational control in bacteria. RNA Biol 6:153–160.
  • Gold L. 1988. Posttranscriptional regulatory mechanisms in Escherichia coli. Annu Rev Biochem 57:199–233.
  • Grigoriadou C, Marzi S, Kirillov S, Gualerzi CO, Cooperman BS. 2007a. A quantitative kinetic scheme for 70 S translation initiation complex formation. J Mol Biol 373:562–572.
  • Grigoriadou C, Marzi S, Pan D, Gualerzi CO, Cooperman BS. 2007b. The translational fidelity function of IF3 during transition from the 30 S initiation complex to the 70 S initiation complex. J Mol Biol 373:551–561.
  • Grill S, Gualerzi CO, Londei P, Bläsi U. 2000. Selective stimulation of translation of leaderless mRNA by initiation factor 2: evolutionary implications for translation. EMBO J 19:4101–4110.
  • Grill S, Moll I, Giuliodori AM, Gualerzi CO, Bläsi U. 2002. Temperature-dependent translation of leaderless and canonical mRNAs in Escherichia coli. FEMS Microbiol Lett 211:161–167.
  • Gualerzi C, Risuleo G, Pon CL. 1977. Initial rate kinetic analysis of the mechanism of initiation complex formation and the role of initiation factor IF-3. Biochemistry 16:1684–1689.
  • Gualerzi CO, Brandi L, Caserta E, Garofalo C, Lammi M, La Teana A, Petrelli D, Spurio R, Tomsic J, Pon CL. 2001. Initiation factors in the early events of mRNA translation in bacteria. Cold Spring Harb Symp Quant Biol 66:363–376.
  • Gualerzi CO, Pon CL. 1990. Initiation of mRNA translation in prokaryotes. Biochemistry 29:5881–5889.
  • Gualerzi CO, Wintermeyer W. 1986. Prokaryotic initiation factor 2 acts at the level of the 30S ribosomal subunit. A fluorescence stopped-flow study. FEBS Lett 202:1–6.
  • Guenneugues M, Caserta E, Brandi L, Spurio R, Meunier S, Pon CL, Boelens R, Gualerzi CO. 2000. Mapping the fMet-tRNA(f)(Met) binding site of initiation factor IF2. EMBO J 19:5233–5240.
  • Hartz D, Binkley J, Hollingsworth T, Gold L. 1990. Domains of initiator tRNA and initiation codon crucial for initiator tRNA selection by Escherichia coli IF3. Genes Dev 4:1790–1800.
  • Hartz D, McPheeters DS, Gold L. 1989. Selection of the initiator tRNA by Escherichia coli initiation factors. Genes Dev 3:1899–1912.
  • Hauryliuk V, Mitkevich VA, Draycheva A, Tankov S, Shyp V, Ermakov A, Kulikova AA, Makarov AA, Ehrenberg M. 2009. Thermodynamics of GTP and GDP binding to bacterial initiation factor 2 suggests two types of structural transitions. J Mol Biol 394:621–626.
  • Hennelly SP, Antoun A, Ehrenberg M, Gualerzi CO, Knight W, Lodmell JS, Hill WE. 2005. A time-resolved investigation of ribosomal subunit association. J Mol Biol 346:1243–1258.
  • Huang C, Mandava CS, Sanyal S. 2010. The ribosomal stalk plays a key role in IF2-mediated association of the ribosomal subunits. J Mol Biol 399:145–153.
  • Hui A, de Boer HA. 1987. Specialized ribosome system: preferential translation of a single mRNA species by a subpopulation of mutated ribosomes in Escherichia coli. Proc Natl Acad Sci USA 84:4762–4766.
  • Jacob WF, Santer M, Dahlberg AE. 1987. A single base change in the Shine–Dalgarno region of 16S rRNA of Escherichia coli affects translation of many proteins. Proc Natl Acad Sci USA 84:4757–4761.
