2,189
Views
33
CrossRef citations to date
0
Altmetric
Review Article

Insights and challenges in using C. elegans for investigation of fat metabolism

&
Pages 69-84 | Received 05 Aug 2014, Accepted 27 Aug 2014, Published online: 17 Sep 2014

References

  • Antebi A. (2013). Steroid regulation of C. elegans diapause, developmental timing, and longevity. Curr Top Dev Biol 105:181–212
  • Apfeld J, O'Connor G, McDonagh T, et al. (2004). The AMP-activated protein kinase AAK-2 links energy levels and insulin-like signals to lifespan in C. elegans. Genes Dev 18:3004–9
  • Ashrafi K. (2007). Obesity and the regulation of fat metabolism. WormBook, ed. The C. elegans Research Community, WormBook, doi/10.1895/wormbook.1.130.1. Available from: http://www.wormbook.org
  • Ashrafi K, Chang FY, Watts JL, et al. (2003). Genome-wide RNAi analysis of Caenorhabditis elegans fat regulatory genes. Nature 421:268–72
  • Atkinson RL. (2014). Current status of the field of obesity. Trends Endocrinol Metab 25:283–4
  • Avery L, Horvitz HR. (1990). Effects of starvation and neuroactive drugs on feeding in Caenorhabditis elegans. J Exp Zool 253:263–70
  • Barros AG de A, Liu J, Lemieux GA, et al. (2012). Analyses of C. elegans fat metabolic pathways. Methods Cell Biol 107:383–407
  • Beale EG. (2008). 5′-AMP-activated protein kinase signaling in Caenorhabditis elegans. Exp Biol Med Maywood NJ 233:12–20
  • Beets I, Janssen T, Meelkop E, et al. (2012). Vasopressin/oxytocin-related signaling regulates gustatory associative learning in C. elegans. Science 338:543–5
  • Bendena WG, Boudreau JR, Papanicolaou T, et al. (2008). A Caenorhabditis elegans allatostatin/galanin-like receptor NPR-9 inhibits local search behavior in response to feeding cues. Proc Natl Acad Sci 105:1339–42
  • Bray GA, Wilson JF. (2008). In the clinic. Obesity Ann Intern Med 149: ITC4–1–15 (quiz ITC4–16)
  • Brock TJ, Browse J, Watts JL. (2006). Genetic regulation of unsaturated fatty acid composition in C. elegans. PLoS Genet 2:e108
  • Brock TJ, Browse J, Watts JL. (2007). Fatty acid desaturation and the regulation of adiposity in Caenorhabditis elegans. Genetics 176:865–75
  • Brooks KK, Liang B, Watts JL. (2009). The influence of bacterial diet on fat storage in C. elegans. PLoS ONE 4:e7545
  • Bugianesi E, McCullough AJ, Marchesini G. (2005). Insulin resistance: a metabolic pathway to chronic liver disease. Hepatol Baltim Md 42:987–1000
  • Byerly L, Cassada RC, Russell RL. (1976). The life cycle of the nematode Caenorhabditis elegans. I. Wild-type growth and reproduction. Dev Biol 51:23–33
  • Byrd DT, Kimble J. (2009). Scratching the niche that controls Caenorhabditis elegans germline stem cells. Semin Cell Dev Biol 20:1107–13
  • Chamoli M, Singh A, Malik Y, Mukhopadhyay A. (2014). A novel kinase regulates dietary restriction-mediated longevity in Caenorhabditis elegans. Aging Cell 13:641–55
  • Chen S, Whetstine JR, Ghosh S, et al. (2009). The conserved NAD(H)-dependent corepressor CTBP-1 regulates Caenorhabditis elegans life span. Proc Natl Acad Sci USA 106:1496–501
  • Cohen M, Reale V, Olofsson B, et al. (2009). coordinated regulation of foraging and metabolism in C. elegans by RFamide neuropeptide signaling. Cell Metab 9:375–85
  • Cunningham KA, Bouagnon AD, Barros AG, et al. (2014). Loss of a neural amp-activated kinase mimics the effects of elevated serotonin on fat, movement, and hormonal secretions. PLoS Genet 10:e1004394
