909
Views
210
CrossRef citations to date
0
Altmetric
Research Article

Chloramphenicol Acetyltransferase: Enzymology and Molecular Biology

Pages 1-46 | Published online: 26 Sep 2008

References

  • Ehrlich J., Bartz Q. R., Smith R. M., Joslyn D. A., Burkholder P. R. Chloromycetin, a new antibiotic from a soil actinomycet. Science 1947; 106: 417
  • Rebstock M. C., Crooks H. M., Controulis J., Bartz Q. R. Chloramphenicol (Chloromycetin). IV. Chemical studie. J. Am. Chem. Soc. 1949; 71: 2458
  • Rebstock M. C. Antibiotic. Medicinal Chemistry, A. Burger. Interscience, New York 1960; 877
  • Jardetzky O. Studies on the mechanism of action of chloramphenicol. I. The conformation of chloramphenicol in solutio. J. Biol. Chem. 1963; 238: 2498
  • Bustard T. M., Egan R. S., Perun J. J. Conformational studies on chloramphenicol and related molecule. Tetrahedron 1973; 29: 1961
  • Pongs O. Chloramphenico. Mechanism of Action of Antibacterial Drugs, F. E. Hahn. Springer Verlag, Berlin 1979; 26
  • Tritton T. R. Ribosome-chloramphenicol interactions: a nuclear magnetic resonance stud. Arch. Biochem. Biophys. 1979; 197: 10
  • Gale E. F., Cundliffe E., Reynolds P. E., Richmond M. H., Waring M. J. The Molecular Basis of Antibiotic Action, 2nd ed. John Wiley & Sons, London 1981; 402
  • Yunis A. A. Chloramphenicol-induced bone marrow suppressio. Semin. Hematol. 1973; 10: 225
  • Burns L. E., Hodgman J. E., Cass A. B. Fatal circulatory collapse in premature infants receiving chloramphenico. New Engl. J. Med. 1959; 261: 1318
  • Lietman P. S. Chloramphenicol and the neonate-1979 vie. Clin. Pharmacol. Ther. 1979; 6: 151
  • Dajani A. S., Kauffman R. E. The renaissance of chloramphenico. Pediatr. Clin. North Am. 1981; 28: 195
  • Lietman P. D., White T. J., Shaw W. V. Chloramphenicol: an enzymological microassa. Antimicrob. Agents Chemother. 1976; 10: 347
  • Weber A. F., Opheim K. E., Koup J. R., Smith A. L. Comparison of enzymatic and liquid chromatographic chloramphenicol assay. Antimicrob. Agents Chemother. 1981; 19: 323
  • Nakano H., Tomita F., Suzuki T. Biosynthesis of corynecins by Corynebacterium hydrocarboclastuson the origin of the n-acyl grou. Agric. Biol. Chem. 1976; 40: 331
  • Watanabe T. Infective heredity of multiple drug resistance in bacteri. Bacteriol. Rev. 1963; 27: 87
  • Datta N. Infectious drug resistanc. Br. Med. Bull. 1965; 21: 254
  • Novick R. P., Richmond M. H. Nature and interactions of the genetic elements governing penicillinase synthesis i. S. aureus, J. Bacteriol. 1965; 90: 467
  • Anderson E. S. The ecology of transferable drug resistance in the Enterobacteri. Ann. Rev. Microbiol. 1968; 22: 131
  • Meynell E., Meynell G. G., Datta N. Phylogenetic relationships of drug-resistance factors and other transmissible bacterial plasmid. Bacteriol. Rev. 1968; 32: 55
  • Novick R. P. Extrachromosomal inheritance in bacteri. Bacteriol. Rev. 1969; 33: 210
  • Wolstenholme G. E. W., O'Connor M. Bacterial Episomes and Plasmids. Churchill, London 1969
  • Clowes R. C. Molecular structure of bacterial plasmid. Bacteriol. Rev. 1972; 36: 361
  • Davies J. E., Rownd R. Transmissible multiple drug resistance in Enterobacteriacea. Science 1972; 176: 758
  • Helinski D. R. Plasmid-determined resistance to antibiotics: molecular properties of R factor. Ann. Rev. Microbiol. 1973; 27: 437
  • Falkow S. Infectious Multiple Drug Resistance. Pion, London 1975
  • Cohen S. N. Transposable genetic elements and plasmid evolutio. Nature 1976; 263: 731
  • Williams P. A. The biology of plasmid. Companion to Microbiology, A. T. Bull, P. M. Meadow. Longman, London 1978; 77
  • Broda P. Plasmid. Freeman, Bristol 1979
  • Timmis K. M. Gene manipulation in vitro i. Genetics as a Tool in Microbiology, S. W. Glover, D. A. Hopwood. Cambridge University Press, Cambridge 1981; 50
  • Bukhari A. I., Shapiro J. A., Adhya S. L. DNA Insertion Element. Plasmids, and Episomes. Cold Spring Harbor Laboratory, New York 1977
  • Novick R. P., Edelman I., Schwesinger M., Gruss A., Swanson E., Pattee P. A. Genetic translocation in Staphylococcus aureu. Proc. Natl. Acad. Sci. U.S.A. 1979; 76: 400
  • Starlinger P. IS elements and transposon. Plasmid 1980; 3: 241
  • Cullum J., Saedler H. DNA rearrangements and evolutio. Molecular and Cellular Aspects of Evolution, M. J. Carlile, J. F. Collins, B. E. B. Moseley. Cambridge University Press, Cambridge 1981; 131
  • Okamoto S., Mizuno D. Mechanism of chloramphenicol and tetracycline resistance i. Escherichia coli, J. Gen. Microbiol. 1964; 35: 125
  • Miyamura S. Inactivation of chloramphenicol by chloramphenicol-resistant bacteri. J. Pharm. Sci. 1964; 53: 604
  • Shaw W. V. The enzymatic acetylation of chloramphenicol by extracts of R factor-resistan. Escherichia coli, J. Biol. Chem. 1967; 242: 687
