1,162
Views
26
CrossRef citations to date
0
Altmetric
Review Article

Next generation mothers: Maternal control of germline development in zebrafish

Pages 54-68 | Received 11 Sep 2014, Accepted 05 Nov 2014, Published online: 21 Nov 2014

References

  • Abdelilah S, Solnica-Krezel L, Stainier DY, Driever W. (1994). Implications for dorsoventral axis determination from the zebrafish mutation janus. Nature 370:468–71
  • Abrams EW, Mullins MC. (2009). Early zebrafish development: it's in the maternal genes. Curr Opin Genet Dev 19:396–403
  • Abrams EW, Zhang H, Marlow FL, et al. (2012). Dynamic assembly of brambleberry mediates nuclear envelope fusion during early development. Cell 150:521–32
  • Ahuja A, Extavour CG. (2014). Patterns of molecular evolution of the germ line specification gene oskar suggest that a novel domain may contribute to functional divergence in Drosophila. Dev Genes Evol 224:65–77
  • Albamonte MI, Albamonte MS, Stella I, et al. (2013). The infant and pubertal human ovary: Balbiani's body-associated VASA expression, immunohistochemical detection of apoptosis-related BCL2 and BAX proteins, and DNA fragmentation. Hum Reprod 28:698–706
  • Amanze D, Iyengar A. (1990). The micropyle: a sperm guidance system in teleost fertilization. Development 109:495–500
  • Anderson KV, Nüsslein-Volhard C. (1984). Information for the dorsal–ventral pattern of the Drosophila embryo is stored as maternal mRNA. Nature 311:223–7
  • Bally-Cuif L, Schatz WJ, Ho RK. (1998). Characterization of the zebrafish Orb/CPEB-related RNA binding protein and localization of maternal components in the zebrafish oocyte. Mech Dev 77:31–47
  • Bauer MP, Goetz FW. (2001). Isolation of gonadal mutations in adult zebrafish from a chemical mutagenesis screen. Biol Reprod 64:548–54
  • Bedell VM, Wang Y, Campbell JM, et al. (2012). In vivo genome editing using a high-efficiency TALEN system. Nature 491:114–18
  • Beer RL, Draper BW. (2013). nanos3 maintains germline stem cells and expression of the conserved germline stem cell gene nanos2 in the zebrafish ovary. Dev Biol 374:308–18
  • Benton R, St Johnston D. (2003). Drosophila PAR-1 and 14-3-3 inhibit Bazooka/PAR-3 to establish complementary cortical domains in polarized cells. Cell 115:691–704
  • Blaser H, Eisenbeiss S, Neumann M, et al. (2005). Transition from non-motile behaviour to directed migration during early PGC development in zebrafish. J Cell Sci 118:4027–38
  • Blaser H, Reichman-Fried M, Castanon I, et al. (2006). Migration of zebrafish primordial germ cells: a role for myosin contraction and cytoplasmic flow. Dev Cell 11:613–27
  • Bontems F, Baerlocher L, Mehenni S, et al. (2011). Efficient mutation identification in zebrafish by microarray capturing and next generation sequencing. Biochem Biophys Res Commun 405:373–6
  • Bontems F, Stein A, Marlow F, et al. (2009). Bucky ball organizes germplasm assembly in zebrafish. Curr Biol 19:414–22
  • Boveri T. (1910). Die Potenzen der Ascaris-Blastomeren bei abgeänderter Furchung. Zugleich ein Beitrag zur Frage qualitativ ungleicher Chromsomenteilung. Festschrift für Richard Hertwig, Gustav Fischer, Jena 3:133–213
  • Bowen ME, Henke K, Siegfried KR, et al. (2012). Efficient mapping and cloning of mutations in zebrafish by low-coverage whole-genome sequencing. Genetics 190:1017–24
  • Boycott AE, Diver C. (1923). On the inheritance of sinistrality in Limnaea peregra. Proc R Soc B Biol Sci 95:207–13
  • Brooker RJ. (2012). Non-mendelian inheritance. Genetics: analysis & principles. 4th ed. New York: McGraw-Hill
  • Buchan JR, Parker R. (2009). Eukaryotic stress granules: the ins and outs of translation. Mol Cell 36:932–41
  • Caussinus E, Kanca O, Affolter M. (2012). Fluorescent fusion protein knockout mediated by anti-GFP nanobody. Nat Struct Mol Biol 19:117–21
  • Christians E, Davis AA, Thomas SD, Benjamin IJ. (2000). Maternal effect of Hsf1 on reproductive success. Nature 407:693–4
  • Christians ES. (2003). When the mother further impacts the destiny of her offspring: maternal effect mutations. Med Sci (Paris) 19:459–64