  • Cunningham KA, Hua Z, Srinivasan S, et al. (2012). AMP-activated kinase links serotonergic signaling to glutamate release for regulation of feeding behavior in C. elegans. Cell Metab 16:113–21
  • De Bono M, Maricq AV. (2005). Neuronal substrates of complex behaviors in C. elegans. Annu Rev Neurosci 28:451–501
  • DePina AS, Iser WB, Park S-S, et al. (2011). Regulation of Caenorhabditis elegans vitellogenesis by DAF-2/IIS through separable transcriptional and posttranscriptional mechanisms. BMC Physiol 11:11
  • Dupont N, Chauhan S, Arko-Mensah J, et al. (2014). Neutral lipid stores and lipase PNPLA5 contribute to autophagosome biogenesis. Curr Biol 24:609–20
  • Edmonds JW, Prasain JK, Dorand D, et al. (2010). Insulin/foxo signaling regulates ovarian prostaglandins critical for reproduction. Dev Cell 19:858–71
  • Ehmke M, Luthe K, Schnabel R, Doring F. (2014). S-Adenosyl methionine synthetase 1 limits fat storage in Caenorhabditis elegans. Genes Nutr 9:386
  • Elle IC, Rødkær SV, Fredens J, Færgeman NJ. (2012). A method for measuring fatty acid oxidation in C. elegans. Worm 1:26–30
  • Entchev EV, Schwudke D, Zagoriy V, et al. (2008). LET-767 is required for the production of branched chain and long chain fatty acids in Caenorhabditis elegans. J Biol Chem 283:17550–60
  • Fielenbach N, Antebi A. (2008). C. elegans dauer formation and the molecular basis of plasticity. Genes Dev 22:2149–65
  • Folick A, Min W, Wang MC. (2011). Label-free imaging of lipid dynamics using Coherent Anti-stokes Raman Scattering (CARS) and Stimulated Raman Scattering (SRS) microscopy. Curr Opin Genet Dev 21:585–90
  • Fu D, Yu Y, Folick A, et al. (2014). In vivo metabolic fingerprinting of neutral lipids with hyperspectral stimulated raman scattering microscopy. J Am Chem Soc 136:8820–8
  • Fukumoto S, Fujimoto T. (2002). Deformation of lipid droplets in fixed samples. Histochem. Cell Biol 118:423–8
  • Goudeau J, Bellemin S, Toselli-Mollereau E, et al. (2011). Fatty acid desaturation links germ cell loss to longevity through NHR-80/HNF4 in C. elegans. PLoS Biol 9:e1000599
  • Grant B, Hirsh D. (1999). Receptor-mediated endocytosis in the Caenorhabditis elegans oocyte. Mol Biol Cell 10:4311–26
  • Greenspan P, Fowler SD. (1985). Spectrofluorometric studies of the lipid probe, Nile red. J Lipid Res 26:781–9
  • Greenspan P, Mayer EP, Fowler SD. (1985). Nile red: a selective fluorescent stain for intracellular lipid droplets. J Cell Biol 100:965–73
  • Greer ER, Pérez CL, Van Gilst MR, et al. (2008). neural and molecular dissection of a C. elegans sensory circuit that regulates fat and feeding. Cell Metab 8:118–31
  • Grevengoed TJ, Klett EL, Coleman RA. (2014). Acyl-CoA metabolism and partitioning. Annu Rev Nutr 34:1–30
  • Halaschek-Wiener J, Khattra JS, McKay S, et al. (2005). Analysis of long-lived C. elegans daf-2 mutants using serial analysis of gene expression. Genome Res 15:603–15
  • Hall DH, Winfrey VP, Blaeuer G, et al. (1999). Ultrastructural features of the adult hermaphrodite gonad of Caenorhabditis elegans: relations between the germ line and soma. Dev Biol 212:101–23
  • Hellerer T, Axäng C, Brackmann C, et al. (2007). Monitoring of lipid storage in Caenorhabditis elegans using coherent anti-Stokes Raman scattering (CARS) microscopy. Proc Natl Acad Sci 104:14658–63
  • Herndon LA, Schmeissner PJ, Dudaronek JM, et al. (2002). Stochastic and genetic factors influence tissue-specific decline in ageing C. elegans. Nature 419:808–14