  • Suzuki Y., Okamoto S. The enzymatic acetylation of chloramphenicol by the multiple drug-resistant Escherichia colicarrying R facto. J. Biol. Chem. 1967; 242: 4722
  • Dunsmoor C. L., Pim K. L., Sherris J. C. Observations on the inactivation of chloramphenicol by chloramphenicol-resistant staphylococci, in Antimicrobial Agents and Chemotherapy —196. American Society of Microbiology, J. C. Sylvester. Ann Arbor, Mich. 1964; 500
  • Collins A. M., Roy T. E. Transduction of chloramphenicol and novobiocin resistance in staphylococc. Can. J. Microbiol. 1963; 9: 541
  • Goto S., Niwa C., Kuwahara S. Transduction of drug resistances in StaphylococcusII. Transduction of chloramphenicol resistance in both Staphylococcus aureusand Staphylococcus epidermidisby typing phage 8. Jpn. J. Microbiol. 1965; 9: 15
  • Mitsuhashi S., Morimura M., Kono K., Oshima M. Elimination of drug resistance of Staphylococcus aureusby treatment with acrifiavin. J. Bacteriol. 1963; 86: 162
  • Chabbert Y. A., Baudens J. G., Gerbaud G. R. Variations caused by acriflavin and transduction of resistance to kanamycin and to chloramphenicol in staphylococc. Ann. Inst. Pasteur Paris 1964; 107(Suppl)678
  • Suzuki Y., Okamoto S., Kono M. Basis of chloramphenicol resistance in naturally isolated resistant staphylococc. J. Bacteriol. 1966; 92: 798
  • Foster T. J., Shaw W. V. Chloramphenicol acetyltransferase specified by fi−R factor. Antimicrob. Agents Chemother. 1973; 3: 99
  • Sands L. C., Shaw W. V. Mechanism of chloramphenicol resistance in staphylococci: characterization and hybridization of variants of chloramphenicol acetyltransferas. Antimicrob. Agents Chemother. 1973; 3: 299
  • Shaw W. V., Sands L. C., Datta N. Hybridization of variants of chloramphenicol acetyltransferases specified by fi+and fi−R factor. Proc. Natl. Acad. Sci. U.S.A. 1972; 69: 3049
  • Foster T. J., Howe T. G. B. Chloramphenicol acetyltransferase formed by wild-type and complementing R factors in Escherichia coliK1. J. Gen. Microbiol. 1972; 71: 575
  • Reeve E. C. R. Characteristics of some single-step mutants to chloramphenicol resistance in Escherichia coliK12 and their interaction with R factor gene. Genet. Res. 1966; 7: 281
  • Foster T. J. R factor tetracycline and chloramphenicol resistance in Escherichia coliK12 and cmlB mutant. J. Gen. Microbiol. 1975; 90: 303
  • Sompolinsky D., Samra Z. Mechanism of high-level resistance to chloramphenicol in different Escherichia colivariant. J. Gen. Microbiol. 1968; 50: 55
  • Sompolinsky D., Ziegler-Schlomowritz R., Herezog D. Inactivation of chloramphenicol by Gram-negative microorganism. Can. J. Microbiol. 1968; 14: 891
  • Riley R., Anilionis A. Evolution of the bacterial genom. Ann. Rev. Microbiol. 1978; 32: 519
  • Nyman K., Nakamura K., Ohtsubo H., Ohtsubo E. Distribution of the insertion sequence ISI in Gram-negative bacteri. Nature 1981; 289: 609
  • Kono M., O'Hara K. Mechanism of chloramphenicol resistance mediated by kR102 facto. Pseudomonas aeruginosa, J. Antibiot. 1976; 29: 176
  • Nagai Y., Mitsuhashi S. New type of R factors incapable of inactivating chloramphenico. J. Bacteriol. 1972; 109
  • Gaffney D. F., Foster T. J., Shaw W. V. Chloramphenicol acetyltransferases determined by R plasmids from Gram-negative bacteri. J. Gen. Microbiol. 1978; 109: 351
  • Gaffney D. F., Cundliffe E., Foster T. J. Chloramphenicol resistance that does not involve chloramphenicol acetyltransferase encoded by plasmids from Gram-negative bacteri. J. Gen. Microbiol. 1981; 125: 113
  • Alton N. K., Vapnek D. Nucleotide sequence analysis of the chloramphenicol resistance transposon Tn. Nature 1979; 282: 864
  • Shaw W. V., Packman L. C., Burleigh B. D., Dell A., Morris H. R., Hartley B. S. Primary structure of a chloramphenicol acetyltransferase specified by bacterial plasmid. Nature 1979; 282: 870
  • Gottesman M. M., Rosner J. L. Acquisition of a determinant for chloramphenicol resistance by coliphage lambd. Proc. Natl. Acad. Sci. U.S.A. 1975; 72: 5041
  • Kondo E., Mitsuhashi S. Active transducing bacteriophage PI Cm by the combination of R factors with bacteriophage P. J. Bacteriol. 1964; 88: 1266
  • Bolivar F. Construction and characterization of new cloning vehicles. III. Derivatives of plasmid pBR322 carrying unique EcoRI sites for selection of EcoRI generated recombinant molecule. Gene 1978; 4: 121
  • Prentki P., Karch F., Iida S., Meyer J. The plasmid cloning vector pBR325 contains a 482-base pair-long inverted duplicatio. Gene 1981; 14: 289
  • Chang A. C. Y., Cohen S. N. Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmi. J. Bacteriol. 1978; 134: 1141