  • Jacques N, Dreyfus M. 1990. Translation initiation in Escherichia coli: old and new questions. Mol Microbiol 4:1063–1067.
  • Jenner L, Romby P, Rees B, Schulze-Briese C, Springer M, Ehresmann C, Ehresmann B, Moras D, Yusupova G, Yusupov M. 2005. Translational operator of mRNA on the ribosome: how repressor proteins exclude ribosome binding. Science 308:120–123.
  • Jin H, Zhao Q, Gonzalez de Valdivia EI, Ardell DH, Stenström M, Isaksson LA. 2006. Influences on gene expression in vivoby a Shine–Dalgarno sequence. Mol Microbiol 60:480–492.
  • Julián P, Milon P, Agirrezabala X, Lasso G, Gil D, Rodnina MV, Valle M. 2011. The Cryo-EM structure of a complete 30S translation initiation complex from Escherichia coli. PLoS Biol 9:e1001095.
  • Kaberdina AC, Szaflarski W, Nierhaus KH, Moll I. 2009. An unexpected type of ribosomes induced by kasugamycin: a look into ancestral times of protein synthesis? Mol Cell 33:227–236.
  • Karimi R, Pavlov MY, Buckingham RH, Ehrenberg M. 1999. Novel roles for classical factors at the interface between translation termination and initiation. Mol Cell 3:601–609.
  • Katz L, Burge CB. 2003. Widespread selection for local RNA secondary structure in coding regions of bacterial genes. Genome Res 13:2042–2051.
  • Kitakawa M, Isono K. 1982. An amber mutation in the gene rpsA for ribosomal protein S1 in Escherichia coli. Mol Gen Genet 185:445–447.
  • Komarova AV, Tchufistova LS, Supina EV, Boni IV. 2002. Protein S1 counteracts the inhibitory effect of the extended Shine–Dalgarno sequence on translation. RNA 8:1137–1147.
  • Krishnan KM, Van Etten WJ 3rd, Janssen GR. 2010. Proximity of the start codon to a leaderless mRNA’s 5′ terminus is a strong positive determinant of ribosome binding and expression in Escherichia coli. J Bacteriol 192:6482–6485.
  • Kudla G, Murray AW, Tollervey D, Plotkin JB. 2009. Coding-sequence determinants of gene expression in Escherichia coli. Science 324:255–258.
  • La Teana A, Gualerzi CO, Brimacombe R. 1995. From stand-by to decoding site. Adjustment of the mRNA on the 30S ribosomal subunit under the influence of the initiation factors. RNA 1:772–782.
  • La Teana A, Pon CL, Gualerzi CO. 1993. Translation of mRNAs with degenerate initiation triplet AUU displays high initiation factor 2 dependence and is subject to initiation factor 3 repression. Proc Natl Acad Sci USA 90:4161–4165.
  • Lancaster L, Noller HF. 2005. Involvement of 16S rRNA nucleotides G1338 and A1339 in discrimination of initiator tRNA. Mol Cell 20:623–632.
  • Laursen BS, Mortensen KK, Sperling-Petersen HU, Hoffman DW. 2003. A conserved structural motif at the N terminus of bacterial translation initiation factor IF2. J Biol Chem 278:16320–16328.
  • Laursen BS, Sørensen HP, Mortensen KK, Sperling-Petersen HU. 2005. Initiation of protein synthesis in bacteria. Microbiol Mol Biol Rev 69:101–123.
  • Lee K, Holland-Staley CA, Cunningham PR. 1996. Genetic analysis of the Shine–Dalgarno interaction: selection of alternative functional mRNA-rRNA combinations. RNA 2:1270–1285.
  • Lomakin IB, Shirokikh NE, Yusupov MM, Hellen CU, Pestova TV. 2006. The fidelity of translation initiation: reciprocal activities of eIF1, IF3 and YciH. EMBO J 25:196–210.