  • Hills T, Brockie PJ, Maricq AV. (2004). Dopamine and glutamate control area-restricted search behavior in Caenorhabditis elegans. J Neurosci 24:1217–25
  • Hou NS, Gutschmidt A, Choi DY, et al. (2014). Activation of the endoplasmic reticulum unfolded protein response by lipid disequilibrium without disturbed proteostasis in vivo. Proc Natl Acad Sci 111:E2271–80
  • Hu PJ. (2007). Dauer. WormBook, ed. The C. elegans Research Community, WormBook, doi/10.1895/wormbook.1.144.1. Available from: http://www.wormbook.org
  • Huang W-M, Li Z-Y, Xu Y-J, et al. (2014). PKG and NHR-49 signalling co-ordinately regulate short-term fasting-induced lysosomal lipid accumulation in C. elegans. Biochem J 461:509–20
  • Jacquier N, Choudhary V, Mari M, et al. (2011). Lipid droplets are functionally connected to the endoplasmic reticulum in Saccharomyces cerevisiae. J Cell Sci 124:2424–37
  • Janssen T, Meelkop E, Lindemans M, et al. (2008). Discovery of a cholecystokinin-gastrin-like signaling system in nematodes. Endocrinology 149:2826–39
  • Jia K, Chen D, Riddle DL. (2004). The TOR pathway interacts with the insulin signaling pathway to regulate C. elegans larval development, metabolism and life span. Development 131:3897–906
  • Jo H, Shim J, Lee JH, et al. (2009). IRE-1 and HSP-4 contribute to energy homeostasis via fasting-induced lipases in C. elegans. Cell Metab 9:440–8
  • Jones KT, Greer ER, Pearce D, Ashrafi K. (2009). Rictor/TORC2 regulates Caenorhabditis elegans fat storage, body size, and development through SGK-1. PLoS Biol 7:e1000060
  • Kage-Nakadai E, Kobuna H, Kimura M, et al. (2010). Two very long chain fatty acid acyl-CoA synthetase genes, ACS-20 and ACS-22, have roles in the cuticle surface barrier in Caenorhabditis elegans. PLoS One 5:e8857
  • Kersten S. (2014). Physiological regulation of lipoprotein lipase. Biochim Biophys Acta 1841:919–33
  • Kimble J, Sharrock WJ. (1983). Tissue-specific synthesis of yolk proteins in Caenorhabditis elegans. Dev Biol 96:189–96
  • Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G. (1997). daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 277:942–6
  • Klapper M, Ehmke M, Palgunow D, et al. (2011). Fluorescence-based fixative and vital staining of lipid droplets in Caenorhabditis elegans reveal fat stores using microscopy and flow cytometry approaches. J Lipid Res 52:1281–93
  • Klemm RW, Norton JP, Cole RA, et al. (2013). A conserved role for atlastin GTPases in regulating lipid droplet size. Cell Rep 3:1465–75
  • Kniazeva M, Crawford QT, Seiber M, et al. (2004). Monomethyl branched-chain fatty acids play an essential role in Caenorhabditis elegans development. PLoS Biol 2:e257
  • Kniazeva M, Shen H, Euler T, et al. (2012). Regulation of maternal phospholipid composition and IP(3)-dependent embryonic membrane dynamics by a specific fatty acid metabolic event in C. elegans. Genes Dev 26:554–66
  • Kopelman PG. (2000). Obesity as a medical problem. Nature 404:635–43
  • Lapierre LR, De Magalhaes Filho CD, McQuary PR, et al. (2013a). The TFEB orthologue HLH-30 regulates autophagy and modulates longevity in Caenorhabditis elegans. Nat Commun 4:2267
  • Lapierre LR, Gelino S, Meléndez A, Hansen M. (2011). Autophagy and lipid metabolism coordinately modulate life span in germline-less C. elegans. Curr Biol CB 21:1507–14
  • Lapierre LR, Hansen M. (2012). Lessons from C. elegans: signaling pathways for longevity. Trends Endocrinol Metab TEM 23:637–44