  • Clelland E, Peng C. (2009). Endocrine/paracrine control of zebrafish ovarian development. Mol Cell Endocrinol 312:42–52
  • Cox DN, Chao A, Baker J, et al. (1998). A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal. Genes Dev 12:3715–27
  • Cox RT, Spradling AC. (2003). A Balbiani body and the fusome mediate mitochondrial inheritance during Drosophila oogenesis. Development 130:1579–90
  • de Cuevas M, Lilly MA, Spradling AC. (1997). Germline cyst formation in Drosophila. Annu Rev Genet 31:405–28
  • den Broeder MJ, van der Linde H, Brouwer JR, et al. (2009). Generation and characterization of FMR1 knockout zebrafish. PLoS One 4:e7910
  • Dent JA, Klymkowsky MW. (1989). Whole-mount analysis of cytoskeletal reorganization and function during oogenesis and early embryogenesis in Xenopus. In: Schatten G, Schatten H, eds. The cell biology of fertilization. Orlando, Florida: Academic Press, 63–103
  • Doitsidou M, Reichman-Fried M, Stebler J, et al. (2002). Guidance of primordial germ cell migration by the chemokine SDF-1. Cell 111:647–59
  • Dosch R, Wagner DS, Mintzer KA, et al. (2004). Maternal control of vertebrate development before the midblastula transition: mutants from the zebrafish I. Dev Cell 6:771–80
  • Draper BW, McCallum CM, Moens CB. (2007). nanos1 is required to maintain oocyte production in adult zebrafish. Dev Biol 305:589–98
  • Draper BW. (2012). Identification of oocyte progenitor cells in the zebrafish ovary. Methods Mol Biol 916:157–65
  • Driever W, Stemple D, Schier A, Solnica-Krezel L. (1994). Zebrafish: genetic tools for studying vertebrate development. Trends Genet 10:152–9
  • Droin A. (1992). The developmental mutants of Xenopus. Int J Dev Biol 36:455–64
  • Eno C, Pelegri F. (2013). Gradual recruitment and selective clearing generate germplasm aggregates in the zebrafish embryo. BioArchitecture 3:125–32
  • Ephrussi A, Dickinson LK, Lehmann R. (1991). Oskar organizes the germplasm and directs localization of the posterior determinant nanos. Cell 66:37–50
  • Ephrussi A, Lehmann R. (1992). Induction of germ cell formation by oskar. Nature 358:387–92
  • Ewen-Campen B, Schwager EE, Extavour CG. (2010). The molecular machinery of germ line specification. Mol Reprod Dev 77:3–18
  • Ewen-Campen B, Srouji JR, Schwager EE, Extavour CG. (2012). Oskar predates the evolution of germplasm in insects. Curr Biol 22:2278–83
  • Fan X, Jin WY, Lu J, et al. (2014). Rapid and reversible knockdown of endogenous proteins by peptide-directed lysosomal degradation. Nat Neurosci 17:471–80
  • Farber SA, Pack M, Ho SY, et al. (2001). Genetic analysis of digestive physiology using fluorescent phospholipid reporters. Science 292:1385–8
  • Fichelson P, Huynh JR. (2007). Asymmetric divisions of germline cells. Prog Mol Subcell Biol 45:97–120
  • Flaherty KM, McKay DB, Kabsch W, Holmes KC. (1991). Similarity of the three-dimensional structures of actin and the ATPase fragment of a 70-kDa heat shock cognate protein. Proc Natl Acad Sci USA 88:5041–5
  • Forbes A, Lehmann R. (1998). Nanos and Pumilio have critical roles in the development and function of Drosophila germline stem cells. Development 125:679–90
  • Fukazawa C, Santiago C, Park KM, et al. (2010). poky/chuk/ikk1 is required for differentiation of the zebrafish embryonic epidermis. Dev Biol 346:272–83
  • Gagnon JA, Valen E, Thyme SB, et al. (2014). Efficient mutagenesis by Cas9 protein-mediated oligonucleotide insertion and large-scale assessment of single-guide RNAs. PLoS One 9:e98186
  • Gaj T, Gersbach CA, Barbas CF, III. (2013). ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405
  • Ge X, Grotjahn D, Welch E, et al. (2014). Hecate/Grip2a acts to reorganize the cytoskeleton in the symmetry-breaking event of embryonic axis induction. PLoS Genet 10:e1004422
  • Giraldez AJ, Mishima Y, Rihel J, et al. (2006). Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312:75–9
  • Golden A, Sadler PL, Wallenfang MR, et al. (2000). Metaphase to anaphase (mat) transition-defective mutants in Caenorhabditis elegans. J Cell Biol 151:1469–82
  • Gore AV, Maegawa S, Cheong A, et al. (2005). The zebrafish dorsal axis is apparent at the four-cell stage. Nature 438:1030–5