  • Ma J, Campbell A, Karlin S. 2002. Correlations between Shine–Dalgarno sequences and gene features such as predicted expression levels and operon structures. J Bacteriol 184:5733–5745.
  • Maar D, Liveris D, Sussman JK, Ringquist S, Moll I, Heredia N, Kil A, Bläsi U, Schwartz I, Simons RW. 2008. A single mutation in the IF3 N-terminal domain perturbs the fidelity of translation initiation at three levels. J Mol Biol 383:937–944.
  • Mandal N, Mangroo D, Dalluge JJ, McCloskey JA, Rajbhandary UL. 1996. Role of the three consecutive G:C base pairs conserved in the anticodon stem of initiator tRNAs in initiation of protein synthesis in Escherichia coli. RNA 2:473–482.
  • Mandava CS, Peisker K, Ederth J, Kumar R, Ge X, Szaflarski W, Sanyal S. 2012. Bacterial ribosome requires multiple L12 dimers for efficient initiation and elongation of protein synthesis involving IF2 and EF-G. Nucleic Acids Res 40:2054–2064.
  • Marshall RA, Aitken CE, Puglisi JD. 2009. GTP hydrolysis by IF2 guides progression of the ribosome into elongation. Mol Cell 35:37–47.
  • Marzi S, Myasnikov AG, Serganov A, Ehresmann C, Romby P, Yusupov M, Klaholz BP. 2007. Structured mRNAs regulate translation initiation by binding to the platform of the ribosome. Cell 130:1019–1031.
  • McCutcheon JP, Agrawal RK, Philips SM, Grassucci RA, Gerchman SE, Clemons WM Jr, Ramakrishnan V, Frank J. 1999. Location of translational initiation factor IF3 on the small ribosomal subunit. Proc Natl Acad Sci USA 96:4301–4306.
  • Melançon P, Leclerc D, Destroismaisons N, Brakier-Gingras L. 1990. The anti-Shine–Dalgarno region in Escherichia coli 16S ribosomal RNA is not essential for the correct selection of translational starts. Biochemistry 29:3402–3407.
  • Meunier S, Spurio R, Czisch M, Wechselberger R, Guenneugues M, Gualerzi CO, Boelens R. 2000. Structure of the fMet-tRNA(fMet)-binding domain of B. stearothermophilus initiation factor IF2. EMBO J 19:1918–1926.
  • Milon P, Carotti M, Konevega AL, Wintermeyer W, Rodnina MV, Gualerzi CO. 2010. The ribosome-bound initiation factor 2 recruits initiator tRNA to the 30S initiation complex. EMBO Rep 11:312–316.
  • Milon P, Konevega AL, Gualerzi CO, Rodnina MV. 2008. Kinetic checkpoint at a late step in translation initiation. Mol Cell 30:712–720.
  • Milon P, Maracci C, Filonava L, Gualerzi CO, Rodnina MV. 2012. Real-time assembly landscape of bacterial 30S translation initiation complex. Nat Struct Mol Biol (In Press).
  • Milon P, Tischenko E, Tomsic J, Caserta E, Folkers G, La Teana A, Rodnina MV, Pon CL, Boelens R, Gualerzi CO. 2006. The nucleotide-binding site of bacterial translation initiation factor 2 (IF2) as a metabolic sensor. Proc Natl Acad Sci USA 103:13962–13967.
  • Mitarai N, Sneppen K, Pedersen S. 2008. Ribosome collisions and translation efficiency: optimization by codon usage and mRNA destabilization. J Mol Biol 382:236–245.
  • Mitkevich VA, Ermakov A, Kulikova AA, Tankov S, Shyp V, Soosaar A, Tenson T, Makarov AA, Ehrenberg M, Hauryliuk V. 2010. Thermodynamic characterization of ppGpp binding to EF-G or IF2 and of initiator tRNA binding to free IF2 in the presence of GDP, GTP, or ppGpp. J Mol Biol 402:838–846.