  • Cohen S. N., Miller C. A. Nonchromosomal antibiotic-resistance in bacteria. II. molecular nature of R-factors isolated from Proteus mirabilis. Escherichia coli, J. Mol. Biol. 1970; 50: 671
  • Novick R. P., Clowes R. C., Cohen S. C., Curtiss R., Datta N., Falkow S. Uniform nomenclature for bacterial plasmids: a proposa. Bacteriol Rev. 1976; 40: 168
  • Shaw W. V. Chloramphenicol acetyltransferase from chloramphenicol-resistant bacteri. Methods Enzymol. 1975; 43: 737
  • Packman L. C., Shaw W. V. Identification of buried lysine residues in two variants of chloramphenicol acetyltransferase specified by R-factor. Biochem. J. 1981; 193: 525
  • Packman L. C., Shaw W. V. The use of naturally occurring hybrid variants of chloramphenicol acetyltransferase to investigate subunit contact. Biochem. J. 1981; 193: 541
  • Liddell J. M., Shaw W. V., Swan J. D. A. Preliminary crystallographic data for a chloramphenicol acetyltransferase fro. Escherichia coli, J. Mol. Biol. 1978; 124: 285
  • Fitton J. E., Shaw W. V. Comparison of chloramphenicol acetyltransferase variants in staphylococc. Biochem. J. 1979; 177: 575
  • Guitard M., Daigneault R. Purification of Escherichia colichloramphenicol acetyltransferase by affinity chromatograph. Can. J. Biochem. 1974; 52: 1087
  • Zaidenzaig Y., Shaw W. V. Affinity and hydrophobic chromatography of three variants of chloramphenicol acetyltransferase specified by R factors i. Escherichia coli, FEBS Lett. 1976; 62: 266
  • Horinouchi S., Weisblum B. Nucleotide sequence and functional map of pC194, a plasmid which specifies inducible chloramphenicol resistanc. J. Bacteriol. 1982; 150: 815
  • Shaw W. V. Enzymatic chloramphenicol acetylation and R factor induced antibiotic resistanc. Enterobacteriaceae in Antimicrobial Agents and Chemotherapy — 1966, G. L. Hobby. American Society of Microbiology, Ann Arbor, Mich. 1967; 221
  • Shaw W. V., Brodsky R. F. Characterization of chloramphenicol acetyltransferase from chloramphenicol-resistan. Staphylococcus aureus, J. Bacteriol. 1968; 95: 28
  • Shaw W. V., Brodsky R. F. Chloramphenicol resistance by enzymatic acetylation: comparative aspect. Antimicrobial Agents and Chemotherapy — 1967, G. L. Hobby. American Society of Microbiology, Ann Arbor, Mich. 1968; 257
  • Winshell E., Shaw W. V. Kinetics of induction and purification of chloramphenicol acetyltransferase from chloramphenicol-resistan. Staphylococcus aureus, J. Bacteriol. 1969; 98: 1248
  • Vazquez D. Mode of action of chloramphenicol and related antibiotic. Biochemical Studies of Antimicrobial Drugs, B. A. Newton, P. E. Reynolds. Cambridge University Press, Cambridge 1966; 169
  • Freeman K. B. Inhibition of mitochondrial and bacterial protein synthesis by chloramphenico. Can. J. Biochem. 1970; 48: 479
  • Kredich N. M., Becker M. A. Cysteine biosynthesis: serine transacetylase and O-acetyl serine sulfhydrylas. Salmonella typhimurium, Methods Enzymol. 1971; 17B: 459
  • Hulanicka M. D., Kredich N. M. A mutation affecting expression of the gene coding for serine transacetylas. Salmonella typhimurium, Mol. Gen. Genet. 1976; 148: 143
  • Cook P. F., Wedding R. T. Cysteine synthetase from Salmonella typhimuriu. J. Biol. Chem. 1978; 253: 7874
  • Nagai S., Kerr D. Homoserine transacetylas. Methods Enzymol. 1971; 17B: 442
  • Wyman A., Shelton E., Paulus H. Regulation of homoserine transacetylase in whole cells o. Bacillus polymyxa, J. Biol. Chem. 1975; 250: 3904
  • Zabin I., Fowler A. V. β-galactosidase, the lactose permease protein, and thiogalactoside transacetylas. The Operon., J. H. Miller, W. S. Reznikoff. Cold Spring Harbor, New York 1978; 89
  • Kredich N. personal communication 1980
  • Nagabhushan T. L., Kandasamy D., Tsai H., Turner W. N., Miller G. H. Novel class of chloramphenicol analogs with activity against chloramphenicol-resistant and chloramphenicol-susceptible organism. Current Chemotherapy and Infectious Diseases. American Society of Microbiology, Washington 1980; 442
  • Syriopoulou V. P., Harding A. L., Goldman D. A., Smith A. L. In vitro antibacterial activity of fluorinated analogs of chloramphenicol and thiamphenico. Antimicrob. Agents Chemother. 1981; 19: 294
  • Harford S. personal communication 1980
  • Shaw W. V., Bentley D. W., Sands L. Mechanism of chloramphenicol resistance in Staphylococcus epidermidi. J. Bacteriol. 1970; 104: 1095
  • Garber N., Zipser J. The inhibition of chloramphenicol-O-acetyl-transferase by adenine nucleotide. Biochim. Biophys. Acta 1970; 220: 341
  • Nakagawa Y., Nitahara Y., Miyamura S. Kinetic studies on enzymatic acetylation of chloramphenicol in Streptococcus faecali. Antimicrob. Agents Chemother. 1979; 16: 719
  • Thibault G., Guitard M., Daigneault R. A study of the enzymatic inactivation of chloramphenicol by highly purified chloramphenicol acetyltransferas. Biochim. Biophys. Acta 1980; 614: 339
