1,654
Views
82
CrossRef citations to date
0
Altmetric
Review Article

Cytosolic lipid droplets: From mechanisms of fat storage to disease

&
Pages 304-326 | Received 16 Mar 2014, Accepted 30 May 2014, Published online: 20 Jul 2014

References

  • Adeyo O, Horn PJ, Lee S, et al. (2011). The yeast lipin orthologue Pah1p is important for biogenesis of lipid droplets. J Cell Biol 192:1043–55
  • Agarwal AK, Arioglu E, De Almeida S, et al. (2002). AGPAT2 is mutated in congenital generalized lipodystrophy linked to chromosome 9q34. Nat Genet 31:21–3
  • Agarwal AK, Garg A. (2003). Congenital generalized lipodystrophy: significance of triglyceride biosynthetic pathways. Trends Endocrinol Metab 14:214–21
  • Ahmadian M, Duncan RE, Sul HS. (2009). The skinny on fat: lipolysis and fatty acid utilization in adipocytes. Trends Endocrinol Metab 20:424–8
  • Ahmadian M, Wang Y, Sul HS. (2010). Lipolysis in adipocytes. Int J Biochem Cell Biology 42:555–9
  • Alberts P, Rotin D. (2010). Regulation of lipid droplet turnover by ubiquitin ligases. BMC Biol 8:94
  • Altmann R. (1890). Die Elementarorganisem und ihre Beziehungen zu den Zellen. Veit, Leipzig
  • Andreyev AY, Fahy E, Guan Z, et al. (2010). Subcellular organelle lipidomics in TLR-4-activated macrophages. J Lipid Res 51:2785–97
  • Ashrafi K, Chang FY, Watts JL, et al. (2003). Genome-wide RNAi analysis of Caenorhabditis elegans fat regulatory genes. Nature 421:268–72
  • Athenstaedt K, Zweytick D, Jandrositz A, et al. (1999). Identification and characterization of major lipid particle proteins of the yeast Saccharomyces cerevisiae. J Bacteriol 181:6441–8
  • Bartz R, Li WH, Venables B, et al. (2007a). Lipidomics reveals that adiposomes store ether lipids and mediate phospholipid traffic. J Lipid Res 48:837–47
  • Bartz R, Zehmer JK, Zhu M, et al. (2007b). Dynamic activity of lipid droplets: protein phosphorylation and GTP-mediated protein translocation. J Proteome Res 6:3256–65
  • Beller M, Bulankina AV, Hsiao HH, et al. (2010). PERILIPIN-dependent control of lipid droplet structure and fat storage in Drosophila. Cell Metab 12:521–32
  • Beller M, Riedel D, Jansch L, et al. (2006). Characterization of the Drosophila lipid droplet subproteome. Mol Cell Proteomics 5:1082–94
  • Beller M, Sztalryd C, Southall N, et al. (2008). COPI complex is a regulator of lipid homeostasis. PLoS Biol 6:e292
  • Berardinelli W. (1954). An undiagnosed endocrinometabolic syndrome: report of 2 cases. J Clin Endocrinol Metab 14:193–204
  • Bickel PE, Tansey JT, Welte MA. (2009). PAT proteins, an ancient family of lipid droplet proteins that regulate cellular lipid stores. Biochim Biophys Acta 1791:419–40
  • Binns D, Januszewski T, Chen Y, et al. (2006). An intimate collaboration between peroxisomes and lipid bodies. J Cell Biol 173:719–31
  • Boutet E, El Mourabit H, Prot M, et al. (2009). Seipin deficiency alters fatty acid Delta9 desaturation and lipid droplet formation in Berardinelli-Seip congenital lipodystrophy. Biochimie 91:796–803
  • Boulant S, Douglas MW, Moody L, et al. (2008). Hepatitis C virus core protein induces lipid droplet redistribution in a microtubule- and dynein-dependent manner. Traffic 9:1268–82
  • Boulant S, Montserret R, Hope RG, et al. (2006). Structural determinants that target the hepatitis C virus core protein to lipid droplets. J Biol Chem 281:22236–47
  • Boulant S, Targett-Adams P, McLauchlan J. (2007). Disrupting the association of hepatitis C virus core protein with lipid droplets correlates with a loss in production of infectious virus. J Gen Virol 88:2204–13
  • Brasaemle DL. (2007). Thematic review series: adipocyte biology. The perilipin family of structural lipid droplet proteins: stabilization of lipid droplets and control of lipolysis. J Lipid Res 48:2547–59
  • Brasaemle DL. (2011). DisseCCTing phospholipid function in lipid droplet dynamics. Cell Metabolism 14:437–8
  • Brasaemle DL, Barber T, Wolins NE, et al. (1997). Adipose differentiation-related protein is an ubiquitously expressed lipid storage droplet-associated protein. J Lipid Res 38:2249–63
  • Brasaemle DL, Dolios G, Shapiro L, Wang R. (2004). Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes. J Biol Chem 279:46835–42
  • Brasaemle DL, Levin DM, Adler-Wailes DC, Londos C. (2000). The lipolytic stimulation of 3T3-L1 adipocytes promotes the translocation of hormone-sensitive lipase to the surfaces of lipid storage droplets. Biochim Biophys Acta 1483:251–62