  • Gritsman K, Zhang J, Cheng S, et al. (1999). The EGF-CFC protein one-eyed pinhead is essential for nodal signaling. Cell 97:121–32
  • Gupta T, Marlow FL, Ferriola D, et al. (2010). Microtubule actin crosslinking factor 1 regulates the Balbiani body and animal-vegetal polarity of the zebrafish oocyte. PLoS Genet 6:e1001073
  • Gurdon JB. (1962). The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J Embryol Exp Morphol 10:622–40
  • Haffter P, Granato M, Brand M, et al. (1996). The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123:1–36
  • Hart NH, Donovan M. (1983). Fine-structure of the chorion and site of sperm entry in the egg of Brachydanio. J Exp Zool 227:277–96
  • Hashimoto Y, Maegawa S, Nagai T, et al. (2004). Localized maternal factors are required for zebrafish germ cell formation. Dev Biol 268:152–61
  • Hashimoto Y, Suzuki H, Kageyama Y, et al. (2006). Bruno-like protein is localized to zebrafish germplasm during the early cleavage stages. Gene Expr Patterns 6:201–5
  • Heasman J, Quarmby J, Wylie CC. (1984). The mitochondrial cloud of Xenopus oocytes: the source of germinal granule material. Dev Biol 105:458–69
  • Hegner RW. (1911). Experiments with chrysomelid beetles: III. the effects of killing parts of the eggs of Leptinotarsa decemlineata. Biol Bull 20:237–51
  • Henke K, Bowen ME, Harris MP. (2013). Perspectives for identification of mutations in the zebrafish: making use of next-generation sequencing technologies for forward genetic approaches. Methods 62:185–96
  • Holloway BA, Gomez de la Torre Canny S, Ye Y, et al. (2009). A novel role for MAPKAPK2 in morphogenesis during zebrafish development. PLoS Genet 5:e1000413
  • Houston DW. (2013). Regulation of cell polarity and RNA localization in vertebrate oocytes. Int Rev Cell Mol Biol 306:127–85
  • Houwing S, Berezikov E, Ketting RF. (2008). Zili is required for germ cell differentiation and meiosis in zebrafish. EMBO J 27:2702–11
  • Houwing S, Kamminga LM, Berezikov E, et al. (2007). A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in Zebrafish. Cell 129:69–82
  • Howe K, Clark MD, Torroja CF, et al. (2013). The zebrafish reference genome sequence and its relationship to the human genome. Nature 496:498–503
  • Howley C, Ho RK. (2000). mRNA localization patterns in zebrafish oocytes. Mech Dev 92:305–9
  • Hruscha A, Krawitz P, Rechenberg A, et al. (2013). Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish. Development 140:4982–7
  • Huang HY, Houwing S, Kaaij LJ, et al. (2011). Tdrd1 acts as a molecular scaffold for Piwi proteins and piRNA targets in zebrafish. EMBO J 30:3298–308
  • Hubbard JW. (1894). The yolk nucleus in Cymatogaster aggregatus gibbons. Proc Am Phil Soc 33:74–83
  • Huynh JR, St Johnston D. (2004). The origin of asymmetry: early polarisation of the Drosophila germline cyst and oocyte. Curr Biol 14:R438–49
  • Illmensee K, Mahowald AP. (1976). The autonomous function of germplasm in a somatic region of the Drosophila egg. Exp Cell Res 97:127–40
  • Joung JK, Sander JD. (2013). TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 14:49–55
  • Jullien J, Pasque V, Halley-Stott RP, et al. (2011). Mechanisms of nuclear reprogramming by eggs and oocytes: a deterministic process? Nat Rev Mol Cell Biol 12:453–9
  • Jungke P, Hans S, Brand M. (2013). The zebrafish CreZoo: an easy-to-handle database for novel CreER(T2)-driver lines. Zebrafish 10:259–63
  • Kamminga LM, Luteijn MJ, den Broeder MJ, et al. (2010). Hen1 is required for oocyte development and piRNA stability in zebrafish. EMBO J 29:3688–700
  • Kanagaraj P, Gautier-Stein A, Riedel D, et al. (2014). Souffle/Spastizin controls secretory vesicle maturation during zebrafish oogenesis. PLoS Genet 10:e1004449
  • Kane DA, Hammerschmidt M, Mullins MC, et al. (1996). The zebrafish epiboly mutants. Development 123:47–55
  • Kardash E, Bandemer J, Raz E. (2011). Imaging protein activity in live embryos using fluorescence resonance energy transfer biosensors. Nat Protoc 6:1835–46
  • Kedde M, Strasser MJ, Boldajipour B, et al. (2007). RNA-binding protein Dnd1 inhibits microRNA access to target mRNA. Cell 131:1273–86
