58
Views
39
CrossRef citations to date
0
Altmetric
Original Article

Nucleotide Sequence Analysis of the Streptococcus gordonii Glucosyltransferase Gene, gtfG

, , , , &
Pages 83-95 | Received 21 Nov 1995, Published online: 11 Jul 2009

References

  • Abo H., Matsumura T., Kodama T., Ohta H., Fukui K., Kato K., Kagawa H. “Peptide sequences for sucrose splitting and glucart binding within Streptococcus sobrinus glucosyltransferase (water-soluble glucan synthesis)”. J. Bacteriol. 1991; 173: 989–996
  • Altschul S. G., Gish W., Miller W., Myers E. W., Lip-Man D. J. “Basic local alignment search tool”. J. Mol. Biol. 1990; 215: 403–410
  • Ausubel F. M., Brent B., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. Current Protocols in Molecular Biology. John Wiley & Sons, Inc., NY 1987
  • Banas J. A., Russell R. R. B., Ferretti J. J. “Sequence analysis of the gene for the glucan-binding protein of Streptococcus mutans Ingbritt”. Infect. Immun. 1990; 58: 667–673
  • Banas J. A., Simon D., Williams L. K., Ferretti J. J., Russell R. R. B. “Analysis of a primer-independent GTF-I from Streptococcus salivarius”. FEMS Microbiol. Lett. 1994; 123: 349–354
  • Brendel V., Hamm G. H., Trifonov E. N. “Terminators of transcription with RNA polymerase from Escherichia coli: what they look like and how to find them”. J. Biomol Struct. Dyn. 1986; 3: 705–723
  • Bourgeau G., McBride B. C. “Dextran-mediated interbacterial aggregation between dextran synthesizing streptococci and Actinomyces viscosus”. Infect. Immun. 1976; 13: 1228–1234
  • Buchan R. A., Jenkinson H. F. “Glucosyltransferase production by Streptococcus sanguis Challis and comparison with other oral streptococci”. Oral Microbiol. Immunol. 1990; 5: 63–71
  • Clewell D. B., Yagi Y., Dunny G., Schultz S. “Characterization of three plasmid DNA molecules in a strain of Streptococcus faecalis. Identification of a plasmid determining erythromycin resistance”. J. Bacteriol. 1974; 117: 283–289
  • Dibdin G. H., Shellis R. P. “Physical and biochemical studies of Streptococcus mutans sediments suggest new factors linking the cariogenicity of dental plaque with its extracellular polysaccharide content”. J. Dent. Res. 1988; 67: 890–895
  • Ferretti J. J., Gilpin M. L., Russell R. R. B. “Nucleotide sequence of a glucosyltransferase gene from Streptococcus sobrinus MFe28”. J. Bacteriol. 1987; 169: 4271–4278
  • Frandsen E. V. G., Pedrazzoli V., Kilian M. “Ecology of viridans streptococci in the oral cavity and pharynx”. Oral Microbiol. Immunol. 1991; 6: 129–133
  • Fukushima K., Ikeda T., Kuramitsu H. K. “Expression of Streptococcus mutans gtf genes in Streptococcus milleri”. Infect. Immun. 1992; 60: 2815–2822
  • Funane K., Shiraiwa M., Hashimoto K., Ichishma E., Kobayashi M. “An active-site peptide containing the second essential carboxyl group of dextransucrase from Leuconostoc mesenteroides by chemical modifications”. Biochemistry 1993; 32: 13696–13702
  • Giffard P. M., Simpson C. L., Milward C. P., Jacques N. A. “Molecular characterization of a cluster of at least two glucosyltransferase genes in Streptococcus salivarius ATCC 25975”. J. Gen. Microbiol. 1991; 137: 2577–2593
  • Giffard P. M., Allen D. M., Milward C. P., Simpson C. L., Jacques N. A. “Sequence of the gtfK gene of Streptococcus salivarius ATCC 25975 and evolution of the gtf genes of oral streptococci”. J. Gen. Microbiol. 1993; 139: 1511–1522
  • Giffard P. M., Jacques N. A. “Definition of a fundamental repeating unit in streptococcal glucosyltransferase glucan-binding regions and related sequences”. J. Dent. Res. 1994; 73: 1133–1141