  • Lapierre LR, Silvestrini MJ, Nuñez L, et al. (2013b). Autophagy genes are required for normal lipid levels in C. elegans. Autophagy 9:278–86
  • Le TT, Duren HM, Slipchenko MN, et al. (2010). Label-free quantitative analysis of lipid metabolism in living Caenorhabditis elegans. J Lipid Res 51:672–7
  • Lee BH, Liu J, Wong D, et al. (2011). Hyperactive neuroendocrine secretion causes size, feeding, and metabolic defects of C. elegans Bardet-Biedl syndrome mutants. PLoS Biol 9:e1001219
  • Lee H, Cho JS, Lambacher N, et al. (2008). The Caenorhabditis elegans AMP-activated protein kinase AAK-2 is phosphorylated by LKB1 and is required for resistance to oxidative stress and for normal motility and foraging behavior. J Biol Chem 283:14988–93
  • Lemieux GA, Keiser MJ, Sassano MF, et al. (2013). In silico molecular comparisons of C. elegans and mammalian pharmacology identify distinct targets that regulate feeding. PLoS Biol 11:e1001712
  • Lemieux GA, Liu J, Mayer N, et al. (2011). A whole-organism screen identifies new regulators of fat storage. Nat Chem Biol 7:206–13
  • Li Y, Na K, Lee H-J, et al. (2011). Contribution of sams-1 and pmt-1 to lipid homoeostasis in adult Caenorhabditis elegans J Biochem (Tokyo) 149:529–38
  • Lin X, Yue P, Chen Z, Schonfeld G. (2005). Hepatic triglyceride contents are genetically determined in mice: results of a strain survey. Am J Physiol - Gastrointest Liver Physiol 288:G1179–89
  • Lipton J, Kleemann G, Ghosh R, et al. (2004). Mate searching in Caenorhabditis elegans: a genetic model for sex drive in a simple invertebrate. J Neurosci 24:7427–34
  • Liu K, Czaja MJ. (2013). Regulation of lipid stores and metabolism by lipophagy. Cell Death Differ 20:3–11
  • Liu Z, Li X, Ge Q, et al. (2014). A lipid droplet-associated GFP Reporter-based screen identifies new fat storage regulators in C. elegans. J Genet Genomics 41:305–13
  • Mak HY, Nelson LS, Basson M, et al. (2006). Polygenic control of Caenorhabditis elegans fat storage. Nat Genet 38:363–8
  • Matyash V, Liebisch G, Kurzchalia TV, et al. (2008). Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J Lipid Res 49:1137–46
  • McCormick M, Chen K, Ramaswamy P, Kenyon C. (2012). New genes that extend Caenorhabditis elegans' lifespan in response to reproductive signals. Aging Cell 11:192–202
  • McKay RM, McKay JP, Avery L, Graff JM. (2003). C. elegans: a model for exploring the genetics of fat storage. Dev Cell 4:131–42
  • Meissner B, Boll M, Daniel H, Baumeister R. (2004). Deletion of the intestinal peptide transporter affects insulin and TOR signaling in Caenorhabditis elegans. J Biol Chem 279:36739–45
  • Meléndez A, Tallóczy Z, Seaman M, et al. (2003). Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science 301:1387–91
  • Michaud JL, Boucher F, Melnyk A, et al. (2001). Sim1 haploinsufficiency causes hyperphagia, obesity and reduction of the paraventricular nucleus of the hypothalamus. Hum Mol Genet 10:1465–73
  • Min W, Freudiger CW, Lu S, Xie XS. (2011). Coherent nonlinear optical imaging: beyond fluorescence microscopy. Annu Rev Phys Chem 62:507–30
  • Mosbech M-B, Kruse R, Harvald EB, et al. (2013). Functional loss of two ceramide synthases elicits autophagy-dependent lifespan extension in C. elegans. PLoS ONE 8:e70087
  • Mukhopadhyay A, Deplancke B, Walhout AJM, Tissenbaum HA. (2005). C. elegans tubby regulates life span and fat storage by two independent mechanisms. Cell Metab 2:35–42