  • Brasaemle DL, Wolins NE. (2006). Isolation of lipid droplets from cells by density gradient centrifugation. Curr Protoc Cell Biol Chapter 3, Unit 3.15. doi: 10.1002/0471143030.cb0315s29
  • Cases S, Stone SJ, Zhou P, et al. (2001). Cloning of DGAT2, a second mammalian diacylglycerol acyltransferase, and related family members. J Biol Chem 276:38870–6
  • Castera L, Chouteau P, Hezode C, et al. (2005). Hepatitis C virus-induced hepatocellular steatosis. Am J Gastroenterol 100:711–5
  • Chen W, Chang B, Saha P, et al. (2012). Berardinelli-seip congenital lipodystrophy 2/seipin is a cell-autonomous regulator of lipolysis essential for adipocyte differentiation. Mol Cell Biol 32:1099–111
  • Chen W, Yechoor VK, Chang BH, et al. (2009). The human lipodystrophy gene product Berardinelli-Seip congenital lipodystrophy 2/seipin plays a key role in adipocyte differentiation. Endocrinol 150:4552–61
  • Chen W, Zhou H, Liu S, et al. (2013). Altered lipid metabolism in residual white adipose tissues of Bscl2 deficient mice. PloS One 8:e82526
  • Cho YS, Chen CH, Hu C, et al. (2012). Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east Asians. Nat Genet 44:67–72
  • Choi YH, Park S, Hockman S, et al. (2006). Alterations in regulation of energy homeostasis in cyclic nucleotide phosphodiesterase 3B-null mice. J Clin Invest 116:3240–51
  • Coffinier C, Hudon SE, Farber EA, et al. (2007). HIV protease inhibitors block the zinc metalloproteinase ZMPSTE24 and lead to an accumulation of prelamin A in cells. Proc Natl Acad Sci USA 104:13432–7
  • Coleman RA, Lee DP. (2004). Enzymes of triacylglycerol synthesis and their regulation. Progr Lipid Res 43:134–76
  • Connerth M, Czabany T, Wagner A, et al. (2010). Oleate inhibits steryl ester synthesis and causes liposensitivity in yeast. J Biol Chem 285:26832–41
  • Cortes VA, Curtis DE, Sukumaran S, et al. (2009). Molecular mechanisms of hepatic steatosis and insulin resistance in the AGPAT2-deficient mouse model of congenital generalized lipodystrophy. Cell Metab 9:165–76
  • Daniel J, Deb C, Dubey VS, et al. (2004). Induction of a novel class of diacylglycerol acyltransferases and triacylglycerol accumulation in Mycobacterium tuberculosis as it goes into a dormancy-like state in culture. J Bacteriol 186:5017–30
  • D’Avila H, Melo RC, Parreira GG, et al. (2006). Mycobacterium bovis bacillus Calmette-Guerin induces TLR2-mediated formation of lipid bodies: intracellular domains for eicosanoid synthesis in vivo. J Immunol 176:3087–97
  • D’Avila H, Roque NR, Cardoso RM, et al. (2008). Neutrophils recruited to the site of Mycobacterium bovis BCG infection undergo apoptosis and modulate lipid body biogenesis and prostaglandin E production by macrophages. Cell Microbiol 10:2589–604
  • Declercq PE, Haagsman HP, Van Veldhoven P, et al. (1984). Rat liver dihydroxyacetone-phosphate acyltransferases and their contribution to glycerolipid synthesis. J Biol Chem 259:9064–75
  • Duncan RE, Ahmadian M, Jaworski K, et al. (2007). Regulation of lipolysis in adipocytes. Ann Rev Nutrition 27:79–101
  • de Lima CS, Marques MA, Debrie AS, et al. (2009). Heparin-binding hemagglutinin (HBHA) of Mycobacterium leprae is expressed during infection and enhances bacterial adherence to epithelial cells. FEMS Microbiol Lett 292:162–9
  • Dong H, Czaja MJ. (2011). Regulation of lipid droplets by autophagy. Trends Endocrinol Metab 22:234–40
  • Duband-Goulet I, Woerner S, Gasparini S, et al. (2011). Subcellular localization of SREBP1 depends on its interaction with the C-terminal region of wild-type and disease related A-type lamins. Exp Cell Res 317:2800–13
  • Ducharme NA, Bickel PE. (2008). Lipid droplets in lipogenesis and lipolysis. Endocrinol 149:942–9
  • Eastman SW, Yassaee M, Bieniasz PD. (2009). A role for ubiquitin ligases and Spartin/SPG20 in lipid droplet turnover. J Cell Biol 184:881–94
  • Farese RV Jr, Cases S, Smith SJ. (2000). Triglyceride synthesis: insights from the cloning of diacylglycerol acyltransferase. Curr Opin Lipidol 11:229–34
  • Fei W, Alfaro G, Muthusamy BP, et al. (2008a). Genome-wide analysis of sterol-lipid storage and trafficking in Saccharomyces cerevisiae. Eukaryot Cell 7:401–14
  • Fei W, Shui G, Gaeta B, et al. (2008b). Fld1p, a functional homologue of human seipin, regulates the size of lipid droplets in yeast. J Cell Biol 180:473–82
  • Fei W, Shui G, Zhang Y, et al. (2011). A role for phosphatidic Acid in the formation of “supersized” lipid droplets. PLoS Genet 7:e1002201