  • Nakagawa Y. Studies on enzymatic acetylation of chloramphenicol-resistant bacteria: GC-mass analysi. Jpn. J. Bacteriol. 1981; 36: 58
  • Brent D. A., Chandrasurin P., Ragouzeos A., Hurlbert B. S., Burke J. T. Rearrangement of chloramphenicol-3-monosuccinat. J. Pharm. Sci. 1980; 69: 906
  • Kleanthous K., Shaw W. V. unpublished experiments 1981
  • Shaw W. V., Unowsky J. Mechanism of R factor-mediated chloramphenicol resistanc. J. Bacteriol. 1968; 95: 1976
  • Piffaretti J.-C., Froment Y. Binding of chloramphenicol and its acetylated derivatives to Escherichia coliribosomal subunit. Chemotherapy 1978; 24: 24
  • Datta A., Rosner J. L. personal communication 1981
  • Nordström K., Ingram L. C., Lundbäck A. Mutations in R factors of Escherichia coli, causing an increased number of R-factor copies per chromosom. J. Bacteriol. 1972; 110: 562
  • Shaw W. V. unpublished experiments 1987
  • Jencks W. P., Cordes S., Carriuolo J. The free energy of thiol ester hydrolysi. J. Biol. Chem. 1960; 235: 3608
  • Bruice T. C., Benkovic S. Bio-organic Mechanisms. W. A. Benjamin, New York 1966; Vol. 1: 259
  • Jencks W. P. Catalysis in Chemistry and Enzymology. McGraw-Hill, New York 1969; 517
  • Jencks W. P. Handbook of Biochemistry and Molecular Biology, 3rd ed, G. D. Fasman. CRC Press, Cleveland, Ohio 1976; 296
  • Tanaka H., Izaki K., Takahashi H. Some properties of chloramphenicol acetyltransferase, with particular reference to the mechanism of inhibition by basic triphenylmethane dye. J. Biochem. 1974; 76: 1009
  • Hersh L. B., Peet M. Re-evaluation of the kinetic mechanism of the choline acetyltransferase reactio. J. Biol. Chem. 1977; 252: 4796
  • Zaidenzaig Y., Shaw W. V. The reactivity of sulfhydryl groups at the active site of an R factor-specified variant of chloramphenicol acetyltransferas. Eur. J. Biochem. 1978; 83: 553
  • Zaidenzaig Y., Fitton J. E., Packman L. C., Shaw W. V. Characterization and comparison of chloramphenicol acetyltransferase variant. Eur. J. Biochem. 1979; 100: 609
  • Riddle B., Jencks W. P. Acetyl-coenzyme A: arylamine N-acetyltransferase. Role of the acetylenzyme intermediate and the effects of substituents on the rat. J. Biol. Chem. 1971; 246: 3250
  • Zaidenzaig Y., Shaw W. V. unpublished experiments 1976
  • Corney A., Kleanthous K., Shaw W. V. Mechanism of chloramphenicol acetyltransferase: properties of a type III variant specified b. R plasmids in Gram-negative bacteria, in preparation.
  • Albery W. J., Knowles J. R. Evolution of enzyme function and the development of catalytic efficienc. Biochemistry 1976; 15: 5631
  • Kucan Z., Lipmann F. Differences in chloramphenicol sensitivity of cell-free amino acid polymerization system. J. Biol. Chem. 1964; 239: 516
  • Marcoli R., Iida S., Bickle T. A. The DNA sequence of an IS-1-flanked transposon coding for resistance to chloramphenicol and fusidic aci. FEBS Lett. 1980; 110: 11
  • Nitzan (Zaidenzaig) Y., Gozhansky S. Chloramphenicol binding site of an fi−R-factor-specified variant of chloramphenicol acetyltransferas. Arch. Biochem. Biophys. 1980; 201: 115
  • Nakagawa Y., Bender M. L. Methylation of histidine-57 in α-chymotrypsin by methyl p nitrobenzene sulfonate. A new approach to enzyme modificatio. Biochemistry 1970; 9: 259
  • Melchior W. B., Fahrney D. Ethoxyformylation of proteins. Reaction of ethoxyformic anhydride with α-chymotrypsin, pepsin, and pancreatic ribonuclease at pH . Biochemistry 1970; 9: 251
  • Sonnenberg N., Wilchek M., Zamir A. Mapping of Escherichia coliribosomal components involved in peptidyltransferase activit. Proc. Natl. Acad. Sci. U.S.A. 1973; 70: 1423
  • Pongs O., Bald R., Erdmann V. A. Identification of chloramphenicol binding protein in Escherichia coliribosomes by affinity labelin. Proc. Natl. Acad. Sci. U.S.A. 1973; 70: 2229
  • Pongs O., Messer W. The chloramphenicol receptor site in Escherichia coli.In vivo affinity labeling by monoiodoamphenico. J. Mol. Biol. 1976; 101: 171
  • Packman L. C. Studies on chloramphenicol acetyltransferases specified by R-factors. Ph.D. dissertation, University of Leicester. 1978
  • Bennett P. M., Richmond M. H. Plasmids and their possible influence on evolutio. The Bacteria., J. R. Ornston Sokatch. Academic Press, New York 1978; Vol. VI: 1
  • Cullum J., Saedler H. DNA rearrangements and evolutio. Molecular and Cellular Aspects of Microbial Evolution, M. J. Carlile, J. F. Collins, B. E. B. Moseley. Cambridge University Press, Cambridge 1981; 131
  • Campbell A. Evolutionary significance of accessory DNA elements in bacteri. Annu. Rev. Microbiol. 1981; 35: 55
  • Jacobsen H. W., Shaw W. V. Chloramphenicol resistance in non-episoma. Proteus mirabilis, Bacteriol. Proc. 1970; 60, (Abstr.)