  • Gilmore K. S., Russell R. R. B., Ferretti J. J. “Analysis of the Streptococcus downeii gtfS gene, which specifies a glucosyltransferase that synthesizes soluble glucans”. Infect. Immun. 1990; 58: 2452–2458
  • Grahame D. A., Mayer R. M. “The origin and composition of multiple forms of dextransucrase from Streptococcus sanguis”. Biochimica et Biophysics Acta. 1984; 786: 42–48
  • Grahame D. A., Mayer R. M. “Purification and comparison of two forms of detransucroase from Streptococcus sanguis”. Carbohydrate Res. 1985; 142: 285–298
  • Gribskov M., Burgess R. R. “Sigma factors from E. coli, B. subtilis phage SP01 and phage T4 are homologous proteins”. Nucleic Acids Research 1986; 14: 6745–6763
  • Haisman R. J., Jenkinson H. F. “Mutants of Streptococcus gordonii Challis over-producing glucosyltransferase”. J. Gen. Microbiol. 1991; 137: 483–489
  • Hanada N., Isobe Y., Aizawa Y., Katayama T., Sato S., Inoue M. “Nucleotide sequence analysis of the gtfT gene from Streptococcus sobrinus OMZ176”. Infect. Immun 1993; 61: 2096–213
  • Honda O., Kato C., Kuramitsu H. K. “Nucleotide sequence of the Streptococcus mutans gtfD gene encoding the glucosyltransferase-S enzyme”. J. Gen. Microbiol. 1990; 136: 2099–2105
  • Kolenbrander P. E., London J. “Adhere today, here tomorrow: oral bacterial adherence”. J. Bacterial. 1993; 175: 3247–3252
  • Loesche W. J. “Role of Streptococcus mutatis in human dental decay”. Microbiol. Rev. 1986; 50: 353–380
  • Macrina F. L., Tobian J. A., Jones K. R., Evans R. P. Molecular cloning in the streptococci. Genetic engineering of microorganisms for chemicals, A. Hollaender, R. DeMoss, S. Kaplan, J. Konisky, D. Savage, R. Wolfe. Plenum Publishing Corp., New York 1981; 195–210
  • McNee S. G., Geddes D. A. M., Weetman D. A., Sweeney D., Beeley J. A. “Effect of extracellular polysaccharides on diffusion of NaF and 14C-sucrose in human dental plaque and in sediments of the bacterium Streptococcus sanguis 804 (NCTC 10904)”. Arch. Oral. Biol. 1982; 27: 981–986
  • Mooser G., Wong C. “Isolation of a glucan binding domain of glucosyltransferase (1,6 alpha glucan synthase) from Streptococcus sobrinus”. Infect. Immun. 1988; 56: 880–884
  • Mooser G., Hefta S. A., Paxton R. J., Shively J. E., Lee T. D. “Isolation and sequence of an active site pepride containing a catalytic aspartic acid from two Streptococcus sobrinus α-glucosyltransferases”. J. Biol. Chem. 1991; 266: 8916–8922
  • Nakano Y. J., Kuramitsu H. K. “Mechanism of Streptococcus mutans glucosyltransferases: hybrid enzyme analysis”. J. Bacteriol. 1992; 174: 5639–5646
  • Needleman S. B., Wunsch C. D. “A general method applicable to the search for similarities in the amino acid sequence of two proteins”. J. Mol. Biol. 1970; 48: 443–453
  • Parker M. T., Ball L. C. “Streptococci and aerococci associated with systemic infection in man”. J. Med. Microbiol. 1976; 9: 275–302
  • Plasterk R. H. A. “Genetic switches: mechanism and function”. Trends in Genetics 1992; 8: 403–406
  • Redston M. S., Kern S. E. Klenow co-sequencing: a method for eliminating “stops”. BioTechniques 1994; 17: 286–287
  • Russell R. R. B. “Molecular genetics of glucan metabolism in oral streptococci”. Arch. Oral. Biol. 1990; 35: 53S–58S
  • Russell R. R. B. “The application of molecular genetics to the microbiology of dental caries”. Caries Res. 1994; 28: 69–82
  • Sanger F., Nicklen S., Couson A. R. “DNA sequencing with chain-terminating inhibitors”. Proc. Natl. Acad. Sci. USA 1977; 74: 5463–5467
  • Sato S., Inoue M., Handa N., Aizawa Y., Isobe Y., Katayama T. “DNA sequence of the glucosyltransferase gene of serotype d Streptococcus sobrinus”. DNA Sequence 1993; 4: 19–27