  • Flaspohler JA, Jensen BC, Saveria T, et al. (2010). A novel protein kinase localized to lipid droplets is required for droplet biogenesis in trypanosomes. Eukaryot Cell 9:1702–10
  • French SW. (1989). Biochemical basis for alcohol-induced liver injury. Clinical Biochem 22:41–9
  • Fujimoto Y, Itabe H, Sakai J, et al. (2004). Identification of major proteins in the lipid droplet-enriched fraction isolated from the human hepatocyte cell line HuH7. Biochim Biophys Acta 1644:47–59
  • Gandotra S, Le Dour C, Bottomley W, et al. (2011a). Perilipin deficiency and autosomal dominant partial lipodystrophy. New Engl J Med 364:740–8
  • Gandotra S, Lim K, Girousse A, et al. (2011b). Human frame shift mutations affecting the carboxyl terminus of perilipin increase lipolysis by failing to sequester the adipose triglyceride lipase (ATGL) coactivator AB-hydrolase-containing 5 (ABHD5). J Biol Chem 286:34998–5006
  • Garg A, Agarwal AK. (2009). Lipodystrophies: disorders of adipose tissue biology. Biochim Biophys Acta 1791:507–13
  • Goodman JM. (2008). The gregarious lipid droplet. J Biol Chem 283:28005–9
  • Gong J, Sun Z, Wu L, et al. (2011). Fsp27 promotes lipid droplet growth by lipid exchange and transfer at lipid droplet contact sites. J Cell Biol 195:953–63
  • Greenberg AS, Coleman RA, Kraemer FB, et al. (2011). The role of lipid droplets in metabolic disease in rodents and humans. J Clin Invest 121:2102–10
  • Gross DA, Zhan C, Silver DL. (2011). Direct binding of triglyceride to fat storage-inducing transmembrane proteins 1 and 2 is important for lipid droplet formation. Proc Natl Acad Sci USA 108:19581–6
  • Gross SP, Welte MA, Block SM, Wieschaus EF. (2000a). Dynein-mediated cargo transport in vivo. A switch controls travel distance. J Cell Biol 148:945–56
  • Gronke S, Beller M, Fellert S, et al. (2003). Control of fat storage by a Drosophila PAT domain protein. Curr Biol 13:603–6
  • Gronke S, Mildner A, Fellert S, et al. (2005). Brummer lipase is an evolutionary conserved fat storage regulator in Drosophila. Cell Metab 1:323–30
  • Gross DA, Snapp EL, Silver DL. (2010b). Structural insights into triglyceride storage mediated by fat storage-inducing transmembrane (FIT) protein 2. PloS One 5:e10796
  • Guenantin ACea. (2014). Nuclear envelope-related lipodystrophies. Semin Cell Dev Biol. 29C:148–157
  • Guo Y, Cordes KR, Farese RV Jr, Walther TC. (2009). Lipid droplets at a glance. J Cell Sci 122:749–52
  • Guo Y, Walther TC, Rao M, et al. (2008). Functional genomic screen reveals genes involved in lipid-droplet formation and utilization. Nature 453:657–61
  • Haemmerle G, Moustafa T, Woelkart G, et al. (2011). ATGL-mediated fat catabolism regulates cardiac mitochondrial function via PPAR-alpha and PGC-1. Nat Med 17:1076–85
  • Hajra AK, Larkins LK, Das AK, et al. (2000). Induction of the peroxisomal glycerolipid-synthesizing enzymes during differentiation of 3T3-L1 adipocytes. Role in triacylglycerol synthesis. J Biol Chem 275:9441–6
  • Hamilton JA, Miller KW, Small DM. (1983). Solubilization of triolein and cholesteryl oleate in egg phosphatidylcholine vesicles. J Biol Chem 258:12821–6
  • Hamilton JA, Small DM. (1981). Solubilization and localization of triolein in phosphatidylcholine bilayers: a 13C NMR study. Proc Natl Acad Sci U S A 78:6878–82
  • Hammond LE, Gallagher PA, Wang S, et al. (2002). Mitochondrial glycerol-3-phosphate acyltransferase-deficient mice have reduced weight and liver triacylglycerol content and altered glycerolipid fatty acid composition. Mol Cellular Biol 22:8204–14
  • Han GS, Wu WI, Carman GM. (2006). The Saccharomyces cerevisiae Lipin homolog is a Mg2+-dependent phosphatidate phosphatase enzyme. J Biol Chem 281:9210–8
  • Hanstein J. (1880). Ueber die Gestaltungsvorgange in den Zellkerne bei der Theilung der Zellen. Botan Abhandl Morphol Physiol Bonn 4:2
  • Harris CA, Haas JT, Streeper RS, et al. (2011). DGAT enzymes are required for triacylglycerol synthesis and lipid droplets in adipocytes. J Lipid Res 52:657–67
  • Hegele RA, Joy TR, Al-Attar SA, Rutt BK. (2007). Thematic review series: adipocyte biology. Lipodystrophies: windows on adipose biology and metabolism. J Lipid Res 48:1433–44
  • Herker E, Harris C, Hernandez C, et al. (2010). Efficient hepatitis C virus particle formation requires diacylglycerol acyltransferase-1. Nat Med 16:1295–8
  • Herker E, Ott M. (2011). Unique ties between hepatitis C virus replication and intracellular lipids. Trends Endocrinol Metab 22:241–8
  • Hickenbottom SJ, Kimmel AR, Londos C, Hurley JH. (2004). Structure of a lipid droplet protein; the PAT family member TIP47. Structure 12:1199–207