  • Mukhopadhyay A, Oh SW, Tissenbaum HA. (2006). Worming pathways to and from DAF-16/FOXO. Exp Gerontol 41:928–34
  • Mullaney BC, Blind RD, Lemieux GA, et al. (2010). Regulation of C. elegans fat uptake and storage by Acyl-CoA Synthase-3 is dependent on NR5A family nuclear hormone receptor nhr-25. Cell Metab 12:398–410
  • Murphy CT, Hu PJ. (2013). Insulin/insulin-like growth factor signaling in C. elegans. WormBook, ed. The C. elegans Research Community, WormBook, doi/10.1895/wormbook.1.164.1. Available from: http://www.wormbook.org
  • Murphy CT, McCarroll SA, Bargmann CI, et al. (2003). Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424:277–83
  • Narbonne P, Roy R. (2009). Caenorhabditis elegans dauers need LKB1/AMPK to ration lipid reserves and ensure long-term survival. Nature 457:210–14
  • Nilsson C, Raun K, Yan F, et al. (2012). Laboratory animals as surrogate models of human obesity. Acta Pharmacol Sin 33:173–81
  • Noack S, Wiechert W. (2014). Quantitative metabolomics: a phantom? Trends Biotechnol 32:238–44
  • Noble T, Stieglitz J, Srinivasan S. (2013). An integrated serotonin and octopamine neuronal circuit directs the release of an endocrine signal to control C. elegans body fat. Cell Metab 18:672–84
  • O'Rourke EJ, Kuballa P, Xavier R, Ruvkun G. (2013). ω-6 Polyunsaturated fatty acids extend life span through the activation of autophagy. Genes Dev 27:429–40
  • O'Rourke EJ, Ruvkun G. (2013). MXL-3 and HLH-30 transcriptionally link lipolysis and autophagy to nutrient availability. Nat Cell Biol 15:668–76
  • O'Rourke EJ, Soukas AA, Carr CE, Ruvkun G. (2009). C. elegans major fats are stored in vesicles distinct from lysosome-related organelles. Cell Metab 10:430–5
  • Ogg S, Paradis S, Gottlieb S, et al. (1997). The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 389:994–99
  • Pathare PP, Lin A, Bornfeldt KE, et al. (2012). Coordinate regulation of lipid metabolism by novel nuclear receptor partnerships. PLoS Genet 8:e1002645
  • Paupard M-C, Miller A, Grant B, et al. (2001). Immuno-EM localization of GFP-tagged yolk proteins in C. elegans using microwave fixation. J Histochem Cytochem 49:949–56
  • Perez CL, Van Gilst MR. (2008). A 13C isotope labeling strategy reveals the influence of insulin signaling on lipogenesis in C. elegans. Cell Metab 8:266–74
  • Poudyal H, Brown L. (2011). Stearoyl-CoA desaturase: a vital checkpoint in the development and progression of obesity. Endocr Metab Immune Disord Drug Targets 11:217–31
  • Riddle DL, Blumenthal T, Meyer BJ, Priess JR, eds. (1997). C. elegans II, 2nd ed. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press
  • Sawin ER, Ranganathan R, Horvitz HR. (2000). C. elegans locomotory rate is modulated by the environment through a dopaminergic pathway and by experience through a serotonergic pathway. Neuron 26:619–31
  • Schneeberger M, Gomis R, Claret M. (2014). Hypothalamic and brainstem neuronal circuits controlling homeostatic energy balance. J Endocrinol 220:T25–46
  • Schroeder LK, Kremer S, Kramer MJ, et al. (2007). Function of the Caenorhabditis elegans ABC transporter PGP-2 in the biogenesis of a lysosome-related fat storage organelle. Mol Biol Cell 18:995–1008
  • Schulz TJ, Zarse K, Voigt A, et al. (2007). Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell Metab 6:280–93
  • Seidel HS, Kimble J. (2011). The oogenic germline starvation response in C. elegans. PLoS One 6:e28074