  • Hall B. G., Zuzel T. Evolution of a new enzymatic function by recombination within a gen. Proc. Natl. Acad. Sci., U.S.A. 1980; 77: 3529
  • Clarke P. H. Experiments in microbial evolution: new enzymes, new metabolic activitie. Proc. R. Soc. London 1980; B 207: 385
  • Hall A., Knowles J. R. Directed selective pressure on a β-lactamase to analyze molecular changes involved in development of enzyme functio. Nature 1976; 264: 803
  • Hartley B. S. Evolution of enzyme structur. Proc. R. Soc. London Series B 1979; 205: 443
  • Argoudelis A. D., Coats J. H. Microbial transformation of antibiotics. VI. Acylation of chloramphenicol by Streptomyces coelicolo. J. Antibiot. 1971; 24: 20
  • Shaw W. V., Hopwood D. A. Chloramphenicol acetylation in Streptomyce. J. Gen. Microbiol. 1976; 94: 159
  • El-Kersh T. A., Plourde J. R. Biotransformation of Antibiotics. II. Investigation of the chloramphenicol acetyltransferase in Streptomyces griseu. J. Antibiot. 1976; 29: 1189
  • Harford S., Shaw W. V. Unpublished experiments 1977
  • Wright H. M., Hopwood D. A. A chromosomal gene for chloramphenicol acetyltransferase in Streptomyces acrimycin. J. Gen. Microbiol. 1977; 102: 417
  • Nakano H., Matsuhashi Y., Takeuchi T., Umezawa H. Distribution of chloramphenicol acetyltransferase and chloramphenicol-3-acetate esterase among Streptomycesand Corynebacteriu. J. Antibiot. 1977; 30: 76
  • Demain A. L. How do antibiotic-producing organisms avoid suicide?. Ann. N.Y. Acad. Sci. 1974; 235: 601
  • Lingens F., Oltmanns O. [Isolation and characterization of a chloramphenicol-destroying bacterium. Biochim. Biophys. Acta 1966; 130: 336
  • Haag R., Süssmuth R., Lingens F. The chloramphenicol resistance of a chloramphenicol degrading soil bacteriu. FEBS Lett. 1976; 63: 62
  • Süssmuth R., Haag R., Lingens F. Chloramphenicol resistance of three different Flavobacteri. J. Antibiot. 1979; 32: 1293
  • Beschle H. G., Süssmuth R., Lingens F. Conversion of chloramphenicol degradation products by tyrosine aminotransferase from Flavobacteri. Hoppe-Seyler's Z. Physiol. Chem. 1982; 363: 439
  • Aber R. C., Wennersten C., Moellering R. C., Jr. Antimicrobial susceptibility of flavobacteri. Antimicrob. Agents Chemother. 1978; 14: 483
  • Currier T. C., Nester E. W. Evidence for diverse types of large plasmids in tumour inducing strains of Agrobacteriu. J. Bacteriol. 1976; 126: 157
  • Sciaky D., Montoya A. L., Chilton M.-D. Fingerprints of AgrobacteriumTi plasmid. Plasmid 1978; 1: 238
  • Burchard R. P., Parish J. H. Chloramphenicol resistance in Myxococcus xanthus, Antimicro. Agents Chemother. 1975; 7: 233
  • Brown N. L., Parish J. H. Extrachromosomal DNA in chloramphenicol resistant Myxococcus strain. J. Gen. Microbiol. 1976; 93: 63
  • Eliopoulos E. personal communication 1981
  • Cohen F. E., Richmond T. J., Richards F. M. Protein folding: evaluation of some simple rules for the assembly of helices into tertiary structures with myoglobin as an exampl. J. Mol. Biol. 1979; 132: 275
  • Cohen F. E., Sternberg M. J. E. On the use of chemically derived distance constraints in the prediction of protein structure with myoglobin as an exampl. J. Mol. Biol. 1980; 137: 9
  • Cohen F. E., Sternberg M. J. E., Taylor W. R. Analysis and prediction of protein β-sheet structures by a combinational approac. Nature 1980; 285: 378
  • Baumberg S. The evolution of metabolic regulatio. Molecular and Cellular Aspects of Microbial Evolution, M. J. Carlile, J. F. Collins, B. E. B. Moseley. Cambridge University Press, Cambridge 1981; 229
  • Goldberg A. L., St. John A. C. Intracellular protein degradation in mammalian and bacterial cells: part . Ann. Rev. Biochem. 1976; 45: 747
  • Mosteller R. D., Goldstein R. V., Nishimoto K. R. Metabolism of individual proteins in exponentially growing Escherichia col. J. Biol. Chem. 1980; 255: 2534
  • Yen C., Green L., Miller C. G. Degradation of intracellular protein in Salmonella typhimuriumpeptidase mutant. J. Mol. Biol. 1980; 143: 21
  • Schneider W. P., Nichols B. P., Yanofsky C. Procedure for production of hybrid genes and proteins and its use in assessing significance of amino acid differences in homologous tryptophan synthetase α-polypeptide. Proc. Natl. Acad. Sci. U.S.A. 1981; 78: 2169
  • Iida S., Meyer J., Arber W. Genesis and natural history of ISI-mediated transposon. Cold Spring Harbor Symp. Quant. Biol. 1981; 45: 27
  • Kondo E., Haapala D. K., Falkow S. The production of chloramphenicol acetyltransferase by bacteriophage PIC. Virology 1970; 40: 431
  • Rosner J. L., Guyer M. S. Transportation of ISI-λ B10-ISI from a bacteriophage λ derivative carrying the ISI-cat-ISI transposon (Tn9. Mol. Gen. Genet. 1980; 178: 111
  • Chandler M., Boy de Ia Tour E., Willems D., Caro L. Some properties of the chloramphenicol resistance transposon Tn. Mol. Gen. Genet. 1979; 176: 221
  • Iida S., Arber W. On the role of ISI in the formation of hybrids between the bacteriophage PI and the R plasmid NR. Mol. Gen. Genet. 1980; 177: 261
  • Hashimoto H., Hirota Y. Gene recombination and segregation of resistance in Escherichia col. J. Bacteriol. 1966; 91: 51