  • Hodges BD, Wu CC. (2010). Proteomic insights into an expanded cellular role for cytoplasmic lipid droplets. J Lipid Res 51:262–73
  • Hooper C, Puttamadappa SS, Loring Z, et al. (2010). Spartin activates atrophin-1-interacting protein 4 (AIP4) E3 ubiquitin ligase and promotes ubiquitination of adipophilin on lipid droplets. BMC Biol 8:72
  • Horl G, Wagner A, Cole LK, et al. (2011). Sequential synthesis and methylation of phosphatidylethanolamine promote lipid droplet biosynthesis and stability in tissue culture and in vivo. J Biol Chem 286:17338–50
  • Hosaka K, Nikawa J, Kodaki T, et al. (1994). Cloning and sequence of the SCS3 gene which is required for inositol prototrophy in Saccharomyces cerevisiae. J Biochem 116:1317–21
  • Hutagalung AH, Novick PJ. (2011). Role of Rab GTPases in membrane traffic and cell physiology. Physiol Rev 91:119–49
  • Ito D, Fujisawa T, Iida H, Suzuki N. (2008). Characterization of seipin/BSCL2, a protein associated with spastic paraplegia 17. Neurobiol Dis 31:266–77
  • Ito D, Suzuki N. (2007). Molecular pathogenesis of seipin/BSCL2-related motor neuron diseases. Ann Neurol 61:237–50
  • Jacobs RL, Zhao Y, Koonen DP, et al. (2010). Impaired de novo choline synthesis explains why phosphatidylethanolamine N-methyltransferase-deficient mice are protected from diet-induced obesity. J Biol Chem 285:22403–13
  • Jacquier N, Choudhary V, Mari M, et al. (2011). Lipid droplets are functionally connected to the endoplasmic reticulum in Saccharomyces cerevisiae. J Cell Sci 124:2424–37
  • Jaworski K, Ahmadian M, Duncan RE, et al. (2009). AdPLA ablation increases lipolysis and prevents obesity induced by high-fat feeding or leptin deficiency. Nat Med 15:159–68
  • Jenkins CM, Mancuso DJ, Yan W, et al. (2004). Identification, cloning, expression, and purification of three novel human calcium-independent phospholipase A2 family members possessing triacylglycerol lipase and acylglycerol transacylase activities. J Biol Chem 279:48968–75
  • Johnston JM, Paultauf F, Schiller CM, Schultz LD. (1970). The utilization of the alpha-glycerophosphate and monoglyceride pathways for phosphatidyl choline biosynthesis in the intestine. Biochim Biophys Acta 218:124–33
  • Kadereit B, Kumar P, Wang WJ, et al. (2008). Evolutionarily conserved gene family important for fat storage. Proc Natl Acad Sci U S A 105:94–9
  • Kalscheuer R, Steinbuchel A. (2003). A novel bifunctional wax ester synthase/acyl-CoA:diacylglycerol acyltransferase mediates wax ester and triacylglycerol biosynthesis in Acinetobacter calcoaceticus ADP1. J Biol Chem 278:8075–82
  • Keller P, Petrie JT, De Rose P, et al. (2008). Fat-specific protein 27 regulates storage of triacylglycerol. J Biol Chem 283:14355–65
  • Kennedy EP. (1956a). The synthesis of cytidine diphosphate choline, cytidine diphosphate ethanolamine, and related compounds. J Biol Chem 222:185–91
  • Kennedy EP. (1956b). The biological synthesis of phospholipids. Can J Biochem Physiol 34:334–48
  • Kennedy EP. (1958). The biosynthesis of phospholipids. Am J Clin Nutr 6:216–20
  • Kennedy EP. (1992). Sailing to Byzantium. Ann Rev Biochem 61:1–28
  • Khandelia H, Duelund L, Pakkanen KI, Ipsen JH. (2010). Triglyceride blisters in lipid bilayers: implications for lipid droplet biogenesis and the mobile lipid signal in cancer cell membranes. PloS One 5:e12811
  • Kimmel AR, Brasaemle DL, McAndrews-Hill M, et al. (2010). Adoption of PERILIPIN as a unifying nomenclature for the mammalian PAT-family of intracellular lipid storage droplet proteins. J Lipid Res 51:468–71
  • Klemm EJ, Spooner E, Ploegh HL. (2011). Dual role of ancient ubiquitous protein 1 (AUP1) in lipid droplet accumulation and endoplasmic reticulum (ER) protein quality control. J Biol Chem 286:37602–14
  • Kornmann B, Currie E, Collins SR, et al. (2009). An ER-mitochondria tethering complex revealed by a synthetic biology screen. Sci 325:477–81
  • Kornmann B, Osman C, Walter P. (2011). The conserved GTPase Gem1 regulates endoplasmic reticulum-mitochondria connections. Proc Natl Acad Sci USA 108:14151–6
  • Kornmann B, Walter P. (2010). ERMES-mediated ER-mitochondria contacts: molecular hubs for the regulation of mitochondrial biology. J Cell Sci 123:1389–93
  • Koves TR, Ussher JR, Noland RC, et al. (2008). Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metab 7:45–56
  • Krahmer N, Guo Y, Wilfling F, et al. (2011). Phosphatidylcholine synthesis for lipid droplet expansion is mediated by localized activation of CTP: phosphocholine cytidylyltransferase. Cell Metab 14:504–15