  • Moll I, Grill S, Gründling A, Bläsi U. 2002. Effects of ribosomal proteins S1, S2 and the DeaD/CsdA DEAD-box helicase on translation of leaderless and canonical mRNAs in Escherichia coli. Mol Microbiol 44:1387–1396.
  • Moreno JM, Drskjøtersen L, Kristensen JE, Mortensen KK, Sperling-Petersen HU. 1999. Characterization of the domains of E. coli initiation factor IF2 responsible for recognition of the ribosome. FEBS Lett 455:130–134.
  • Mortensen KK, Kildsgaard J, Moreno JM, Steffensen SA, Egebjerg J, Sperling-Petersen HU. 1998. A six-domain structural model for Escherichia coli translation initiation factor IF2. Characterisation of twelve surface epitopes. Biochem Mol Biol Int 46:1027–1041.
  • Myasnikov AG, Marzi S, Simonetti A, Giuliodori AM, Gualerzi CO, Yusupova G, Yusupov M, Klaholz BP. 2005. Conformational transition of initiation factor 2 from the GTP- to GDP-bound state visualized on the ribosome. Nat Struct Mol Biol 12:1145–1149.
  • Myasnikov AG, Simonetti A, Marzi S, Klaholz BP. 2009. Structure-function insights into prokaryotic and eukaryotic translation initiation. Curr Opin Struct Biol 19:300–309.
  • Nakamoto T. 2006. A unified view of the initiation of protein synthesis. Biochem Biophys Res Commun 341:675–678.
  • O’Connor M, Gregory ST, Rajbhandary UL, Dahlberg AE. 2001. Altered discrimination of start codons and initiator tRNAs by mutant initiation factor 3. RNA 7:969–978.
  • O’Connor M, Thomas CL, Zimmermann RA, Dahlberg AE. 1997. Decoding fidelity at the ribosomal A and P sites: influence of mutations in three different regions of the decoding domain in 16S rRNA. Nucleic Acids Res 25:1185–1193.
  • Passalacqua KD, Varadarajan A, Ondov BD, Okou DT, Zwick ME, Bergman NH. 2009. Structure and complexity of a bacterial transcriptome. J Bacteriol 191:3203–3211.
  • Pavlov MY, Zorzet A, Andersson DI, Ehrenberg M. 2011. Activation of initiation factor 2 by ligands and mutations for rapid docking of ribosomal subunits. EMBO J 30:289–301.
  • Peske F, Rodnina MV, Wintermeyer W. 2005. Sequence of steps in ribosome recycling as defined by kinetic analysis. Mol Cell 18:403–412.
  • Petrelli D, LaTeana A, Garofalo C, Spurio R, Pon CL, Gualerzi CO. 2001. Translation initiation factor IF3: two domains, five functions, one mechanism? EMBO J 20:4560–4569.
  • Polard P, Prère MF, Chandler M, Fayet O. 1991. Programmed translational frameshifting and initiation at an AUU codon in gene expression of bacterial insertion sequence IS911. J Mol Biol 222:465–477.
  • Pon CL, Paci M, Pawlik RT, Gualerzi CO. 1985. Structure-function relationship in Escherichia coli initiation factors. Biochemical and biophysical characterization of the interaction between IF-2 and guanosine nucleotides. J Biol Chem 260:8918–8924.
  • Proshkin S, Rahmouni AR, Mironov A, Nudler E. 2010. Cooperation between translating ribosomes and RNA polymerase in transcription elongation. Science 328:504–508.
  • Qin D, Abdi NM, Fredrick K. 2007. Characterization of 16S rRNA mutations that decrease the fidelity of translation initiation. RNA 13:2348–2355.
  • Qin D, Fredrick K. 2009. Control of translation initiation involves a factor-induced rearrangement of helix 44 of 16S ribosomal RNA. Mol Microbiol 71:1239–1249.
  • Qin D, Liu Q, Devaraj A, Fredrick K. 2012. Role of helix 44 of 16S rRNA in the fidelity of translation initiation. RNA 18:485–495.