  • Foster T. J., Howe T. G. B. Deletion map of the chloramphenicol resistance region of R1 and R10. J. Bacteriol. 1973; 116: 1062
  • Shaw W. V. Genetics and enzymology of chloramphenicol resistanc. Biochem. Soc. Trans. 1974; 2: 834
  • Harwood J., Smith D. H. Catabolite repression of chloramphenicol acetyltransferase synthesis in E. coliK1. Biochem. Biophys. Res. Commun. 1971; 42: 57
  • de Crombrugghe B., Pastan I., Shaw W. V., Rosner J. L. Stimulation by cyclic AMP and ppGpp of chloramphenicol acetyltransferase synthesi. Nature New Biol. 1973; 241: 237
  • Dottin R. P., Shiner L. S., Hoar D. I. Adenosine 3′,5′-cyclic monophosphate regulation of chloramphenicol acetyltransferase synthesis in vitro from PICm DN. Virology 1973; 51: 509
  • Le Grice S. F. J., Matzura H. Localisation of the transcription initiation site of the chloramphenicol resistance gene on plasmid pAC18. FEBS Lett. 1980; 113: 42
  • Dempsey W. B., McIntire S. A. Lambda transducing phages derived from a Fin O−R100::λ cointegrate plasmid: proteins encoded by the R100 replication/incompatibility region and the antibiotic resistance determinan. Mol. Gen. Genet. 1979; 176: 319
  • Iida S., Arber W. Plaque forming specialized transducing phage PI: Isolation of PICmSmSu, a precursor of PIC. Mol. Gen. Genet. 1977; 153: 259
  • Meyer J., Iida S. Amplification of chloramphenicol resistance transposons carried by phage PICm in Escherichia col. Mol. Gen. Genet. 1979; 176: 209
  • Iida S., Arber W. On the role of ISI in the formation of hybrids between the bacteriophage PI and the R plasmid NR. Mol. Gen. Genet. 1980; 177: 261
  • Iida S. A cointegrate of the bacteriophage PI genome and the conjugative plasmid R10. Plasmid 1980; 3: 278
  • Iida S., Hänni C., Echarti C., Arber W. Is the ISI flanked r-determinant of the R plasmid NRI a transposon?. J. Gen. Microbiol. 1981; 126: 413
  • Yanofsky C. Attenuation in the control of expression of bacterial operon. Nature 1981; 289: 751
  • Jaurin B., Grundström T., Edlund T., Normark S. The E. coliβ-lactamase attenuator mediates growth rate-dependent regulatio. Nature 1981; 290: 221
  • Davis R., Vapnek D. In vivo transcription of R-plasmid deoxyribonucleic acid in Escherichia colistrains with altered antibiotic resistance levels and/or conjugal proficienc. J. Bacteriol. 1976; 125: 1148
  • Alton N. K., Vapnek D. Transcription and translation of R-plasmid 538-I DNA: effects of mercury induction and analysis of polypeptides coded by the r-determinant regio. Plasmid 1979; 2: 366
  • Stüber D., Bujard H. Organization of transcriptional signals in plasmids pBR322 and pACYC18. Proc. Natl. Acad. Sci. U.S.A. 1981; 78: 167
  • Le Grice S. F. J., Matzura H. Binding of RNA polymerase and the catabolite gene activator protein within the catpromoter in Escherichia col. J. Mol. Biol. 1981; 150: 185
  • Le Grice S. F. J., Matzura H., Marcoli R., Iida S., Bickle T. A. The catabolite sensitive promoter for the chloramphenicol acetyltransferase gene is preceded by two binding sites for the catabolite gene activator protei. J. Mol. Biol. 1982; 150: 312
  • de Crombrugghe B., Pastan I. Cyclic AMP, the cyclic AMP receptor protein, and the dual control of the galactose opero. The Operon, J. H. Miller, W. S. Reznikoff. Cold Spring Harbor Laboratory. 1978; 303
  • McKay D. B., Steitz T. A. Structure of catabolite gene activator protein at 2.9 Å resolution suggests binding to left handed B-DN. Nature 1981; 290: 744
  • O'Neill M. C., Amass K., de Crombrugghe B. Molecular model of the DNA interaction site for the cyclic AMP receptor protei. Proc. Natl Acad. Sci. U.S.A. 1981; 78: 2213
  • Enbright R. H., Wong J. R. Mechanism for transcriptional action of cyclic AMP in Escherichia colientry into DNA to disrupt DNA secondary structur. Proc. Natl. Acad. Sci. U.S.A. 1981; 78: 4011
  • Lee N. L., Gielow W. D., Wallace R. G. Mechanism of araC auto-regulation and the domains of two overlapping promoters, Pcand PBADin the L-arabinose regulatory pathway of Escherichia col. Proc. Natl. Acad. Sci. U.S.A. 1981; 78: 752
  • Völker T. A., Iida S., Bickle T. A. An single gene coding for resistance to both fusidic acid and chloramphenico. J. Mol. Biol. 1982; 154: 417
  • Martin J. F., Demain A. L. Control of antibiotic biosynthesi. Microbiol. Rev. 1980; 44: 230
  • Datta N., Hedges R. W., Becker D., Davies J. Plasmid-determined fusidic acid resistance in the enterobacteriacea. J. Gen. Microbiol. 1974; 83: 191
  • Dempsey W. B., Willetts N. S. Plasmid co-integrates of prophage lambda and R factor R10. J. Bacteriol. 1976; 126: 166
  • Lane D., Chandler M. Mapping of the drug resistance genes carried by the r-determinant of the R-100.1 plasmi. Mol. Gen. Genet. 1975; 157: 17
  • Miki T., Easten A. M., Rownd R. H. Mapping of the resistance genes of NR. Mol. Gen. Genet. 1978; 158: 217
  • Timmis K. N., Cabello F., Cohen S. N. Cloning and characterization of EcoRI and HindIII restriction endonuclease-generated fragments of antibiotic resistance plasmids R6–5 and R. Mol. Gen. Genet. 1978; 162: 121
  • Bennett A. D., Shaw W. V. Resistance to fusidic acid in Escherichia colimediated by the type 1 variant of chloramphenicol acetyltransferas. submitted for publication.