  • Kelly C, Chin AJ, Leatherman JL, et al. (2000). Maternally controlled (beta)-catenin-mediated signaling is required for organizer formation in the zebrafish. Development 127:3899–911
  • Kemphues KJ, Kusch M, Wolf N. (1988). Maternal-effect lethal mutations on linkage group II of Caenorhabditis elegans. Genetics 120:977–86
  • Kessler DS. (1999). Maternal signaling pathways and the regulation of cell fate. In: Moody SA, ed. Cell lineage and fate determination. San Diego (CA): Academic Press Inc, 323–40
  • Kim CH, Oda T, Itoh M, et al. (2000). Repressor activity of Headless/Tcf3 is essential for vertebrate head formation. Nature 407:913–16
  • Kimble J, Crittenden SL. (2007). Controls of germline stem cells, entry into meiosis, and the sperm/oocyte decision in Caenorhabditis elegans. Annu Rev Cell Dev Biol 23:405–33
  • Kim-Ha J, Smith JL, Macdonald PM. (1991). oskar mRNA is localized to the posterior pole of the Drosophila oocyte. Cell 66:23–35
  • Kimmel CB, Ballard WW, Kimmel SR, et al. (1995). Stages of embryonic development of the zebrafish. Dev Dyn 203:253–310
  • Kloc M, Bilinski S, Dougherty MT, et al. (2004a). Formation, architecture and polarity of female germline cyst in Xenopus. Dev Biol 266:43–61
  • Kloc M, Bilinski S, Etkin LD. (2004b). The Balbiani body and germ cell determinants: 150 years later. Curr Top Dev Biol 59:1–36
  • Kloc M, Bilinski S, Pui-Yee Chan A, Etkin LD. (2000). The targeting of Xcat2 mRNA to the germinal granules depends on a cis-acting germinal granule localization element within the 3′UTR. Dev Biol 217:221–9
  • Kloc M, Dougherty MT, Bilinski S, et al. (2002). Three-dimensional ultrastructural analysis of RNA distribution within germinal granules of xenopus. Dev Biol 241:79–93
  • Kloc M, Jedrzejowska I, Tworzydlo W, Bilinski SM. (2014). Balbiani body, nuage and sponge bodies – the germplasm pathway players. Arthropod Struct Dev 43:341–8
  • Knaut H, Pelegri F, Bohmann K, et al. (2000). Zebrafish vasa RNA but not its protein is a component of the germplasm and segregates asymmetrically before germline specification. J Cell Biol 149:875–88
  • Knaut H, Steinbeisser H, Schwarz H, Nüsslein-Volhard C. (2002). An evolutionary conserved region in the vasa 3'UTR targets RNA translation to the germ cells in the zebrafish. Curr Biol 12:454–66
  • Knaut H, Werz C, Geisler R, et al. (2003). A zebrafish homologue of the chemokine receptor Cxcr4 is a germ-cell guidance receptor. Nature 421:279–82
  • Kondo M, Nanda I, Schmid M, Schartl M. (2009). Sex determination and sex chromosome evolution: insights from medaka. Sex Dev 3:88–98
  • Köprunner M, Thisse C, Thisse B, Raz E. (2001). A zebrafish nanos-related gene is essential for the development of primordial germ cells. Genes Dev 15:2877–85
  • Kosaka K, Kawakami K, Sakamoto H, Inoue K. (2007). Spatiotemporal localization of germplasm RNAs during zebrafish oogenesis. Mech Dev 124:279–89
  • Krauss J, Lopez de Quinto S, Nusslein-Volhard C, Ephrussi A. (2009). Myosin-V regulates oskar mRNA localization in the Drosophila oocyte. Curr Biol 19:1058–63
  • Kumari P, Gilligan PC, Lim S, et al. (2013). An essential role for maternal control of Nodal signaling. Elife 2:e00683
  • Langdon YG, Mullins MC. (2011). Maternal and zygotic control of zebrafish dorsoventral axial patterning. Annu Rev Genet 45:357–77
  • Le Menn F, Cerda J, Babin PJ. (2007). Ultrastructural aspects of the ontogeny and differentiation of ray-finned fish ovarian follicles. In: Babin PJ, Cerda J, Lubzens E, eds. The fish oocyte: from basic studies to biotechnological applications. Dordrecht, The Netherlands: Springer, 1–37
  • Lee MT, Bonneau AR, Takacs CM, et al. (2013). Nanog, Pou5f1 and SoxB1 activate zygotic gene expression during the maternal-to-zygotic transition. Nature 503:360–4
  • Lehmann R. (2012). Germline stem cells: origin and destiny. Cell Stem Cell 10:729–39
  • Leichsenring M, Maes J, Mossner R, et al. (2013). Pou5f1 transcription factor controls zygotic gene activation in vertebrates. Science 341:1005–9
  • Lesch BJ, Page DC. (2012). Genetics of germ cell development. Nat Rev Genet 13:781–94