  • Settembre C, De Cegli R, Mansueto G, et al. (2013). TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nat Cell Biol 15:647–58
  • Shao W, Espenshade PJ. (2012). Expanding roles for SREBP in metabolism. Cell Metab 16:414–19
  • Sharrock WJ, Sutherlin ME, Leske K, et al. (1990). Two distinct yolk lipoprotein complexes from Caenorhabditis elegans. J Biol Chem 265:14422–31
  • Shi X, Li J, Zou X, et al. (2013). Regulation of lipid droplet size and phospholipid composition by stearoyl-CoA desaturase. J Lipid Res 54:2504–14
  • Shtonda BB, Avery L. (2006). Dietary choice behavior in Caenorhabditis elegans. J Exp Biol 209:89–102
  • Soukas AA, Kane EA, Carr CE, et al. (2009). Rictor/TORC2 regulates fat metabolism, feeding, growth, and life span in Caenorhabditis elegans. Genes Dev 23:496–511
  • Srinivasan S, Sadegh L, Elle IC, et al. (2008). Serotonin regulates C. elegans fat and feeding through independent molecular mechanisms. Cell Metab 7:533–44
  • Stunkard McLaren-Hume. (1959). The results of treatment for obesity: a review of the literature and report of a series. AMA Arch Intern Med 103:79–85
  • Sze JY, Victor M, Loer C, et al. (2000). Food and metabolic signalling defects in a Caenorhabditis elegans serotonin-synthesis mutant. Nature 403:560–4
  • Taguchi A, White MF. (2008). Insulin-like signaling, nutrient homeostasis, and life span. Annu Rev Physiol 70:191–212
  • Takahashi K, Sasabe N, Ohshima K, et al. (2010). Glucagon regulates intracellular distribution of adipose differentiation-related protein during triacylglycerol accumulation in the liver. J Lipid Res 51:2571–80
  • Taubert S, Gilst MRV, Hansen M, Yamamoto KR. (2006). A mediator subunit, MDT-15, integrates regulation of fatty acid metabolism by NHR-49-dependent and -independent pathways in C. elegans. Genes Dev 20:1137–49
  • Taubert S, Ward JD, Yamamoto KR. (2011). Nuclear hormone receptors in nematodes: evolution and function. Mol Cell Endocrinol 334:49–55
  • Taubes G. (2012). Treat obesity as physiology, not physics. Nature 492:155
  • Tserevelakis GJ, Megalou EV, Filippidis G, et al. (2014). Label-free imaging of lipid depositions in C. elegans using third-harmonic generation microscopy. PLoS One 9:e84431
  • Van Gilst MR, Hadjivassiliou H, Yamamoto KR. (2005a). A Caenorhabditis elegans nutrient response system partially dependent on nuclear receptor NHR-49. Proc Natl Acad Sci USA 102:13496–501
  • Van Gilst MR, Hadjivassiliou H, Jolly A, Yamamoto KR. (2005b). Nuclear hormone receptor NHR-49 controls fat consumption and fatty acid composition in C. elegans. PLoS Biol 3:e53
  • Vellai T, Takacs-Vellai K, Zhang Y, et al. (2003). Genetics: influence of TOR kinase on lifespan in C. elegans. Nature 426:620
  • Wadden TA, Volger S, Sarwer DB, et al. (2011). A two-year randomized trial of obesity treatment in primary care practice. N Engl J Med 365:1969–79
  • Wadsworth WG, Riddle DL. (1989). Developmental regulation of energy metabolism in Caenorhabditis elegans. Dev Biol 132:167–73
  • Walker AK, Jacobs RL, Watts JL, et al. (2011). A conserved SREBP-1/phosphatidylcholine feedback circuit regulates lipogenesis in metazoans. Cell 147:840–52
  • Walker AK, Yang F, Jiang K, et al. (2010). Conserved role of SIRT1 orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator SREBP. Genes Dev 24:1403–17
  • Walther TC, Farese RV. (2012). Lipid droplets and cellular lipid metabolism. Annu Rev Biochem 81:687–714