  • Proctor G. N., Rownd R. H. Rosanilins: indicator dyes for chloramphenicol resistant enterobacteria containing chloramphenicol acetyltransferas. J. Bacteriol., in press
  • Coetzee J. N. Genetics of the Proteusgrou. Ann. Rev. Microbiol. 1972; 26: 23
  • Cohen J. D., Eccleshall T. R., Needleman R. B., Federoff H., Buchferer B. A., Marmur J. Functional expression in yeast of the Escherichia coliplasmid gene coding for chloramphenicol acetyltransferas. Proc. Natl. Acad. Sci. U.S.A. 1980; 77: 1078
  • Goldfarb Doi D. S.R.H., Rodriguez R. L. The expression of Tn9-derived chloramphenicol resistanc. Bacillus subtilis, Nature 1981; 293: 309
  • Goldfarb D. S., Doi R. H., Close T. J., Rodriguez R. L. The development of an expression-vector in Bacillus subtilisusing a heterologous gen. Molecular Cloning and Gene Regulation in Bacilli, (Cetus-Stanford Conference). Academic Press. 1981
  • de Crombrugghe B. personal communication 1981
  • Gorman C. M., Moffat L. F., Howard B. H. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cell. Mol. Cell Biol. 1981
  • Ehrlich S. D. Replication and expression of plasmids from Staphylococcus aureus. Bacillus subtilis, Proc. Natl. Acad. Sci. U.S.A. 1977; 74: 1680
  • Iordnescu S. Recombinant plasmid obtained from two different, compatible staphylococcal plasmid. J. Bacteriol. 1975; 124: 597
  • Iordnescu S., Surdeanu M., Della Latta P., Novick R. Incompatibility and molecular relationships between small staphylococcal plasmids carrying the same resistance marke. Plasmid 1978; 1: 468
  • Wilson C. R., Baldwin J. N. Characterization and construction of molecular cloning vehicles withi. Staphylococcus aureus, J. Bacteriol. 1978; 136: 402
  • Wilson C. R., Skinner S., Shaw W. V. Analysis of two chloramphenicol resistance plasmids from Staphylococcus aureusinsertional inactivation of Cm resistance, mapping of restriction sites, and construction of cloning vehicle. Plasmid 1981; 5: 245
  • Kono M., O'Hara K., Honda M., Mitsuhashi S. Drug resistance of staphylococci. XI. Induction of chloramphenicol resistance by its derivatives and analogue. J. Antibiot. 1969; 22: 603
  • Kono M., O'Hara K., Nagawa M., Mitsuhashi S. Drug resistance of staphylococci. Ability of chloramphenicol related compounds to induce chloramphenicol resistance in Staphylococcus aureus, Jp. J. Microbiol. 1971; 15: 219
  • Hawkins A., Fitton J. E., Skinner S. E., Shaw W. V. Chloramphenicol resistance in staphylococci: structure and expression of the gene for chloramphenicol acetyltransferase on plasmid pC22. in preparation.
  • Gryczan T. J., Contente S., Dubnau D. Characterization of Staphylococcus aureusplasmids introduced by transformation int. Bacillus subtilis, J. Bacteriol. 1978; 134: 318
  • Löfdahl S., Sjostrom J.-E., Philipson L. Characterization of small plasmids fro. Staphylococcus aureus, Gene 1978; 3: 149
  • Kono M., Sesatsu M., Hamashima H. Transformation of Bacillus subtiliswith plasmid DN. Microbios Lett. 1978; 5: 55
  • Gryczan T. J., Dubnau D. Construction and properties of chimeric plasmid. Bacillus subtilis, Proc. Natl. Acad. Sci. U.S.A. 1978; 75: 1428
  • Goze A., Ehrlich S. D. Replication of plasmids from Staphylococcus aureu. Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 1980; 77: 7333
  • Pratt J. M., Boulnois G. J., Darby V., Orr E., Wahle E., Holland I. B. Identification of gene products programmed by restriction endonuclease DNA fragments using an E. coliin vitro syste. Nucl Acids Res. 1981; 9: 4459
  • Novick R. P., Brodsky R. F. Studies on plasmid replication. I. Plasmid incompatibility and establishmen. Staphylococcus aureus, J. Mol. Biol. 1972; 68: 285
  • Ishii K., Hashimoto-Gotoh T., Matsubara K. Slow segregation of mutants from multi-copy plasmid. Plasmid 1978; 1: 435
  • Horinouchi S., Weisblum B. Nucleotide sequence and functional map of pE194, a plasmid which specifies inducible resistance to macrolide, lincosamide, and streptogramin type B antibiotic. J. Bacteriol. 1982; 150: 804
  • Miyamura S., Ochiai H., Nitahara Y., Nakagawa Y., Terao M. Resistance mechanism of chloramphenico. Streptococcus haemolyticus, Streptococcus pneumoniae, and Streptococcus faecalis, Microbiol. Immunol. 1977; 21: 69
  • Dang-Van A., Tiraby G., Acar J. F., Shaw W. V., Bouauchaud D. H. Chloramphenicol resistance in Streptococcus pneumoniaeenzymatic acetylation and possible plasmid linkag. Antimicrob. Agents Chemother. 1978; 13: 577
  • Robins-Brown R. M., Gaspar M. N., Ward J. I., Wachsmuth I. K., Koornhof H. J., Jacobs M. R., Thornsberry C. Resistance mechanisms of multiply resistant pneumococci: antibiotic degradation studie. Antimicrob. Agents Chemother. 1979; 15: 470
  • Shoemaker N. B., Smith M. D., Guild W. R. DNase-resistant transfer of chromosomal catand tetinsertions by filter matin. Pneumococcus, Plasmid 1980; 3: 80
  • Jacob A. E., Hobbs S. J. Conjugal transfer of plasmid-borne multiple antibiotic resistance in Streptococcus faecalisvar. zymogene. J. Bacteriol. 1974; 117: 360
  • van Embden J. D. A., Engel H. W. B., van Klingeren B. Drug resistance in Group D streptococci of clinical and non-clinical origin: prevalence, transferability, and plasmid propertie. Antimicrob. Agents Chemother. 1977; 11: 925
  • Courvalin P. M., Shaw W. V., Jacob A. E. Plasmid-mediated mechanisms of resistance to aminoglycoside-aminocyclitol antibiotics and to chloramphenicol in Group D streptococc. Antimicrob. Agents Chemother. 1978; 13: 716
  • Kono M., Hamashima H., Sasatsu M. Functional map of R plasmid (pTP51) resistant to multi-antibiotics isolated fro. Streptococcus faecalis, Microbios Lett. 1980; 14: 17–21
  • Saunders C. W., Guild W. R. Pathway of plasmid transformation in Pneumococcusopen circular and linear molecules are activ. J. Bacteriol. 1981; 146: 517