  • Krahmer N, Hilger M, Kory N, et al. (2013). Protein correlation profiles identify lipid droplet proteins with high confidence. Mol Cell Proteomics 12:1115–26
  • Kurat CF, Natter K, Petschnigg J, et al. (2006). Obese yeast: triglyceride lipolysis is functionally conserved from mammals to yeast. J Biol Chem 281:491–500
  • Kuramoto K, Okamura T, Yamaguchi T, et al. (2012). Perilipin 5, a lipid droplet-binding protein, protects heart from oxidative burden by sequestering fatty acid from excessive oxidation. J Biol Chem 287:23852–63
  • Kuhnlein RP. (2011). The contribution of the Drosophila model to lipid droplet research. Prog Lipid Res 50:348–56
  • Kurat CF, Wolinski H, Petschnigg J, et al. (2009). Cdk1/Cdc28-dependent activation of the major triacylglycerol lipase Tgl4 in yeast links lipolysis to cell-cycle progression. Mol Cell 33:53–63
  • Lass A, Zimmermann R, Haemmerle G, et al. (2006). Adipose triglyceride lipase-mediated lipolysis of cellular fat stores is activated by CGI-58 and defective in Chanarin-Dorfman Syndrome. Cell Metab 3:309–19
  • Lefterova MI, Zhang Y, Steger DJ, et al. (2008). PPARgamma and C/EBP factors orchestrate adipocyte biology via adjacent binding on a genome-wide scale. Genes Dev 22:2941–52
  • Listenberger LL, Han X, Lewis SE, et al. (2003). Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc Natl Acad Sci USA 100:3077–82
  • Liu P, Ying Y, Zhao Y, et al. (2004). Chinese hamster ovary K2 cell lipid droplets appear to be metabolic organelles involved in membrane traffic. J Biol Chem 279:3787–92
  • Liu Y, Millar JS, Cromley DA, et al. (2008). Knockdown of acyl-CoA:diacylglycerol acyltransferase 2 with antisense oligonucleotide reduces VLDL TG and ApoB secretion in mice. Biochim Biophys Acta 1781:97–104
  • Lohmann D, Spandl J, Stevanovic A, et al. (2013). Monoubiquitination of ancient ubiquitous protein 1 promotes lipid droplet clustering. PloS One 8:e72453
  • Londos C, Brasaemle DL, Schultz CJ, et al. (1999a). On the control of lipolysis in adipocytes. Ann N Y Acad Sci 892:155–68
  • Londos C, Brasaemle DL, Schultz CJ, et al. (1999b). Perilipins, ADRP, and other proteins that associate with intracellular neutral lipid droplets in animal cells. Semin Cell Dev Biol 10:51–8
  • Manilla-Perez E, Lange AB, Hetzler S, et al. (2010). Isolation and characterization of a mutant of the marine bacterium Alcanivorax borkumensis SK2 defective in lipid biosynthesis. Appl Environ Microbiol 76:2884–94
  • Magre J, Delepine M, Khallouf E, et al. (2001). Identification of the gene altered in Berardinelli-Seip congenital lipodystrophy on chromosome 11q13. Nat Genet 28:365–70
  • Martin S, Driessen K, Nixon SJ, et al. (2005). Regulated localization of Rab18 to lipid droplets: effects of lipolytic stimulation and inhibition of lipid droplet catabolism. J Biol Chem 280:42325–35
  • Martinez-Botas J, Anderson JB, Tessier D, et al. (2000). Absence of perilipin results in leanness and reverses obesity in Lepr(db/db) mice. Nat Genet 26:474–9
  • McFie PJ, Banman SL, Kary S, Stone SJ. (2011). Murine diacylglycerol acyltransferase-2 (DGAT2) can catalyze triacylglycerol synthesis and promote lipid droplet formation independent of its localization to the endoplasmic reticulum. J Biol Chem 286:28235–46
  • Meex RC, Schrauwen-Hinderling VB, Moonen-Kornips E, et al. (2010). Restoration of muscle mitochondrial function and metabolic flexibility in type 2 diabetes by exercise training is paralleled by increased myocellular fat storage and improved insulin sensitivity. Diabetes 59:572–9
  • Miranda DA, Kim JH, Nguyen LN, et al. (2014). Fat storage-Inducing transmembrane protein 2 is required for normal fat storage in adipose tissue. J Biol Chem 289:9560–72
  • Miranda DA, Koves TR, Gross DA, et al. (2011). Re-patterning of skeletal muscle energy metabolism by Fat storage-inducing transmembrane protein 2. J Biol Chem 286:42188–99
  • Minnaard R, Schrauwen P, Schaart G, et al. (2009). Adipocyte differentiation-related protein and OXPAT in rat and human skeletal muscle: involvement in lipid accumulation and type 2 diabetes mellitus. J Clin Endocrinol Metab 94:4077–85
  • Miura S, Gan JW, Brzostowski J, et al. (2002). Functional conservation for lipid storage droplet association among Perilipin, ADRP, and TIP47 (PAT)-related proteins in mammals, Drosophila, and Dictyostelium. J Biol Chem 277:32253–7
