172
Views
71
CrossRef citations to date
0
Altmetric
Original Article

Cloning and Sequencing of the Genes Encoding the Periplasmic-Cytochrome B-Containing Selenate Reductase of Thauera selenatis

, , &
Pages 365-377 | Received 13 Jul 1999, Published online: 11 Jul 2009

References

  • Allen L. N., Hanson R. S. Construction of broad-host-range cosmid cloning vectors: Identification of genes necessary for growth of Methylobacterium organophilumon methanol. J. Bacteriol. 1985; 161: 955–962
  • Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J. Mol. Biol. 1990; 215: 403–410
  • Berg B. L., Li J., Heider J., Stewart V. Nitrate-inducible formate dehydrogenase in Escherichia coli K-12. I. Nucleotide sequence of the fdnGHI operon and evidence that opal (UGA) encodes selenocysteine. /. Biol. Chetn. 1991; 266: 22380–22385
  • Berks B. C., Ferguson S. J., Moir J. W.B., Richardson D. J. Enzymes and associated electron transport systems that catalyse the respiratory reduction of nitrogen oxides and oxyanions. Biochim. Biophys. Acta 1995; 1232: 97–173
  • Berks B. C. A common export pathway for proteins binding complex redox cofactors?. Mol. Microbiol. 1996; 22: 393–404
  • Bilous P. T., Cole S. T., Anderson W. F., Weiner J. H. Nucleotide sequence of the dmsABC operon encoding the anaerobic dimethylsulphoxide reductase of Escherichia coli. Mol. Microbiol. 1988; 2: 785–795
  • Blasco F., Iobbi C, Giordano G., Chippaux M., Bormefoy V. Nitrate reductase of Escherichia coli: Completion of the nucleotide sequence of the nar operon and reassessment of the role of the a and b subunits in iron binding and electron transfer. Mol. Gen. Genet. 1989; 218: 249–256
  • Blasco F., Iobbi C, Ratouchniak J., Bonnefoy V., Chippaux M. Nitrate reductases of Escherichia coli: Sequence of the second nitrate reductase and comparison with that encoded by the narGHJI operon. Mol. Gen. Genet. 1990; 222: 104–111
  • Blasco F., Dos Santos J. P., Magalon A., Frixon C, Guigliarelli B., Santini C. L., Giordano G. NarJ is a specific chaperone required for molybdenum cofactor assembly in nitrate reductase A of Escherichia coli. Mol. Microbiol. 1998; 28: 435–147
  • Blattner F. R., Burland V., Plunkett G., III, Sofia H. J., Daniels D. L. Analysis of the Escherichia coli genome. IV. DNA sequence of the region from 89.2 to 92.8 minutes. Nucleic Acids Res. 1993; 21: 5408–5417
  • Bode C, Goebell H., Stähler E. Zur Eliminierung von Trübungsfehlern bei der Eiweissbestimmung mit der Biuretmethode. Z. Klin. Chem. Klin. Biochem. 1968; 6: 418–422
  • Bogsch E. G., Sargent F., Stanley N. R., Berks B. C., Robinson C., Palmer T. An essential component of a novel bacterial protein export system with homologues in plastids and mitochondria. J. Biol. Chem. 1998; 273: 18003–18006
  • Böhm R., Sauter M., Böck A. Nucleotide sequence and expression of an operon in Escherichia coli coding for formate hydrogenlyase components. Mol. Microbiol. 1990; 4: 231–243
  • Bokranz M., Gutmann M., Körtner C, Kojro E., Fahrenholz F., Lauterbach F., Kroger A. Cloning and nucleotide sequence of the structural genes encoding the formate dehydrogenase of Wolinella succinogenes. Arch. Microbiol. 1991; 156: 119–128
  • Bolivar F., Rodriguez R. L., Greene P. J., Betlach M. C., Heyneker H. L., Boyer H. W., Crosa J. H., Falkow S. Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. Gene 1977; 2: 95–113
  • Boyington J. C., Gladyshev V. N., Khangulov S. V., Stadtman T. C., Sun P. D. Crystal structure of formate dehydrogenase H: Catalysis involving Mo, molybdopterin, selenocysteine, and an Fe4S4 cluster. Science 1997; 275: 1305–1308
  • Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976; 72: 248–254
  • Guigliarelli B., Magalon A., Asso M., Bertrand P., Frixon C, Giordano G., Blasco F. Complete coordination of the four Fe-S centers of the b subunit from Escherichia coli nitrate reductase. Physiological, biochemical, and EPR characterization of site-directed mutants lacking the highest and lowest potential [4Fe-4S] clusters. Biochemistry 1996; 35: 4828–4836
  • Hamada K., Bethge P. H., Mathews F. S. Refined structure of cytochrome b562 from Escherichia coli at 1.4 A resolution. J. Mol. Biol. 1995; 247: 947–962
  • Hanlon S. P., Toh T. H., Solomon P. S., Holt R. A., McEwan A. G. Dimethylsulfide: acceptor oxidoreductase from Rhodobacter sulfidophilus. The purified enzyme contains b-type haem and a pterin molybdenum cofactor. Eur. J. Biochem. 1996; 239: 391–396
  • Heinzinger N. K., Fujimoto S. Y., Clark M. A., Moreno M. S., Barrett E. L. Sequence analysis of the phs operon in Salmonella typhimurium and the contribution of thiosulfate reduction to anaerobic energy metabolism. J. Bacteriol. 1995; 177: 2813–2820
  • Hoffmann T., Troup B., Szabo A., Hungerer C., Jahn D. The anaerobic life of Bacillus subtilis: Cloning of the genes encoding the respiratory nitrate reductase system. FEMS Microbiol. Lett. 1995; 131: 219–225
  • Humphreys G. O., Willshaw G. A., Anderson E. S. A simple method for the preparation of large quantities of pure plasmid DNA. Biochim. Biophys. Acta 1975; 383: 457–463
  • Hussain H., Grove J., Griffiths L., Busby S., Cole J. A seven-gene operon essential for formate-dependent nitrite reduction to ammonia by enteric bacteria. Mol. Microbiol. 1994; 12: 153–163
  • Izard J. W., Kendall D. A. Signal peptides: Exquisitely designed transport promoters. Mol. Microbiol. 1994; 13: 765–773
  • Kisker C, Schindelin H., Rees D. C. Molybdenum-cofactor-containing enzymes: Structure and mechanism. Annu. Rev. Biochem. 1997; 66: 233–267
  • Krafft T., Bokranz M., Klimmek O., Schroder I., Fahrenholz F., Kojro E., Kröger A. Cloning and nucleotide sequence of the psrA gene of Wolinella succinogenes polysulphide reductase. Eur. J. Biochem. 1992; 206: 503–510
  • Liu X., DeMoss J. A. Characterization of NarJ, a system-specific chaperone required for nitrate reductase biogenesis in Escherichia coli. J. Biol. Chem. 1997; 272: 24266–24271
  • Macy J. M., Michel T. A., Kirsch D. G. Selenate reduction by a Pseudomonas species: A new mode of anaerobic respiration. FEMS Microbiol. Lett. 1989; 61: 195–198
  • Macy J. M., Rech S., Auling G., Dorsch M., Stackebrandt E., Sly L. I. Thauera selenatis gen. nov., sp. nov., a member of the beta subclass of Proteobacteria with a novel type of anaerobic respiration. Int. J. Syst. Bacteriol. 1993; 43: 135–142
  • Magalon A., Lemesle-Meunier D., Rothery R. A., Frixon C, Weiner J. H., Blasco F. Heme axial ligation by the highly conserved His residues in helix II of cytochrome b (Narl) of Escherichia coli nitrate reductase A (NarGHI). J. Biol. Chem. 1997; 272: 25652–25658
  • Méjean V., Iobbi-Nivol C., Lepelletier M., Giordano G., Chippaux M., Pascal M. C. TMAO anaerobic respiration in Escherichia coli: Involvement of the tor operon. Mol. Microbiol. 1994; 11: 1169–1179
  • Miller J. H. Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York 1972
  • Oremland R. S., Hollibaugh J. T., Maest A. S., Presser T. S., Miller L. G., Culbertson C. W. Selenate reduction to elemental selenium by anaerobic bacteria in sediments and culture: Biogeochemical significance of a novel, sulfate-independent respiration. Appl. Environ. Microbiol. 1989; 55: 2333–2343