  • Wang MC, Min W, Freudiger CW, et al. (2011). RNAi screening for fat regulatory genes with SRS microscopy. Nat Methods 8:135–8
  • Wang MC, O'Rourke EJ, Ruvkun G. (2008). Fat metabolism links germline stem cells and longevity in C. elegans. Science 322:957–60
  • Wang TY, Liu M, Portincasa P, Wang DQ-H. (2013). New insights into the molecular mechanism of intestinal fatty acid absorption. Eur J Clin Invest 43:1203–23
  • Watts JL, Browse J. (2006). Dietary manipulation implicates lipid signaling in the regulation of germ cell maintenance in C. elegans. Dev Biol 292:381–92
  • Wellen KE, Thompson CB. (2012). A two-way street: reciprocal regulation of metabolism and signalling. Nat Rev Mol Cell Biol 13:270–6
  • Woods SC. (2009). The control of food intake: behavioral versus molecular perspectives. Cell Metab 9:489–98
  • Xu N, Zhang SO, Cole RA, et al. (2012). The FATP1-DGAT2 complex facilitates lipid droplet expansion at the ER-lipid droplet interface. J Cell Biol 198:895–911
  • Yang F, Vought BW, Satterlee JS, et al. (2006). An ARC/Mediator subunit required for SREBP control of cholesterol and lipid homeostasis. Nature 442:700–4
  • Yen K, Le TT, Bansal A, et al. (2010). A comparative study of fat storage quantitation in nematode Caenorhabditis elegans using label and label-free methods. PLoS ONE 5:e12810
  • Yi Y-H, Chien C-H, Chen W-W, et al. (2014). Lipid droplet pattern and nondroplet-like structure in two fat mutants of Caenorhabditis elegans revealed by coherent anti-Stokes Raman scattering microscopy. J Biomed Opt 19:011011
  • You Y, Kim J, Cobb M, Avery L. (2006). Starvation activates MAP kinase through the muscarinic acetylcholine pathway in Caenorhabditis elegans pharynx. Cell Metab 3:237–45
  • You Y, Kim J, Raizen DM, Avery L. (2008). Insulin, cGMP, and TGF-β signals regulate food intake and quiescence in C. elegans: a model for satiety. Cell Metab 7:249–57
  • Zechner R, Zimmermann R, Eichmann TO, et al. (2012). Fat signals – lipases and lipolysis in lipid metabolism and signaling. Cell Metab 15:279–91
  • Zhang J, Bakheet R, Parhar RS, et al. (2011). Regulation of fat storage and reproduction by Krüppel-like transcription factor KLF3 and fat-associated genes in Caenorhabditis elegans. J Mol Biol 411:537–53
  • Zhang J, Hashmi S, Cheema F, et al. (2013). Regulation of lipoprotein assembly, secretion and fatty acid β-oxidation by Krüppel-like transcription factor, klf-3. J Mol Biol 425:2641–55
  • Zhang J, Yang C, Brey C, et al. (2009). Mutation in Caenorhabditis elegans Krüppel-like factor, KLF-3 results in fat accumulation and alters fatty acid composition. Exp Cell Res 315:2568–80
  • Zhang P, Na H, Liu Z, et al. (2012). Proteomic Study and Marker Protein Identification of Caenorhabditis elegans Lipid Droplets. Mol Cell Proteomics 11:317–28
  • Zhang SO, Box AC, Xu N, et al. (2010a). Genetic and dietary regulation of lipid droplet expansion in Caenorhabditis elegans. Proc Natl Acad Sci USA 107:4640–45
  • Zhang SO, Trimble R, Guo F, Mak HY. (2010b). Lipid droplets as ubiquitous fat storage organelles in C. elegans. BMC Cell Biol 11:96
  • Zheng J, Greenway FL, Heymsfield SB, et al. (2014). Effects of three intense sweeteners on fat storage in the C. elegans model. Chem Biol Interact 215:1–6
  • Zhou H, Liu R. (2014). ER stress and hepatic lipid metabolism. Front Genet 5:112

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.