  • Montero-Moran G, Caviglia JM, McMahon D, et al. (2010). CGI-58/ABHD5 is a coenzyme A-dependent lysophosphatidic acid acyltransferase. J Lipid Res 51:709–19
  • Murphy DJ. (2011). The dynamic roles of intracellular lipid droplets: from archaea to mammals. Protoplasma 249:541–85
  • Nguyen LN, Hamari Z, Kadereit B, et al. (2011). Candida parapsilosis fat storage-inducing transmembrane (FIT) protein 2 regulates lipid droplet formation and impacts virulence. Microbes Infect 13:663–72
  • Nguyen LN, Nosanchuk JD. (2011). Lipid droplet formation protects against gluco/lipotoxicity in Candida parapsilosis: an essential role of fatty acid desaturase Ole1. Cell Cycle 10:3159–67
  • Nishino N, Tamori Y, Tateya S, et al. (2008). FSP27 contributes to efficient energy storage in murine white adipocytes by promoting the formation of unilocular lipid droplets. J Clin Invest 118:2808–21
  • Novikoff AB, Novikoff PM, Rosen OM, Rubin CS. (1980). Organelle relationships in cultured 3T3-L1 preadipocytes. J Cell Biol 87:180–96
  • Oberer M, Boeszoermenyi A, Nagy HM, Zechner R. (2011). Recent insights into the structure and function of comparative gene identification-58. Curr Opin Lipidol 22:149–58
  • Ong KT, Mashek MT, Bu SY, et al. (2011). Adipose triglyceride lipase is a major hepatic lipase that regulates triacylglycerol turnover and fatty acid signaling and partitioning. Hepatology 53:116–26
  • Orlicky DJ, Roede JR, Bales E, et al. (2011). Chronic ethanol consumption in mice alters hepatocyte lipid droplet properties. Alcohol Clin Exp Res 35:1020–33
  • Osterlund T, Danielsson B, Degerman E, et al. (1996). Domain-structure analysis of recombinant rat hormone-sensitive lipase. Biochem J 319:411–20
  • Osuga J, Ishibashi S, Oka T, et al. (2000). Targeted disruption of hormone-sensitive lipase results in male sterility and adipocyte hypertrophy, but not in obesity. Proc Natl Acad Sci USA 97:787–92
  • Ozeki S, Cheng J, Tauchi-Sato K, et al. (2005). Rab18 localizes to lipid droplets and induces their close apposition to the endoplasmic reticulum-derived membrane. J Cell Sci 118:2601–11
  • Palacpac NM, Hiramine Y, Mi-ichi F, et al. (2004a). Developmental-stage-specific triacylglycerol biosynthesis, degradation and trafficking as lipid bodies in Plasmodium falciparum-infected erythrocytes. J Cell Sci 117:1469–80
  • Palacpac NM, Hiramine Y, Seto S, et al. (2004b). Evidence that Plasmodium falciparum diacylglycerol acyltransferase is essential for intraerythrocytic proliferation. Biochem Biophys Res Commun 321:1062–8
  • Payne VA, Grimsey N, Tuthill A, et al. (2008). The human lipodystrophy gene BSCL2/seipin may be essential for normal adipocyte differentiation. Diabetes 57:2055–60
  • Pelech SL, Vance DE. (1984). Regulation of phosphatidylcholine biosynthesis. Biochim Biophys Acta 779:217–51
  • Peterfy M, Phan J, Xu P, Reue K. (2001). Lipodystrophy in the fld mouse results from mutation of a new gene encoding a nuclear protein, lipin. Nat Genet 27:121–4
  • Ploegh HL. (2007). A lipid-based model for the creation of an escape hatch from the endoplasmic reticulum. Nature 448:435–8
  • Pollak NM, Schweiger M, Jaeger D, et al. (2013). Cardiac-specific overexpression of perilipin 5 provokes severe cardiac steatosis via the formation of a lipolytic barrier. J Lipid Res 54:1092–102
  • Pulido MR, Diaz-Ruiz A, Jimenez-Gomez Y, et al. (2011). Rab18 dynamics in adipocytes in relation to lipogenesis, lipolysis and obesity. PloS One 6:e22931
  • Puri V, Czech MP. (2008). Lipid droplets: FSP27 knockout enhances their sizzle. J Clinical Invest 118:2693–6
  • Quiroga AD, Lehner R. (2011). Role of endoplasmic reticulum neutral lipid hydrolases. Trends Endocrinol Metab 22:218–25
  • Radner FP, Streith IE, Schoiswohl G, et al. (2010). Growth retardation, impaired triacylglycerol catabolism, hepatic steatosis, and lethal skin barrier defect in mice lacking comparative gene identification-58 (CGI-58). J Biol Chem 285:7300–11
  • Renvoise B, Stadler J, Singh R, et al. (2012). Spg20−/− mice reveal multimodal functions for Troyer syndrome protein spartin in lipid droplet maintenance, cytokinesis and BMP signaling. Hum Mol Genet 21:3604–18
  • Rosen ED, MacDougald OA. (2006). Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol 7:885–96
  • Rubio-Cabezas O, Puri V, Murano I, et al. (2009). Partial lipodystrophy and insulin resistant diabetes in a patient with a homozygous nonsense mutation in CIDEC. EMBO Mol Med 1:280–7