  • Ringquist S, Jones T, Snyder EE, Gibson T, Boni I, Gold L. 1995. High-affinity RNA ligands to Escherichia coli ribosomes and ribosomal protein S1: comparison of natural and unnatural binding sites. Biochemistry 34:3640–3648.
  • Roll-Mecak A, Cao C, Dever TE, Burley SK. 2000. X-Ray structures of the universal translation initiation factor IF2/eIF5B: conformational changes on GDP and GTP binding. Cell 103:781–792.
  • Scharff LB, Childs L, Walther D, Bock R. 2011. Local absence of secondary structure permits translation of mRNAs that lack ribosome-binding sites. PLoS Genet 7:e1002155.
  • Schuwirth BS, Borovinskaya MA, Hau CW, Zhang W, Vila-Sanjurjo A, Holton JM, Cate JH. 2005. Structures of the bacterial ribosome at 3.5 A resolution. Science 310:827–834.
  • Sengupta J, Agrawal RK, Frank J. 2001. Visualization of protein S1 within the 30S ribosomal subunit and its interaction with messenger RNA. Proc Natl Acad Sci USA 98:11991–11996.
  • Seong BL, RajBhandary UL. 1987. Escherichia coli formylmethionine tRNA: mutations in GGGCCC sequence conserved in anticodon stem of initiator tRNAs affect initiation of protein synthesis and conformation of anticodon loop. Proc Natl Acad Sci USA 84:334–338.
  • Sette M, Spurio R, van Tilborg P, Gualerzi CO, Boelens R. 1999. Identification of the ribosome binding sites of translation initiation factor IF3 by multidimensional heteronuclear NMR spectroscopy. RNA 5:82–92.
  • Sette M, van Tilborg P, Spurio R, Kaptein R, Paci M, Gualerzi CO, Boelens R. 1997. The structure of the translational initiation factor IF1 from E. coli contains an oligomer-binding motif. EMBO J 16:1436–1443.
  • Simonetti A, Marzi S, Jenner L, Myasnikov A, Romby P, Yusupova G, Klaholz BP, Yusupov M. 2009. A structural view of translation initiation in bacteria. Cell Mol Life Sci 66:423–436.
  • Simonetti A, Marzi S, Myasnikov A, Menetret J-P, Klaholz BP. 2011. Insights into translation initiation and termination complexes and into the polysome architecture. In: Rodnina MV, Wintermeyer W, Green R, editors. Ribosomes Structure, Function, and Dynamics. Wien, New York: Springer, 113–128
  • Simonetti A, Marzi S, Myasnikov AG, Fabbretti A, Yusupov M, Gualerzi CO, Klaholz BP. 2008. Structure of the 30S translation initiation complex. Nature 455:416–420.
  • Skorski P, Leroy P, Fayet O, Dreyfus M, Hermann-Le Denmat S. 2006. The highly efficient translation initiation region from the Escherichia coli rpsA gene lacks a Shine–Dalgarno element. J Bacteriol 188:6277–6285.
  • Sørensen MA, Fricke J, Pedersen S. 1998. Ribosomal protein S1 is required for translation of most, if not all, natural mRNAs in Escherichia coli in vivo. J Mol Biol 280:561–569.
  • Studer SM, Joseph S. 2006. Unfolding of mRNA secondary structure by the bacterial translation initiation complex. Mol Cell 22:105–115.
  • Surkov S, Nilsson H, Rasmussen LC, Sperling-Petersen HU, Isaksson LA. 2010. Translation initiation region dependency of translation initiation in Escherichia coli by IF1 and kasugamycin. FEBS J 277:2428–2439.
  • Sussman JK, Simons EL, Simons RW. 1996. Escherichia coli translation initiation factor 3 discriminates the initiation codon in vivo. Mol Microbiol 21:347–360.