  • Leu DH, Draper BW. (2010). The ziwi promoter drives germline-specific gene expression in zebrafish. Dev Dyn 239:2714–21
  • Lindeman RE, Pelegri F. (2009). Vertebrate maternal-effect genes: insights into fertilization, early cleavage divisions, and germ cell determinant localization from studies in the zebrafish. Mol Reprod Dev 77:299–313
  • Link V, Shevchenko A, Heisenberg CP. (2006). Proteomics of early zebrafish embryos. BMC Dev Biol 6:1
  • Luteijn MJ, Ketting RF. (2013). PIWI-interacting RNAs: from generation to transgenerational epigenetics. Nat Rev Genet 14:523–34
  • Lyman-Gingerich J, Pelegri F. (2007). Maternal factors in fish oogenesis and embryonic development. In: Babin PJ, Cerda J, Lubzens E, eds. The fish oocyte: from basic studies to biotechnological applications. Dordrecht, The Netherlands: Springer, 141–74
  • Lynch JA, Ozuak O, Khila A, et al. (2011). The phylogenetic origin of oskar coincided with the origin of maternally provisioned germplasm and pole cells at the base of the Holometabola. PLoS Genet 7:e1002029
  • Maegawa S, Yasuda K, Inoue K. (1999). Maternal mRNA localization of zebrafish DAZ-like gene. Mech Dev 81:223–6
  • Mahowald AP. (2001). Assembly of the Drosophila germplasm. Int Rev Cytol 203:187–213
  • Marlow FL, Mullins MC. (2008). Bucky ball functions in Balbiani body assembly and animal-vegetal polarity in the oocyte and follicle cell layer in zebrafish. Dev Biol 321:40–50
  • Matova N, Cooley L. (2001). Comparative aspects of animal oogenesis. Dev Biol 231:291–320
  • Mei W, Lee KW, Marlow FL, et al. (2009). hnRNP I is required to generate the Ca2+ signal that causes egg activation in zebrafish. Development 136:3007–17
  • Miller AC, Obholzer ND, Shah AN, et al. (2013). RNA-seq-based mapping and candidate identification of mutations from forward genetic screens. Genome Res 23:679–86
  • Miller-Bertoglio V, Carmany-Rampey A, Furthauer M, et al. (1999). Maternal and zygotic activity of the zebrafish ogon locus antagonizes BMP signaling. Dev Biol 214:72–86
  • Mintzer KA, Lee MA, Runke G, et al. (2001). Lost-a-fin encodes a type I BMP receptor, Alk8, acting maternally and zygotically in dorsoventral pattern formation. Development 128:859–69
  • Mishima Y, Fukao A, Kishimoto T, et al. (2012). Translational inhibition by deadenylation-independent mechanisms is central to microRNA-mediated silencing in zebrafish. Proc Natl Acad Sci USA 109:1104–9
  • Mishima Y, Giraldez AJ, Takeda Y, et al. (2006). Differential regulation of germline mRNAs in soma and germ cells by zebrafish miR-430. Curr Biol 16:2135–42
  • Moody SA, Bauer DV, Hainski AM, Huang S. (1996). Determination of Xenopus cell lineage by maternal factors and cell interactions. Curr Top Dev Biol 32:103–38
  • Morinaga C, Saito D, Nakamura S, et al. (2007). The hotei mutation of medaka in the anti-Mullerian hormone receptor causes the dysregulation of germ cell and sexual development. Proc Natl Acad Sci USA 104:9691–6
  • Morinaga C, Tomonaga T, Sasado T, et al. (2004). Mutations affecting gonadal development in Medaka, Oryzias latipes. Mech Dev 121:829–39
  • Mosquera L, Forristall C, Zhou Y, King ML. (1993). A mRNA localized to the vegetal cortex of Xenopus oocytes encodes a protein with a nanos-like zinc finger domain. Development 117:377–86
  • Mullins MC, Hammerschmidt M, Kane DA, et al. (1996). Genes establishing dorsoventral pattern formation in the zebrafish embryo: the ventral specifying genes. Development 123:81–93
  • Nagahama Y, Yamashita M. (2008). Regulation of oocyte maturation in fish. Dev Growth Differ 50:S195–219
  • Nair S, Lindeman RE, Pelegri F. (2013a). In vitro oocyte culture-based manipulation of zebrafish maternal genes. Dev Dyn 242:44–52
  • Nair S, Marlow F, Abrams E, et al. (2013b). The chromosomal passenger protein birc5b organizes microfilaments and germplasm in the zebrafish embryo. PLoS Genet 9:e1003448
  • Nakamura S, Kobayashi K, Nishimura T, et al. (2010). Identification of germline stem cells in the ovary of the teleost medaka. Science 328:1561–3
  • Nijjar S, Woodland HR. (2013). Protein interactions in Xenopus germplasm RNP particles. PLoS One 8:e80077