  • Rusinol AE, Cui Z, Chen MH, Vance JE. (1994). A unique mitochondria-associated membrane fraction from rat liver has a high capacity for lipid synthesis and contains pre-Golgi secretory proteins including nascent lipoproteins. J Biol Chem 269:27494–502
  • Ricquier D. (2010). Biology of brown adipose tissue: view from the chair. Int J Obes (Lond) 34:S3–6
  • Samsa MM, Mondotte JA, Iglesias NG, et al. (2009). Dengue virus capsid protein usurps lipid droplets for viral particle formation. PLoS Pathogens 5:e1000632
  • Sato S, Fukasawa M, Yamakawa Y, et al. (2006). Proteomic profiling of lipid droplet proteins in hepatoma cell lines expressing hepatitis C virus core protein. J Biochem 139:921–30
  • Savage DB, Petersen KF, Shulman GI. (2007). Disordered lipid metabolism and the pathogenesis of insulin resistance. Physiol Rev 87:507–20
  • Shubeita GT, Tran SL, Xu J, et al. (2008). Consequences of motor copy number on the intracellular transport of kinesin-1-driven lipid droplets. Cell 135:1098–107
  • Singh R, Kaushik S, Wang Y, et al. (2009). Autophagy regulates lipid metabolism. Nature 458:1131–5
  • Skinner JR, Shew TM, Schwartz DM, et al. (2009). Diacylglycerol enrichment of endoplasmic reticulum or lipid droplets recruits perilipin 3/TIP47 during lipid storage and mobilization. J Biol Chem 284:30941–8
  • Soni KG, Mardones GA, Sougrat R, et al. (2009). Coatomer-dependent protein delivery to lipid droplets. J Cell Sci 122:1834–41
  • Spandl J, Lohmann D, Kuerschner L, et al. (2011). Ancient ubiquitous protein 1 (AUP1) localizes to lipid droplets and binds the E2 ubiquitin conjugase G2 (Ube2g2) via its G2 binding region. J Biol Chem 286:5599–606
  • Spiegelman BM. (1998). PPAR-gamma: adipogenic regulator and thiazolidinedione receptor. Diabetes 47:507–14
  • Spooner PJ, Small DM. (1987). Effect of free cholesterol on incorporation of triolein in phospholipid bilayers. Biochemistry 26:5820–5
  • Stevanovic A, Thiele C. (2013). Monotopic topology is required for lipid droplet targeting of ancient ubiquitous protein 1. J Lipid Res 54:503–13
  • Stone SJ, Levin MC, Zhou P, et al. (2009). The endoplasmic reticulum enzyme DGAT2 is found in mitochondria-associated membranes and has a mitochondrial targeting signal that promotes its association with mitochondria. J Biol Chem 284:5352–61
  • Stone SJ, Myers HM, Watkins SM, et al. (2004). Lipopenia and skin barrier abnormalities in DGAT2-deficient mice. J Biol Chem 279:11767–76
  • Su CL, Sztalryd C, Contreras JA, et al. (2003). Mutational analysis of the hormone-sensitive lipase translocation reaction in adipocytes. J Biol Chem 278:43615–9
  • Sun Z, Gong J, Wu H, et al. (2013). Perilipin1 promotes unilocular lipid droplet formation through the activation of Fsp27 in adipocytes. Nature Commun 4:1594–1608
  • Szymanski KM, Binns D, Bartz R, et al. (2007). The lipodystrophy protein seipin is found at endoplasmic reticulum lipid droplet junctions and is important for droplet morphology. Proc Natl Acad Sci U S A 104:20890–5
  • Tauchi-Sato K, Ozeki S, Houjou T, et al. (2002). The surface of lipid droplets is a phospholipid monolayer with a unique fatty acid composition. J Biol Chem 277:44507–12
  • Teixeira L, Rabouille C, Rorth P, et al. (2003). Drosophila Perilipin/ADRP homologue Lsd2 regulates lipid metabolism. Mech Dev 120:1071–81
  • Thiam AR, Antonny B, Wang J, et al. (2013). COPI buds 60-nm lipid droplets from reconstituted water-phospholipid-triacylglyceride interfaces, suggesting a tension clamp function. Proc Natl Acad Sci U S A 110:13244–9
  • Tian Y, Bi J, Shui G, et al. (2011). Tissue-autonomous function of Drosophila seipin in preventing ectopic lipid droplet formation. PLoS Genet 7:e1001364
  • Thiele C, Spandl J. (2008). Cell biology of lipid droplets. Curr Opin Cell Biol 20:378–85
  • Thines E, Weber RW, Talbot NJ. (2000). MAP kinase and protein kinase A-dependent mobilization of triacylglycerol and glycogen during appressorium turgor generation by Magnaporthe grisea. Plant Cell 12:1703–18
  • Toh SY, Gong J, Du G, et al. (2008). Up-regulation of mitochondrial activity and acquirement of brown adipose tissue-like property in the white adipose tissue of fsp27 deficient mice. PloS One 3:e2890
  • Umlauf E, Csaszar E, Moertelmaier M, et al. (2004). Association of stomatin with lipid bodies. J Biol Chem 279:23699–709
  • Unger RH. (2003). Lipid overload and overflow: metabolic trauma and the metabolic syndrome. Trends Endocrinol Metab 14:398–403
  • van Meer G, Voelker DR, Feigenson GW. (2008). Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9:112–24