  • Barany F., Tomasz A. Genetic transformation of Streptococcus pneumoniaeby heterologous plasmid deoxyribonucleic aci. J. Bacteriol. 1980; 144: 698
  • Weisblum B., Holder S. B., Halling S. M. Deoxyribonucleic acid sequence common to staphylococcal and streptococcal plasmids which specify erythromycin resistanc. J. Bacteriol. 1979; 138: 990
  • Lovett P. S. Personal communication 1981
  • Keggins K. M., Lovett P. S., Duvall E. J. Molecular cloning of genetically active fragments of BacillusDNA in Bacillus subtilisand properties of the vector plasmid pUB11. Proc. Natl. Acad. Sci. U.S.A. 1978; 75: 1423
  • Dancer B. N. Transfer of plasmids among bacill. J. Gen. Microbiol. 1980; 121: 263
  • Brown B. J., Carlton B. C. Plasmid-mediated transformation in Bacillus megateriu. J. Bacteriol. 1980; 142: 508
  • Martin P. A. W., Lohr J. R., Dean D. H. Transformation of Bacillus thuringiensisprotoplasts by plasmid deoxyribonucleic aci. J. Bacteriol. 1981; 145: 980
  • van Klingeren B. J., van Embden D. A., Dessens-Kroon M. Plasmid-mediated chloramphenicol resistanc. Haemophilus influenzae, Antimicrob. Agents Chemother. 1977; 11: 383
  • Shaw W. V., Bouanchaud D. H., Goldstein F. W. Mechanism of transferable resistance to chloramphenico. Haemophilus parainfluenzae, Antimicrob. Agents Chemother. 1978; 13: 326
  • Jahn G., Laufs R., Kaulfers P.-M., Kolenda H. Molecular nature of two Haemophilus influenzaeR factors containing resistances and the multiple integrations of drug resistance transposon. J. Bacteriol. 1979; 138: 584
  • Roberts M. C., Smith A. L. Molecular characterization of “plasmid-free” antibiotic resistan. Haemophilus influenzae, J. Bacteriol. 1980; 144: 476
  • Koch A. L. Evolution of antibiotic resistance gene functio. Microbiol. Rev. 1981; 45: 355
  • Thompson J., Cundliffe E. Purification and properties of an RNA methylase produced by Streptomyces agureusand involved in resistance to thiostrepto. J. Gen. Microbiol. 1981; 124: 291
  • Pongs O. The receptor site for chloramphenicol in vitro and in viv. Drug Action at the Molecular Level, G. C. K. Roberts. Macmilian, London 1977; 190
  • Sheehan J. C. Introductory remarks, in Penicillin Fifty Years After Flemin. Phil. Trans. R. Soc. Lond. 1980; B289: 165
  • Chambliss G., Craven G. R., Davies J., Davis K., Kahan L., Nomura M. Ribosomes: Structure, Function, and Genetics. University Park Press, Baltimore 1980
  • Auron P. E., Erdelsky K. J., Fahnestock S. R. Chemical modification studies of a protein at the peptidyltransferase site of the Bacillus stearothermophilusribosom. J. Biol. Chem. 1978; 253: 6893
  • Scolnick E., Milman G., Rosman M., Caskey T. Transesterification by peptidyl transferas. Nature 1970; 225: 152
  • Fahnestock S., Neumann H., Shashoua V., Rich A. Ribosome-catalyzed ester formatio. Biochemistry 1970; 9: 2477
  • Harington C. Drug Resistance in Micro-organisms (Ciba Foundation Symposium), G. E. W. Wolstenholme, C. M. O'Connor. J. and A. Churchill, London 1957; 1
  • Britz M. L., Wilkinson R. G. Chloramphenicol acetyltransferase of Bacteroides fragili. Antimicrob. Agents Chemother. 1978; 14: 105
  • Nagano K. Logical analysis of the mechanism of protein folding. I. Predictions of helices, loops, and β-structures from primary structur. J. Mol. Biol. 1973; 75: 401
  • Chou P. Y., Fasman G. D. Conformational parameters for amino acids in helical, β-sheet, and random coil regions calculated from protein. Biochemistry 1974; 13: 211
  • Chou P. Y., Fasman G. D. Prediction of protein conformatio. Biochemistry 1974; 13: 222
  • Lim V. I. Structural principles of the globular organization of protein chains. A stereochemical theory of globular protein secondary structur. J. Mol. Biol. 1974; 88: 857
  • Lim V. I. Algorithms for prediction of α-helical and β-structural regions in globular protein. J. Mol. Biol. 1974; 88: 873
  • Burgess A. W., Ponnuswamy P. K., Scheraga H. A. Analysis of conformations of amino acid residues and prediction of backbone topography in protein. Isr. J. Chem. 1974; 12: 239
  • Chou P. Y., Fasman G. D. β-turns in protein. J. Mol. Biol. 1977; 115: 135
  • Duston M. J., Hider R. C. Snake toxin secondary structure prediction. J. Mol. Biol. 1977; 115: 177
  • Lenstra J. A., Hofsteenge J., Beintema J. J. Invariant features of the structure of pancreatic ribonucleas. J. Mol. Biol. 1979; 109: 185
  • Garnier J., Osguthorpe D. J., Robson B. Analysis of the accuracy and implications of simple methods for predicting the secondary structures of globular protein. J. Mol. Biol. 1978; 120: 97
  • Guiney D. G., Davis C. E. Incompatibility and host range of p GD 10 fro. Capnocytophagia ochraceus, Plasmid, in press
  • Nitzan Y., Rushansky N. Chloramphenicol acetyltransferase from Pseudomonas aeruginosa— a new variant of the enzym. Curr. Microbiol. 1981; 5: 259
  • Betz J. L., Sadler J. R. Variants of a cloned synthetic lactose operator. II. Chloramphenicol-resistant revertants retaining a lactose operator in the CAT gene of plasmid pBR32. Gene 1981; 15: 187
  • McLaughlin J. R., Murray C. L., Rabinowitz J. C. Unique features in the ribosome binding site sequence of the Cram-positive Staphylococcus aureusβ-lactamase gen. J. Biol. Chem. 1981; 256: 11283
  • McLaughlin J. R., Murray C. L., Rabinowitz J. C. Plasmid-directed expression of Staphylococcus aureusβ-lactamase by Bacillus subtilisin vitr. J. Biol. Chem. 1981; 256: 11273
  • Polak J., Novick R. P. Closely related plasmids from Staphylococcus aureusand soil bacteri. Plasmid 1982; 7: 152
  • Roberts M., Corney A., Shaw W. V. Molecular characterization of three chloramphenicol acetyltransferases isolated from Haemophilus influenza. J. Bacteriol. 1982; 151: 737

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.