  • Nishimura T, Tanaka M. (2014). Gonadal development in fish. Sex Dev 8:252–61
  • Nixon SJ, Webb RI, Floetenmeyer M, et al. (2009). A single method for cryofixation and correlative light, electron microscopy and tomography of zebrafish embryos. Traffic 10:131–6
  • Nojima H, Rothhamel S, Shimizu T, et al. (2010). Syntabulin, a motor protein linker, controls dorsal determination. Development 137:923–33
  • Nüsslein-Volhard C, Frohnhöfer HG, Lehmann R. (1987). Determination of anteroposterior polarity in Drosophila. Science 238:1675–81
  • Odenthal J, Rossnagel K, Haffter P, et al. (1996). Mutations affecting xanthophore pigmentation in the zebrafish, Danio rerio. Development 123:391–8
  • Payer B, Saitou M, Barton SC, et al. (2003). Stella is a maternal effect gene required for normal early development in mice. Curr Biol 13:2110–17
  • Pelegri F, Dekens MP, Schulte-Merker S, et al. (2004). Identification of recessive maternal-effect mutations in the zebrafish using a gynogenesis-based method. Dev Dyn 231:324–35
  • Pelegri F, Knaut H, Maischein HM, et al. (1999). A mutation in the zebrafish maternal-effect gene nebel affects furrow formation and vasa RNA localization. Curr Biol 9:1431–40
  • Pelegri F, Mullins MC. (2004). Genetic screens for maternal-effect mutations. Methods Cell Biol 77:21–51
  • Pelegri F, Mullins MC. (2011). Genetic screens for mutations affecting adult traits and parental-effect genes. Methods Cell Biol 104:83–120
  • Pelegri F, Schulte-Merker S. (1999). A gynogenesis-based screen for maternal-effect genes in the zebrafish, Danio rerio. Methods Cell Biol 60:1–20
  • Pepling ME, Spradling AC. (2001). Mouse ovarian germ cell cysts undergo programmed breakdown to form primordial follicles. Dev Biol 234:339–51
  • Pepling ME, Wilhelm JE, O'Hara AL, et al. (2007). Mouse oocytes within germ cell cysts and primordial follicles contain a Balbiani body. Proc Natl Acad Sci USA 104:187–92
  • Pepling ME. (2012). Follicular assembly: mechanisms of action. Reproduction 143:139–49
  • Pogoda HM, Solnica-Krezel L, Driever W, Meyer D. (2000). The zebrafish forkhead transcription factor FoxH1/Fast1 is a modulator of nodal signaling required for organizer formation. Curr Biol 10:1041–9
  • Pozzoli O, Gilardelli CN, Sordino P, et al. (2004). Identification and expression pattern of mago nashi during zebrafish development. Gene Expr Patterns 5:265–72
  • Rauch GJ, Lyons DA, Middendorf I, et al. (2003). Submission and curation of gene expression data. ZFIN Direct Data Submission. Available from: http://zfin.org [last accessed 12 Nov 2014]
  • Raz E. (2003). Primordial germ-cell development: the zebrafish perspective. Nat Rev Genet 4:690–700
  • Richardson BE, Lehmann R. (2010). Mechanisms guiding primordial germ cell migration: strategies from different organisms. Nat Rev Mol Cell Biol 11:37–49
  • Rodriguez-Mari A, Canestro C, Bremiller RA, et al. (2010). Sex reversal in zebrafish fancl mutants is caused by Tp53-mediated germ cell apoptosis. PLoS Genet 6:e1001034
  • Rodriguez-Mari A, Postlethwait JH. (2011). The role of Fanconi anemia/BRCA genes in zebrafish sex determination. Methods Cell Biol 105:461–90
  • Rodriguez-Mari A, Wilson C, Titus TA, et al. (2011). Roles of brca2 (fancd1) in oocyte nuclear architecture, gametogenesis, gonad tumors, and genome stability in zebrafish. PLoS Genet 7:e1001357
  • Röper K, Brown NH. (2004). A spectraplakin is enriched on the fusome and organizes microtubules during oocyte specification in Drosophila. Curr Biol 14:99–110
  • Ross RJ, Weiner MM, Lin H. (2014). PIWI proteins and PIWI-interacting RNAs in the soma. Nature 505:353–9
  • Roth S, Lynch JA. (2009). Symmetry breaking during Drosophila oogenesis. Cold Spring Harb Perspect Biol 1:a001891
  • Saito D, Morinaga C, Aoki Y, et al. (2007). Proliferation of germ cells during gonadal sex differentiation in medaka: insights from germ cell-depleted mutant zenzai. Dev Biol 310:280–90
  • Saito K, Siegfried KR, Nusslein-Volhard C, Sakai N. (2011). Isolation and cytogenetic characterization of zebrafish meiotic prophase I mutants. Dev Dyn 240:1779–92