  • van Zutphen T, Todde V, de Boer R, et al. (2014). Lipid droplet autophagy in the yeast Saccharomyces cerevisiae. Mol Biol Cell 25:290–301
  • Vigouroux C, Caron-Debarle M, Le Dour C, et al. (2011). Molecular mechanisms of human lipodystrophies: from adipocyte lipid droplet to oxidative stress and lipotoxicity. Int J Biochem Cell Biol 43:862–76
  • Villena JA, Roy S, Sarkadi-Nagy E, et al. (2004). Desnutrin, an adipocyte gene encoding a novel patatin domain-containing protein, is induced by fasting and glucocorticoids: ectopic expression of desnutrin increases triglyceride hydrolysis. J Biol Chem 279:47066–75
  • Villanueva CJ, Waki H, Godio C, et al. (2011). TLE3 is a dual-function transcriptional coregulator of adipogenesis. Cell Metab 13:413–27
  • Voelker DR. (2003). New perspectives on the regulation of intermembrane glycerophospholipid traffic. J Lipid Res 44:441–9
  • Walther TC, Farese RV, Jr. (2009). The life of lipid droplets. Biochim Biophys Acta 1791:459–66
  • Waltermann M, Hinz A, Robenek H, et al. (2005). Mechanism of lipid-body formation in prokaryotes: how bacteria fatten up. Mol Microbiol 55:750–63
  • Waltermann M, Steinbuchel A. (2005). Neutral lipid bodies in prokaryotes: recent insights into structure, formation, and relationship to eukaryotic lipid depots. J Bacteriol 187:3607–19
  • Wang C, St Leger RJ. (2007). The metarhizium anisopliae perilipin homolog MPL1 regulates lipid metabolism, appressorial turgor pressure, and virulence. J Biol Chem 282:21110–5
  • Wang H, Bell M, Sreenevasan U, et al. (2011a). Unique regulation of adipose triglyceride lipase (ATGL) by perilipin 5, a lipid droplet-associated protein. J Biol Chem 286:15707–15
  • Wang H, Hu L, Dalen K, et al. (2009). Activation of hormone-sensitive lipase requires two steps, protein phosphorylation and binding to the PAT-1 domain of lipid droplet coat proteins. J Biol Chem 284:32116–25
  • Wang H, Sreenevasan U, Hu H, et al. (2011b). Perilipin 5, a lipid droplet-associated protein, provides physical and metabolic linkage to mitochondria. J Lipid Res 52:2159–68
  • Wang H, Sztalryd C. (2011). Oxidative tissue: perilipin 5 links storage with the furnace. Trends Endocrinol Metab 22:197–203
  • Weiss SB, Kennedy EP, Kiyasu JY. (1960). The enzymatic synthesis of triglycerides. J Biol Chem 235:40–4
  • Wilfling F, Thiam AR, Olarte MJ, et al. (2014). Arf1/COPI machinery acts directly on lipid droplets and enables their connection to the ER for protein targeting. eLife 3:e01607
  • Wilfling F, Wang H, Haas JT, et al. (2013). Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from the ER to lipid droplets. Dev Cell 24:384–99
  • Wilson E. (1896). The cell in development and inheritance. New York: Macmillan
  • Wojtanik KM, Edgemon K, Viswanadha S, et al. (2009). The role of LMNA in adipose: a novel mouse model of lipodystrophy based on the Dunnigan-type familial partial lipodystrophy mutation. J Lipid Res 50:1068–79
  • Wolins NE, Brasaemle DL, Bickel PE. (2006a). A proposed model of fat packaging by exchangeable lipid droplet proteins. FEBS Lett 580:5484–91
  • Wolins NE, Quaynor BK, Skinner JR, et al. (2005). S3-12, Adipophilin, and TIP47 package lipid in adipocytes. J Biol Chem 280:19146–55
  • Wolins NE, Quaynor BK, Skinner JR, et al. (2006b). OXPAT/PAT-1 is a PPAR-induced lipid droplet protein that promotes fatty acid utilization. Diabetes 55:3418–28
  • Willett WC, Dietz WH, Colditz GA. (1999). Guidelines for healthy weight. New Engl J Med 341:427–34
  • Xia T, Mostafa N, Bhat BG, et al. (1993). Selective retention of essential fatty acids: the role of hepatic monoacylglycerol acyltransferase. Am J Physiol 265:R414–9
  • Young BP, Shin JJ, Orij R, et al. (2010). Phosphatidic acid is a pH biosensor that links membrane biogenesis to metabolism. Science 329:1085–8
  • Zanghellini J, Wodlei F, von Grunberg HH. (2010). Phospholipid demixing and the birth of a lipid droplet. J Theoret Biol 264:952–61
  • Zeharia A, Shaag A, Houtkooper RH, et al. (2008). Mutations in LPIN1 cause recurrent acute myoglobinuria in childhood. Am J Hum Genet 83:489–94
  • Zhang SO, Box AC, Xu N, et al. (2010a). Genetic and dietary regulation of lipid droplet expansion in Caenorhabditis elegans. Proc Natl Acad Sci U S A 107:4640–5
  • Zhang SO, Trimble R, Guo F, Mak HY. (2010b). Lipid droplets as ubiquitous fat storage organelles in C. elegans. BMC Cell Biol 11:96
  • Zimmermann R, Strauss JG, Haemmerle G, et al. (2004). Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 306:1383–6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.