  • Oremland R. S., Blum I. S., Culbertson C. W., Visscher P. T., Miller L. G., Dowdle P., Strohmaier F. E. Isolation, growth, and metabolism of an obligately anaerobic, selenate-respiring bacterium, strain SES-3. Appl. Environ. Microbiol. 1994; 60: 3011–3019
  • Pierson D. E., Campbell A. Cloning and nucleotide sequence of bisC the structural gene for biotin sulfoxide reductase in Escherichia coli. J. Bacteriol. 1990; 172: 2194–2198
  • Plunkett G., III, Burland V., Daniels D. L., Blattner F. R. Analysis of the Escherichia coli genome. III. DNA sequence of the region from 87.2 to 89.2 minutes. Nucleic Acids Res. 1993; 21: 3391–3398
  • Pugsley A. P. The complete general secretory pathway of gram-negative bacteria. Microbiol. Rev. 1993; 57: 50–108
  • Rech S. A., Macy J. M. The terminal reductases for selenate and nitrate respiration in Thauera selenatis are two distinct enzymes. J. Bacteriol. 1992; 174: 7316–7320
  • Sambrook J., Fritsch E. F., Maniatis T. Molecular cloning: A laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York 1989
  • Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 1977; 74: 5463–5467
  • Santini C. L., Ize B., Chanal A., Müller M., Giordano G., Wu L. F. A novel Sec-independent periplasmic translocation pathway in Escherichia coli. EMBO J. 1998; 17: 101–112
  • Sargent F., Bogsch E. G., Stanley N. R., Wexler M., Robinson C, Berks B. C., Palmer T. Overlapping functions of components of a bacterial Sec-independent protein export pathway. EMBO. J. 1998; 17: 3640–3650
  • Schindelin H., Kisker C, Hilton J., Rajagopalan K. V., Rees D. C. Crystal structure of DMSO reductase: Redox-linked changes in molybdopterin coordination. Science 1996; 272: 1615–1621
  • Schneider F., Löwe J., Huber R., Schindelin H., Kisker C., Knäblein J. Crystal structure of dimethyl sulfoxide reductase from Rhodobacter capsulatus at 1.88 A resolution. J. Mol. Biol. 1996; 263: 53–69
  • Schroder I., Rech S., Krafft T., Macy J. M. Purification and characterization of the selenate reductase from Thauera selenatis. J. Biol. Chem. 1997; 272: 23765–23768
  • Simon R., Priefer U., Pühler A. A broad host range mobilization system for in vitro genetic engineering: Transposon mutagenesis in gram negative bacteria. Bio/technology 1983; 1: 784–791
  • Sodergren E. J., DeMoss J. A. narl region of the Escherichia coli nitrate reductase (nar) operon contains two genes. J. Bacteriol. 1988; 170: 1721–1729
  • Trieber C. A., Rothery R. A., Weiner J. H. Engineering a novel iron-sulfur cluster into the catalytic subunit of Escherichia coli dimethyl-sulfoxide reductase. J. Biol. Chem. 1996; 271: 4620–4626
  • Volbeda A., Charon M. H., Piras C, Hatchikian E. C., Frey M., Fontecilla-Camps J. C. Crystal structure of the nickel-iron hydrogenase from Desulfovibrio gigas. Nature 1995; 373: 580–587
  • Weiner J. H., Bilous P. T., Shaw G. M., Lubitz S. P., Frost L., Thomas G. H., Cole J. A., Turner R. J. A novel and ubiquitous system for membrane targeting and secretion of cofactor-containing proteins. Cell 1998; 93: 93–101
  • Yanisch-Perron C, Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: Nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 1985; 33: 103–119
  • Zinoni F., Birkmarm A., Stadtman T. C., Böck A. Nucleotide sequence and expression of the seleno-cysteine-containing polypeptide of formate dehydrogenase (formate-hydrogen-lyase-linked) from Escherichia coli. Proc. Natl. Acad. Sci. USA 1986; 83: 4650–4654

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.