  • Sasado T, Morinaga C, Niwa K, et al. (2004). Mutations affecting early distribution of primordial germ cells in Medaka (Oryzias latipes) embryo. Mech Dev 121:817–28
  • Schisa JA. (2012). New insights into the regulation of RNP granule assembly in oocytes. Int Rev Cell Mol Biol 295:233–89
  • Schmid B, Haass C. (2013). Genomic editing opens new avenues for zebrafish as a model for neurodegeneration. J Neurochem 127:461–70
  • Schultz RM. (1993). Regulation of zygotic gene activation in the mouse. Bioessays 15:531–8
  • Schulz RW, de Franca LR, Lareyre JJ, et al. (2010). Spermatogenesis in fish. Gen Comp Endocrinol 165:390–411
  • Schüpbach T, Wieschaus E. (1986). Maternal-effect mutations altering the anterior-potserior pattern of the Drosophila embryo. Roux Arch Dev Biol 195:302–17
  • Schüpbach T, Wieschaus E. (1989). Female sterile mutations on the second chromosome of Drosophila melanogaster. I. Maternal effect mutations. Genetics 121:101–17
  • Seervai RN, Wessel GM. (2013). Lessons for inductive germline determination. Mol Reprod Dev 80:590–609
  • Selman K, Wallace RA, Sarka A, Qi X. (1993). Stages of oocyte development in the zebrafish, Brachydanio rerio. J Morphol 218:203–24
  • Siegfried KR. (2010). In search of determinants: gene expression during gonadal sex differentiation. J Fish Biol 76:1879–902
  • Sirotkin HI, Gates MA, Kelly PD, et al. (2000). Fast1 is required for the development of dorsal axial structures in zebrafish. Curr Biol 10:1051–4
  • Smith JL, Wilson JE, Macdonald PM. (1992). Overexpression of oskar directs ectopic activation of nanos and presumptive pole cell formation in Drosophila embryos. Cell 70:849–59
  • Smith LD. (1966). The role of a “germinal plasm” in the formation of primordial germ cells in Rana pipiens. Dev Biol 14:330–47
  • Soriano P, Jaenisch R. (1986). Retroviruses as probes for mammalian development: allocation of cells to the somatic and germ cell lineages. Cell 46:19–29
  • Spradling A, Fuller MT, Braun RE, Yoshida S. (2011). Germline stem cells. Cold Spring Harb Perspect Biol 3:a002642
  • St Johnston D. (2002). The art and design of genetic screens: Drosophila melanogaster. Nat Rev Genet 3:176–88
  • Strasser MJ, MacKenzie NC, Dumstrei K, et al. (2008). Control over the morphology and segregation of Zebrafish germ cell granules during embryonic development. BMC Dev Biol 8:58
  • Strome S, Lehmann R. (2007). Germ versus soma decisions: lessons from flies and worms. Science 316:392–3
  • Sturtevant AH. (1923). Inheritance of direction of coilling in Limnaea. Science 58:269–70
  • Suzuki A, Igarashi K, Aisaki K, et al. (2010). NANOS2 interacts with the CCR4-NOT deadenylation complex and leads to suppression of specific RNAs. Proc Natl Acad Sci USA 107:3594–9
  • Tada H, Mochii M, Orii H, Watanabe K. (2012). Ectopic formation of primordial germ cells by transplantation of the germplasm: direct evidence for germ cell determinant in Xenopus. Dev Biol 371:86–93
  • Tarbashevich K, Raz E. (2010). The nuts and bolts of germ-cell migration. Curr Opin Cell Biol 22:715–21
  • Telfer WH. (1975). Development and physiology of the oöcyte-nurse cell syncytium. In: Treherne JE, Beament JWL, Wigglesworth VB, eds. Advances in insect physiology. London: Academic Press, 223–319
  • Theusch EV, Brown KJ, Pelegri F. (2006). Separate pathways of RNA recruitment lead to the compartmentalization of the zebrafish germplasm. Dev Biol 292:129–41
  • Tong ZB, Gold L, Pfeifer KE,et al. (2000). Mater, a maternal effect gene required for early embryonic development in mice. Nat Genet 26:267–8
  • Tran LD, Hino H, Quach H, et al. (2012). Dynamic microtubules at the vegetal cortex predict the embryonic axis in zebrafish. Development 139:3644–52
  • Trinh le A, Hochgreb T, Graham M, et al. (2011). A versatile gene trap to visualize and interrogate the function of the vertebrate proteome. Genes Dev 25:2306–20
  • Tsuda M, Sasaoka Y, Kiso M, et al. (2003). Conserved role of nanos proteins in germ cell development. Science 301:1239–41
  • Tsunekawa N, Naito M, Sakai Y, et al. (2000). Isolation of chicken vasa homolog gene and tracing the origin of primordial germ cells. Development 127:2741–50