  • Tapprich WE, Goss DJ, Dahlberg AE. 1989. Mutation at position 791 in Escherichia coli 16S ribosomal RNA affects processes involved in the initiation of protein synthesis. Proc Natl Acad Sci USA 86:4927–4931.
  • Tolstrup N, Sensen CW, Garrett RA, Clausen IG. 2000. Two different and highly organized mechanisms of translation initiation in the archaeon Sulfolobus solfataricus. Extremophiles 4:175–179.
  • Tomsic J, Vitali LA, Daviter T, Savelsbergh A, Spurio R, Striebeck P, Wintermeyer W, Rodnina MV, Gualerzi CO. 2000. Late events of translation initiation in bacteria: a kinetic analysis. EMBO J 19:2127–2136.
  • Tuller T, Waldman YY, Kupiec M, Ruppin E. 2010. Translation efficiency is determined by both codon bias and folding energy. Proc Natl Acad Sci USA 107:3645–3650.
  • Van Etten WJ, Janssen GR. 1998. An AUG initiation codon, not codon–anticodon complementarity, is required for the translation of unleadered mRNA in Escherichia coli. Mol Microbiol 27:987–1001.
  • Vesper O, Amitai S, Belitsky M, Byrgazov K, Kaberdina AC, Engelberg-Kulka H, Moll I. 2011. Selective translation of leaderless mRNAs by specialized ribosomes generated by MazF in Escherichia coli. Cell 147:147–157.
  • Vimberg V, Tats A, Remm M, Tenson T. 2007. Translation initiation region sequence preferences in Escherichia coli. BMC Mol Biol 8:100.
  • Voges D, Watzele M, Nemetz C, Wizemann S, Buchberger B. 2004. Analyzing and enhancing mRNA translational efficiency in an Escherichia coli in vitroexpression system. Biochem Biophys Res Commun 318:601–614.
  • Vohlander Rasmussen LC, Oliveira CL, Pedersen JS, Sperling-Petersen HU, Mortensen KK. 2011. Structural transitions of translation initiation factor IF2 upon GDPNP and GDP binding in solution. Biochemistry 50:9779–9787.
  • Weiner J 3rd, Herrmann R, Browning GF. 2000. Transcription in Mycoplasma pneumoniae. Nucleic Acids Res 28:4488–4496.
  • Wienk H, Tishchenko E, Belardinelli R, Tomaselli S, Dongre R, Spurio R, Folkers GE, Gualerzi CO, Boelens R. 2012. Structural dynamics of bacterial translation initiation factor IF2. J Biol Chem 287:10922–10932.
  • Wienk H, Tomaselli S, Bernard C, Spurio R, Picone D, Gualerzi CO, Boelens R. 2005. Solution structure of the C1-subdomain of Bacillus stearothermophilus translation initiation factor IF2. Protein Sci 14:2461–2468.
  • Wintermeyer W, Gualerzi C. 1983. Effect of Escherichia coli initiation factors on the kinetics of N-Acphe-tRNAPhe binding to 30S ribosomal subunits. A fluorescence stopped-flow study. Biochemistry 22:690–694.
  • Yoo JH, RajBhandary UL. 2008. Requirements for translation re-initiation in Escherichia coli: roles of initiator tRNA and initiation factors IF2 and IF3. Mol Microbiol 67:1012–1026.
  • Yusupova G, Jenner L, Rees B, Moras D, Yusupov M. 2006. Structural basis for messenger RNA movement on the ribosome. Nature 444:391–394.
  • Zheng X, Hu GQ, She ZS, Zhu H. 2011. Leaderless genes in bacteria: clue to the evolution of translation initiation mechanisms in prokaryotes. BMC Genomics 12:361.
  • Zorzet A, Pavlov MY, Nilsson AI, Ehrenberg M, Andersson DI. 2010. Error-prone initiation factor 2 mutations reduce the fitness cost of antibiotic resistance. Mol Microbiol 75:1299–1313.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.