  • Scheld W. M., Valone J. A., Sande M. A. “Bacterial adherence in the pathogenesis of endocarditis”. J. Clin. Invest. 1978; 61: 1394–1404
  • Shimamura A., Nakano Y., Mukasa H., Kuramitsu H. K. “Identification of amino acid residues in Streptococcus mutans glucosyltransferases influencing the structure of the glucan product”. J. Bacteriol. 1994; 176: 4835–4850
  • Shiroza T., Ueda S., Kuramitsu H. K. “Sequence analysis of the gtfB gene from Streptococcus mutans”. J. Bacteriol. 1987; 169: 4263–4270
  • Simpson D. L., Giffard P. M., Jacques N. A. “Streptococcus salivarius ATCC 25975 possesses at least two genes codingforprimer-independent glucosyltransferases”. Infect. Immun. 1995; 63: 609–621
  • Smith D. J., Taubman M. A., Holmberg C. F., Eastcott J., King W. F., All-Salam P. “Antigenicity and immunogenicity of a synthetic peptide derived from a glucan-binding domain of streptococcal glucosyltransferase”. Infect. Immun. 1993; 61: 2899–2905
  • Smith D. J., Taubman M. A., King W. F., Eida S., Powell J. R., Eastcott J. “Immunological characteristics of a synthetic peptide associated with a catalytic domain of mutans streptococcal glucosyltransferases”. Infect. Immun. 1994; 62: 5470–5476
  • Su Y. A., Sulavik M. C., He P., Makinen K. K., Makinen P., Fiedler S. “Nucleotide sequence of the gelarinase gene (gelE) from Enterococcus faecalis subsp. liquifaciens”. Infect. Immun. 1991; 59: 415–420
  • Sulavik M. C., Tardif G., Clewell D. B. “Identification of a gene, rgg which regulates expression of glucosyltransferase and influences the Spp phenotype of Streptococcus gordonii Challis”. J. Bacteriol. 1992; 174: 3577–3586
  • Sulavik M. C. “Regulation of glucosyltransferase in Streptococcus gordonii”. Ph.D. thesis, University of Michigan. 1992
  • Tardif G., Sulavik M. C., Jones G. W., Clewell D. B. “Spontaneous switching of the sucrose-promoted colony phenotype in Streptococcus sanguis”. Infect. Immun. 1989; 57: 3945–3948
  • Ueda S., Shiroza T., Kuramitsu H. K. “Sequence analysis of the gtfC gene from Streptococcus mutans GS5”. Gene 1988; 69: 101–109
  • Vickerman M. M., Jones G. W. “Sucrose-dependent accumulation of oral streptococci and their adhesion-defective mutants on saliva-coated hydroxyapatite”. Oral Microbiol. Immunol. 1995; 10: 175–182
  • Vickerman M. M., Clewell D. B., Jones G. W. “Sucrose-promoted accumulation of growing glucosyltransferase variants of Streptococcus gardanii on hydroxyapatite surfaces”. Infect. Immun. 1991a; 59: 3523–3530
  • Vickerman M. M., Clewell D. B., Jones G. W. “Ecological implications of glucosyltransferase phase variation in Streptococcus gordonii”. Appl. Environ. Microbiol. 1991b; 57: 3648–3651
  • Vickerman M. M., Sulavik M. C., Clewell D. B. “Oral streptococci with genetic determinants similar to the glucosyltransferase regulatory gene, rgg”. Infect. Immun. 1995; 63: 4524–4527
  • von Eichel-Streiber C., Sauerborn M., Kuramitsu H. K. “Evidence for a modular structure of the homologous repetitive c-terminal carbohydrate-binding sites of Clostridium difficile toxins and Streptococcus mutans glucosyltransferases”. J. Bacteriol. 1992; 174: 6707–6710
  • Wilke-Douglas M., Perchorowicz J. T., Houck C. M., Thomas B. R., Inventors Calgene, Inc., applicant. “Methods and compositions for altering physical characteristics of fruit and fruit products”. 1989, International patent application number PCT/US89/02729
  • Wren B. W. “A family of clostridial and streptococcal ligand-binding proteins with conserved C-terminal repeat sequences”. Mol. Microbiol. 1991; 5: 797–803
  • Zuker M. “Computer prediction of RNA structure”. Meth. Enzymol. 1989; 180: 262–288

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.