  • Ueno H, Turnbull BB, Weissman IL. (2009). Two-step oligoclonal development of male germ cells. Proc Natl Acad Sci USA 106:175–80
  • van Rijnsoever C, Oorschot V, Klumperman J. (2008). Correlative light-electron microscopy (CLEM) combining live-cell imaging and immunolabeling of ultrathin cryosections. Nat Methods 5:973–80
  • von Wittich WH. (1845). Dissertation: Observationes quaedam de aranearum ex ovo evolutione. Halle, Germany: In Halis Saxonum
  • Wagner DS, Dosch R, Mintzer KA, et al. (2004). Maternal control of development at the midblastula transition and beyond: mutants from the zebrafish II. Dev Cell 6:781–90
  • Wakahara M. (1978). Induction of supernumerary primordial germ cells by injecting vegetal pole cytoplasm into Xenopus eggs. J Exp Zool 203:159–64
  • Walker C, Streisinger G. (1983). Induction of mutations by γ-rays in pregonial germ cells of zebrafish embryos. Genetics 103:125–36
  • Waskiewicz AJ, Rikhof HA, Moens CB. (2002). Eliminating zebrafish pbx proteins reveals a hindbrain ground state. Dev Cell 3:723–33
  • Wehr MC, Laage R, Bolz U, et al. (2006). Monitoring regulated protein-protein interactions using split TEV. Nat Methods 3:985–93
  • Weidinger G, Stebler J, Slanchev K, et al. (2003). Dead end, a novel vertebrate germplasm component, is required for zebrafish primordial germ cell migration and survival. Curr Biol 13:1429–34
  • Weismann A. (1885). Continuity of the germplasm [Die Continiuität des Keimplasmas als Grundlage einer Theorie der Vererbung]. In: Poulton EEA, ed. Essays upon heredity and kindred biological problems. Oxford: Clarendon Press, 161–248
  • White JA, Heasman J. (2008). Maternal control of pattern formation in Xenopus laevis. J Exp Zool B Mol Dev Evol 310:73–84
  • Wilkie TM, Brinster RL, Palmiter RD. (1986). Germline and somatic mosaicism in transgenic mice. Dev Biol 118:9–18
  • Willig KI, Kellner RR, Medda R, et al. (2006). Nanoscale resolution in GFP-based microscopy. Nat Methods 3:721–3
  • Wolke U, Weidinger G, Köprunner M, Raz E. (2002). Multiple levels of posttranscriptional control lead to germ line-specific gene expression in the zebrafish. Curr Biol 12:289–94
  • Wood WB, Edgar LG. (1994). Patterning in the C. elegans embryo. Trends Genet 10:49–54
  • Wu X, Viveiros MM, Eppig JJ, et al. (2003). Zygote arrest 1 (Zar1) is a novel maternal-effect gene critical for the oocyte-to-embryo transition. Nat Genet 33:187–91
  • Xu P, Zhu G, Wang Y, et al. (2014). Maternal eomesodermin regulates zygotic nodal gene expression for mesendoderm induction in zebrafish embryos. J Mol Cell Biol 6:272–85
  • Yabe T, Ge X, Lindeman R, et al. (2009). The maternal-effect gene cellular island encodes aurora B kinase and is essential for furrow formation in the early zebrafish embryo. PLoS Genet 5:e1000518
  • Yabe T, Ge X, Pelegri F. (2007). The zebrafish maternal-effect gene cellular atoll encodes the centriolar component sas-6 and defects in its paternal function promote whole genome duplication. Dev Biol 312:44–60
  • Yano T, Lopez de Quinto S, Matsui Y, et al. (2004). Hrp48, a Drosophila hnRNPA/B homolog, binds and regulates translation of oskar mRNA. Dev Cell 6:637–48
  • Yoon C, Kawakami K, Hopkins N. (1997). Zebrafish vasa homologue RNA is localized to the cleavage planes of 2- and 4-cell-stage embryos and is expressed in the primordial germ cells. Development 124:3157–65
  • Zhang YZ, Ouyang YC, Hou Y, et al. (2008). Mitochondrial behavior during oogenesis in zebrafish: a confocal microscopy analysis. Dev Growth Differ 50:189–201
  • Zhou Y, King ML. (1996). Localization of Xcat-2 RNA, a putative germplasm component, to the mitochondrial cloud in Xenopus stage I oocytes. Development 122:2947–53
  • Zimyanin V, Lowe N, St Johnston D. (2007). An oskar-dependent positive feedback loop maintains the polarity of the Drosophila oocyte. Curr Biol 17:353–9
  • Zu Y, Tong X, Wang Z, et al. (2013). TALEN-mediated precise genome modification by homologous recombination in zebrafish. Nat Methods 10:329–31

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.